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Abstract: Utilizing agro-waste material such as rice husk (RH) and coco peat (CP) reinforced with
thermoplastic resin to produce low-cost green composites is a fascinating discovery. In this study,
the effectiveness of these blended biocomposites was evaluated for their physical, mechanical, and
thermal properties. Initially, the samples were fabricated by using a combination of melt blend
internal mixer and injection molding techniques. Increasing in RH content increased the coupons
density. However, it reduced the water vapor kinetics sorption of the biocomposite. Moisture
absorption studies disclosed that water uptake was significantly increased with the increase of
coco peat (CP) filler. It showed that the mechanical properties, including tensile modulus, flexural
modulus, and impact strength of the 15% RH—5% CP reinforced acrylonitrile-butadiene-styrene
(ABS), gave the highest value. Results also revealed that all RH/CP filled composites exhibited a
brittle fracture manner. Observation on the tensile morphology surfaces by using a scanning electron
microscope (SEM) affirmed the above finding to be satisfactory. Therefore, it can be concluded that
blend-agriculture waste reinforced ABS biocomposite can be exploited as a biodegradable material
for short life engineering application where good mechanical and thermal properties are paramount.

Keywords: biocomposites; blend; recycle composites; biodegradable

1. Introduction

Researchers have recently been looking for high-performance materials based on their
lightweight capability and assembly features toward the end product’s lowest cost. Not
all available products in the market fulfill the designers’ need. Therefore, the researchers
move toward the advanced material called composite materials. The composite material is
a combination of two or more constituent materials with different physical and chemical
properties. When combined, they produce unique properties compared to individual
material. In general, composite materials offer excellent weight to strength ratio, thermal,
moisture uptake, and wear properties. Engineering composite is a combination composite
materials harder and stronger phase, which is called reinforcement material, and the
stiff continuous segment is termed matrices. The matrix can be either thermosetting or
thermoplastics, while the reinforcement material could be metals, ceramics, or fibers.
Previously, synthetic fibers, including glass [1,2], boron, carbon, and Kevlar, were famously
used for reinforcement. However, due to their high cost and non-biodegradable property,
scientists and technologies shifted to full usage of natural fibers and agro-waste materials.
Recently, vegetable fibers and crop residues like banana [3], kenaf [4], and bamboo [5], coco
peat (CP), and rice husk (RH), were evaluated to reinforce polymer composite materials
and were the best candidates to replace synthetic fibers. Besides being recyclable, the
plant fibers haves offer many advantages, such as low cost, low density, and abundant
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availability. Due to ecological concern and new rules and regulations, the development
of a new biocomposite that consists of thermoplastic polymer and agro-waste fiber as
reinforcement is mandatory. Consequently, this study will reduce the carbon cycle, decrease
environmental impact, and thus produce a greener product.

Generally, rice (Oryza sativa) is one of the essential agricultures product in this world.
In 2017, the global annual production of 670 million tons of paddy was harvested from Asia,
America, Africa, and Europe [6]. Approximately 20% of the paddy were estimated to be
rice husks. In Malaysia, a total of 840 thousand tons of RH are produced annually [7]. The
utilization of RH in composite structures is recommended in many engineering applications
due to its abrasive nature, low cost, lightweight, renewability, biodegradability, universally
available, and weathering resistant. It has been reported that the incorporation of RH
into thermoplastic matrices enhances the mechanical [8], flammability [9], and thermal
stability [10] properties of biocomposites. Chen et al. [8] reported that the RH filler sample
improved up to 58% tensile modulus than neat polymer. Moreover, with the addition of
RH in the eco-composite structure, the flammability heat release rates were significantly
dropped by approximately 39%, which can be attributed to the presence of silica in RH [9].
Additionally, the degradation rate values for RH reinforced polymer were shifted to a
higher temperature, indicating improved thermal stability of the biocomposite as compared
to recycled polymer [10]. Many studies also mentioned that RH-filled composite material
has a low moisture absorption kinetic and good dimension stability than other natural
fiber composites [11]. High moisture absorption capability of the biocomposite results
in weak interfacial bonding which reduces microbial resistance, is easy to buckle under
compressive loading, and contributes to deterioration of mechanical properties. Therefore,
these moisture absorption characteristics are essential and critical factors to be evaluated
for potential use in outdoor application. Several research works have assessed the water
absorption behavior of RH composites upon immersion in distilled water.

In addition, coco peat is a spongy particle and by-product waste of coconut shell. It is a
rich source of lignocellulose consisting of lignin, cellulose, and hemicellulose. Traditionally,
this coconut waste is abundantly available and also widely used as soilless potting mix
media in agriculture. A coconut mostly contains approximately 100 g of coco peat with a
mixture of coarse-to-fine cork particles (83–95% in total) and fibers. Currently, about eight
million tons of coco peat are being produced from coconut husks in the world each year.
In Malaysia, approximately 5280 kg per hectare of coconut waste, mainly coconut husk,
is obtained, but most have not yet been processed and fully utilized. Coco peat is highly
plausible with adequate water capacity storage, high water retention, and eco-friendly.
However, it has a moderate mechanical property. Borawski [12] stated that unconventional
materials like coconut waste are an excellent alternative for many automotive applications,
such as brake pads. Besides, hybrid coco peat composites also offer higher wear resistance
to manufacture clutch plates lining and superabsorbent capability for desiccant evaporating
cooling systems [13].

Based on past findings, even though extensive research has been done to explore
composites’ physical and mechanical properties, very few involved blend biocomposites.
The claims of excellent RH composites on mechanical and especially tensile properties and
low moisture absorption mentioned before, together with abundantly available but possess
moderate mechanical properties of CP fiber, became the biocomposites’ filler selection to
run the investigation. Indeed, the aim of this study was to explore the synergistic effects of
the blended RH and CP filler reinforced ABS composite on the physical and mechanical
properties that has not been conducted previously. However, only a handful of publications
raised concerns about the moisture characteristics of the blended composite, especially with
coco peat and acrylonitrile butadiene styrene (ABS). Therefore, the moisture absorption,
tensile behaviors, flexural test, and impact resistant of these biodegradable composites
were tested. Besides, the composites were tested according to ASTM standards, and the
surface morphological were finally evaluated experimentally. This investigation direction
is beneficial for producing green waste composite materials with a synergistic combination
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of cost and performance. This topic remains unexplored at the time of writing, and the
need to investigate this area of matter is crucial to fill the knowledge gap.

2. Materials and Methods
2.1. Materials

Acrylonitrile Butadiene Styrene (ABS) was supplied by Muleh Zaman Enterprise
(Gombak, Selangor, Malaysia) in pallet form and was used as the polymer matrix. The
average pellet size was 4 mm. Rice husk (RH) particle and cocoa peat (CP) were purchased
from Innovative Pultrusion Sdn. Bhd. (Seremban, Negeri Sembilan, Malaysia). RH has an
average density of 0.22 g/cm3 specifically from Oryza sativa species and CP has an average
density of 0.10 g/cm3 solely from Cocos nucifera species.

2.2. Sample Fabrication

Initially, RH particle sized ±10 µm, CP particle sized ±0.25 mm, and thermoplastic
ABS in pellet form were dried in an electric air circulated oven (CMH Ltd., Lancing, UK) at
80 ◦C for 48 h. Five sets of RH/CP (20/0, 5/15, 10/10, 15/5, and 0/20) wt.% reinforced
thermoplastic ABS were fabricated as tabulated in Table 1. The RH/CP blend composites
were prepared via the melt blend internal mixer (Brabender, Duisburg, Germany) at an
optimum processing temperature of 190 ◦C and a rotating speed of 40 rpm. The composites
were then oven-dried (CMH Ltd., Lancing, UK) at 80 ◦C for 2 h [14], followed by chopping
(Cheso N3, Loyang Way, Singapore) the composite to form pallets. The composite granules
were then fed to a screw-type injection molding (Engel Gmbh, Schwertberg, Austria). It
was further mixed, heated, and then extruded through three plate mold dies to create
uniform distribution tensile, three-point bending, and impact test samples.

Table 1. Sample composition and designation.

Sample Composition (wt.%) Designation

ABS (80) + Rice Husk (20) + Coco Peat (0) RH20/CP0
ABS (80) + Rice Husk (15) + Coco Peat (5) RH15/CP15

ABS (80) + Rice Husk (10) + Coco Peat (10) RH10/CP10
ABS (80) + Rice Husk (5) + Coco Peat (15) RH5/CP15
ABS (80) + Rice Husk (0) + Coco Peat (20) RH0/CP20

2.3. Physical Properties of RH/CP Reinforced ABS Blend Composites

The density of biocomposites was evaluated according to ASTM D4018. The thickness
and weight of the developed blend composites of RH/CP were recorded for tests. The
samples were weighed to the nearest 0.001 g by using a close chamber EMS 300-3 precision
balance (Kern and Sohn, Balingen, Germany).

Water absorption characteristics were conducted following the ASTM D570. The
sample was initially dried in a circulation oven (CMH Ltd., Lancing, UK) at 80 ◦C for 2 h
before the composites’ weight was obtained. In this study, five replicates of composite
specimens with the dimension of 20 mm × 20 mm × 3 mm were immersed in distilled
water at room temperature of 25 ◦C. The coupons were taken out from the moist condition,
and all exposed surfaces were dried by using a microfiber cloth (Spontex, Worcester,
Worcestershire). The moisture uptake data were recorded by using a weight balance EMS
300-3 (Kern and Sohn, Balingen, Germany) regularly at every 2 h of water immersion. The
moisture absorption characteristic was evaluated by using the following equation:

%M =
Wt −W0

W0
× 100 (1)
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where, Wt is the sample’s weight at a recorded immersion time, and W0 is weight of the
dried sample. The kinetic and diffusion mechanism was evaluated based on Fickian’s
theory. Its relation is:

log
[

Mt

M∞

]
= log(k) + n log(t) (2)

where Mt and M∞ are water absorption at time, t and saturation point, respectively. k and
n are constants.

The ability of moisture to penetrate the composite’s molecule, also known as diffusion
coefficient, D is a primary parameter of Fick’s model [15]. The D value is obtained from
initial linear portion of the moisture absorption percentage versus the square root of the
time curve. The one-dimensional diffusion coefficient, D, can be determined from the
following equation:

D = π

[
h

4M∞

]2[ M2 −M1√
t2 −
√

t1

]2
(3)

where h is the plate thickness, M2, M1 are the moisture content at time t1 and t2, respectively.

2.4. Tensile Test

Tensile properties of the RH/CP reinforced ABS blend composites were performed
according to the ASTM D618 test standards. The samples were fabricated into flat dog-
bone shaped to accommodate the calibrated universal testing machine (AG-X plus 50 kN,
Shimadzu, Kyoto, Japan). The speed of the tensile testing was fixed at 1 mm/min. The tests
were performed on five samples, and the average reading was taken as the final result.

2.5. Flexural Test

Flexural properties of the fabricated RH-CP/ABS blend composite were evaluated
according to the ASTM D790-03 (3-point bending) standard. The testing was executed by
using a universal testing machine (AG-X plus 50 kN, Shimadzu, Kyoto, Japan) with a span
to depth ratio of 16:1. The flexural testing speed was fixed at 1 mm/min by using a 50 kN
of the load cell.

2.6. Impact Test

In this study, the unnotch Charpy impact test was used to measure the impact charac-
teristic of the fabricated RH-CP reinforced ABS blend composite. Samples with a dimen-
sion of 65 mm × 12.7 mm × 3.2 mm were evaluated by using a pendulum impact tester
(Zwick 5113, Ulm, Germany). The pendulum was released at an energy capacity of 4 J and
release angle of 160◦. This experimental procedure was conducted according to ASTM
D256 test standards. An average of five samples relative to the RH-CP reinforced ABS
blend composites’ impact strength was evaluated.

2.7. Composite Characterization

The morphological investigations of RH-CP reinforced ABS blend composite were
examined by using a field emission scanning electron microscope (FESEM) (JEOL, JSM-
7800F, Tokyo, Japan). The composite samples were then analyzed under a magnification of
500× at an accelerating voltage of 2 kV. Prior to the evaluation, the samples were initially
coated with platinum by using a fine auto coater (JEOL, JEC-3000FC, Tokyo, Japan).

3. Results and Discussion
3.1. Density of Blend Composites

The measured density values of the RH/CP reinforced thermoplastic ABS composites
are illustrated in Figure 1. This composite density was subjected to various particle loading
of RH/CP (0/20, 5/15, 10/10, 15/5, and 20/0) in a weight fraction. It was shown that by
increasing the rice husk to coco peat in blend composites, the density also increases. The
highest density result was obtained from RH20/CP0 as compared to other biocomposite
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configurations. This result was mainly ascribed to the higher density of RH to the CP
filler. Similarly, Hemnath et al. [16] reported that by increasing the RH content the void
content decreased due to smaller particle size in blend composites. Higher RH loading
reduces the pores content resulting in tighter and pack composites. This void percentage
of the composite can be controlled by adjusting the reinforcement amount and molding
parameters during fabrication. These lead to improved mechanical properties, sound
absorption capabilities, and thermal insulation of the structures.
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Figure 1. Typical density of rice husk (RH)/coco peat (CP) reinforced acrylonitrile-butadiene-styrene
(ABS) blend composites.

3.2. Moisture Absorption Study

The moisture absorption trends of the RH/CP (0/20, 5/15, 10/10, 15/5, and 20/0)
reinforced ABS are illustrated in Figure 2a. The plots were deducted from an average value
of three specimens. For immersion time lower than 20 h, the moisture absorption (%) rate
steadily increased with increasing coco peat content. The maximum moisture absorption is
from the RH0/CP20 wt.% of coco peat composite composition. It can be suggested that the
hydrophilicity of the coco peat particle was higher than the rice husk filler. Deo et al. [17]
reported that weak fiber-matrix adhesion and void content influenced the natural fiber
composites’ moisture uptake. The high content of coco peat filler increased free hydroxyls
(OH) groups in cellulose. These OH groups enhanced the contact with moisture and form
several hydrogen bonding, resulting in weight gain in the blend composites. In general,
moisture uptake increases with immersion time. However, it remained as a constant plateau
after 40 h, as shown in Figure 2a. The time to reach a saturation condition was nearly
similar for all tested samples. The extent of blend composites in a humid environment
promotes an increase in the swelling dimension and low-stress transfer between particle
and matrix, which corresponds to the reduction in mechanical properties [18].
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Figure 2b presents a typical log (Mt/M∞) versus log (t) for the RH/CP reinforced
ABS composites. The swelling transport exponent ‘n’ and characteristic constant (k) of
the moisture absorption values were determined from the slopes and intercepts of these
plots, respectively. The results indicated that the diffusion exponent for the composite
samples lies between 0.56 and 0.59. This can be explained that the RH/CP reinforced ABS
was in the range of Fick’s model. Similar findings were reported by Razavi et al. [19] and
Awasthi et al. [20]. The n values were between 0.5 and 0.7 when the Fickian diffusion
property was applied in the studies to determine the rice husk reinforced thermoplastic
composites’ moisture absorption characteristic. It was claimed that these biocomposites
were in an intermediate diffusion process between the penetrant mobility cases I and II.
However, Guloglu et al. [21] mentioned that most composites structures were in a range
of abnormal water diffusion characteristics. This typical non-Fickian moisture absorption
behavior of the thermoplastic-based composites was also reported by Melo et al. [22] and
Aziz et al. [23] when the samples were continually exposed to a wet environment at a lower
absorption rate and prolonged period.

Moreover, the blend composites k value increased with increasing coco peat content,
as tabulated in Table 2. It indicated that the higher the coco peat filler in composites,
the higher the biocomposites kinetic water absorption characteristic. A higher value of k
explained that the fastest blend composite diffusion time is needed to reach a saturation
condition. Findings were also aligned with the result, as illustrated in Figure 2a. Similar
results were reported by Guna et al. [24]. It was mentioned a decreased water resistance
with the increase up to 40 wt.% of coconut filler content of the hybrid composites, resulting
in insufficient resin to impregnate and wet out the fillers. In this study, the D values
of the biocomposites also increased with increase in coco peat content. At lower rice
husk composition, the water dispersion mobility rate in a composite capillary was low,
resulting in lower D values. These D values were in a range reported by Chen et al. [8].
It demonstrated that the pack of hybrid arrangement in rice husk filler would reduce the
moisture kinetic absorption due to narrow gaps and voids formation in the biocomposites.
A similar finding was reported by Nanthakumar et al. [25], which suggested that an
improvement of filler-matrix adhesion by using a surface modification technique could
reduce water molecules to diffuse and penetrate the composite structures. Besides, an extra
information on the blend composites’ glass transition temperature helped to predict the
plasticizing effect of solvent on the polymer [26,27].

Table 2. Saturation water absorption, water absorption constant, swelling exponent constant, and
diffusion coefficient of RH/CP reinforced ABS composites.

Composition M∞ (%) k n D × 10−6 (mm2/s)

RH0/CP20 9.05 0.124 0.415 0.104
RH5/CP15 8.11 0.095 0.448 0.114
RH10/CP10 7.51 0.085 0.469 0.121
RH15/CP5 7.22 0.055 0.519 0.127
RH20/CP0 6.92 0.039 0.567 0.134

3.3. Tensile Properties

Five types of RH/CP fiber weight percentages were used in blend composites. RH
and CP fiber used as the fiber content in the composites were fixed at 20 wt.% while the
epoxy resin matrix was fixed at 80 wt.%. The tensile study was conducted and showed
that the tensile properties were affected by the variation in blend compositions. The tensile
properties are shown in Figure 3. It was demonstrated that RH15/CP5 composition showed
the highest tensile strength among the blend composites. Tensile strength enhancements
of 18.4% and 17.8% were reported for RH15/CP5 blend composites were achieved as
compared to its monofiber composites for RH0/CP20 (coco peat monofiber composites)
and RH20/CP0 (rice husk monofiber composites), respectively. This phenomenon was due
to the blending ability to practically overcome the traditional low strength disadvantages
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of single type natural fiber-reinforced composites [28,29]. Practically, the RH particle size
was much smaller than that of CP. Consequently, the surface area available for wetting by
the polymeric matrix was higher with higher RH filler loadings. Under quasi-static tensile
loading, stress transfer from matrix to filler may be more efficient in the RH dominant
composites, resulting in higher mechanical properties [30]. Moreover, the tensile strength
also revealed an increment as the RH content increases. Simultaneously, the CP content
was decreased, up to 15 wt.% RH and down to 5 wt.% CP, respectively, on the composites.
The composite properties mainly depended on the mechanical behaviors of the individual
reinforcing fibers [31]. RH was reported as a kind of natural fiber with higher stiffness in
tensile properties as compared to CP fiber [32]. This event was explained by the tensile
strength increment as the RH loading extends and not the opposition’s extension of CP
loading. However, the tensile strength decreased with further addition of 20 wt.% RH
content, by as much as 15.1%. Poor interfacial bonding with the evidence from the mi-
crograph of a fractured specimen in Figure 8 was the reason for the tensile deterioration.
Aridi et al. [33] studied the mechanical properties of RH polypropylene composites, and
the results showed that as the RH composition increased to 55 wt.%, the strength decreased.
It was concluded that the weak bonding between the hydrophilic filler and the hydrophobic
matrix polymer obstructed the stress propagation, and thus caused the tensile strength to
fall when the filler loading increased. Besides, poor dispersion caused agglomeration of
the fillers and acted as stress concentration points, which led to composite failure [34]. This
caused a decrease in tensile strength.
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Figure 3. Tensile properties of RH/CP reinforced ABS blend composites.

Nevertheless, the addition of RH fiber loading instead of CP fiber loading proportion-
ally increased the tensile modulus. It was deduced that the tensile modulus was affected
by the blending of RH and CP fiber as the reinforcement filler. The highest enhancement
of 16% on tensile modulus was detected from RH20/CP0 in contrast with RH0/CP20.
This finding remarked that the composites’ stiffness came from the stiffness of CP, par-
ticularly on top of the ABS itself. Altogether, it was observed that the RH20/CP0 blend
composite delivered the maximum Young’s modulus, whereas the lowest was delivered by
RH0/CP20 filler for the composites. Figure 4 demonstrates the tensile stress-strain curves
for RH20/CP0, RH15/CP5, RH10/CP10, RH5/CP15, and RH0/CP20 blend composites
from the tensile test. The curve deduced that the 15 wt.% RH and 5 wt.% CP resulted in the
highest value in tensile stress. Meanwhile, the tensile strain’s highest extent was achieved
by the 20 wt.% CP blend composites. The tensile strain recorded that the composites’ strain
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increased as the amount of CP fiber filler increased. The monofiber CP composites showed
an improvement of 15.5% strain as compared to the monofiber RH composites. Therefore,
the CP fiber upsurged the ductility behavior of the blend composites better than RH fiber.
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3.4. Flexural Properties

In order to further understand the mechanical properties of the blend composites,
flexural tests were conducted. Figure 5 presents the flexural strength and flexural modulus
results obtained from the tests. It was apparent from this figure that the trend for this test
was similar to the tensile test. The finding provided evidence that the flexural strength
increased as the RH fiber filler increased, up to 15 wt.%, then decreased after the addition
of 20 wt.% RH fiber to the blend composites. Further analysis showed that the RH15/CP5
blend composite revealed the highest value of flexural strength in comparison with its
RH and CP monofiber composites, with an improvement of 9.0% and 2.3%, respectively.
The flexural strength improvement was not quite as significant as the tensile strength
improvement, but still considerably affecting the composites. The lowest flexural strength
was RH0/CP20, likewise the tensile strength discussed in the previous section. There
were several possible explanations for this result. A possible reason for this might be that
a weak link may exist between the interfacial bond between hydrophilic CP fiber and
hydrophobic resin [35].

In Figure 5, a clear trend is shown on the increasing flexural modulus as the percentage
of introducing RH filler into the composites becomes larger. The optimum flexural modulus
was found on the RH20/CP0 at 5.51 GPa, followed by RH15/CP5, RH10/CP10, RH5/CP15,
and RH0/CP20. As mentioned in the literature review, no data was found on the blending
between RH fiber and CP fiber into a composite for comparison. On the other hand, Figure 6
illustrates the typical flexural stress-strain curves of the blend composites. Contrary to
expectations, the result did not show any significant difference between the flexural strain
enhancement with the variation of RH and CP fibers filler content. The insignificant
difference in the flexural strain could be attributed to the elasticity among the composite,
which was almost similar for each of them.

3.5. Impact Response Behavior

The impact response of the rice husk and coco peat filler blend ABS composites is
summarized in Figure 7. It corresponds to the combination of RH/CP configuration. The
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incorporation of RH in the CP-ABS varied the impact behavior of the blend composite.
Referring to the plot, the maximum impact energy and impact strength were obtained
at RH15/CP5 wt.%. The value of the impact properties significantly increased with the
increase of RH from 0 wt.% to 15 wt.%. Further increase in the proportion of biomass in the
biocomposite reduced the impact strength due to delamination and insufficient matrix [36]
to proper adhesion, and resulting in decreased strength. The overall impact properties
of the blend composite can be improved by chemical coupling and surface modification.
However, high modification can increase production cost and reduces the agriculture
composite residues that are value-added.
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3.6. Fracture Surface Micrograph

Figure 8 demonstrates the differences of fracture surface by using SEM for the com-
posite containing RH15/CP15 and RH0/CP20 filler content. Filler fracture and matrix
delamination are predominated in the RH15/CP15 specimen’s morphological surface, as
illustrated in Figure 8a. Matrix cracking and the presence of void on the interface was
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also observed. It can be suggested that the stress was well scattered between the filler
and thermoplastic matrix due to the clean braking surface. It was also indicated that this
composite failed in the brittle mode failure. This means that an excellent interface bonding
between filler and matrix was formed, resulting in high tensile strength property. Matrix
cracking and fiber breakage were observed as in Figure 8b. As shown from this figure,
more cavities were formed in this blend composite resulted from fiber pullout and air trap.
It also demonstrated fracture damage occurred at the coco peat filler surface and which
may suggest a flaw in these composites. It can lead to stress concentration at this weak
point, and it was attributed to the lower mechanical properties. Arslan et al. [37] mentioned
that the use of silane coupling agents such as (3-aminopropyl) triethoxysilane (AP) and
3-(trimethoxysilyl) propyl methacrylate (MA) could enhance the tensile properties of the
biocomposite due to covalent bond formation between the amino group of coupling agent
and the nitrile group of styrene-acrylonitrile (SAN) matrix. However, extra production cost
would occur during fabrication.
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4. Conclusions

The blend RH/CP reinforced with ABS was successfully prepared by using two-step
processes: melt blend mixer and injection molding. The physicomechanical properties
of these biocomposites were then characterized. It was found that the density of the
composites increased with increase in RH filler. In contrast, the composite’s kinetic water
absorption and moisture saturation increased steadily with CP content and obeyed Fick’s
model. It was also found that the incorporation of RH and CP into the ABS matrix offered
better performance in tensile, flexural, and impact strengths. The synergistic effect study
clearly shows that the incorporation of RH and CP into the ABS matrix performs better
on fiber’s interfacial bonding, as compared to the performances of individual composites’
components, and thereby enhances the mechanical performances of the overall system.

The highest tensile properties and Young modulus were recorded at the composition
of RH15/CP5 wt.%, resulting in lower elongation at break as compared to RH0/CP20 wt.%
blend composite. As expected, the incorporation of 15 wt.% RH improved the maximum
flexural and modulus properties value more than those blend composites based on the ABS
matrix. In addition, this combination was attributed to the highest value of impact strength.
The fracture surface morphology for the blend composite dominated by matrix cracking
and filler fracture explained the stress was well propagated between filler and matrix
thermoplastic. It proved that the excellent adhesion interfaces bonding of the biocomposites
resulted in maximum mechanical properties. Therefore, it was interesting to combine these
natural waste reinforced ABS composites for a short life engineering application, where
the physicomechanical properties of biocomposites are of paramount importance.
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