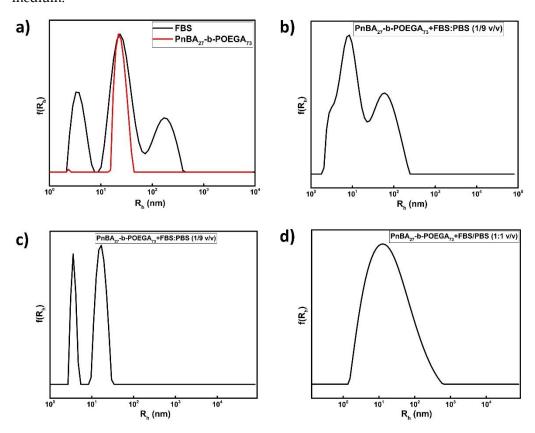

Supplementary Material: Nano-Assemblies from Amphiphilic PnBA-b-POEGA Copolymers as Drug Nanocarriers

Angeliki Chroni, Thomas Mavromoustakos and Stergios Pispas

1. Results

1.1. Physicochemical Characterization of the PnBA-b-POEGA Micelles

With the purpose of examining the versatile properties of the PnBA-b-POEGA block copolymers, critical micelle concentration (CMC) values were determined using the FS technique with pyrene as the fluorescent probe. The polymer stock solutions were prepared at 10^{-3} g/ml and pH = 7. The solution concentrations were prepared in a range of 1 x 10^{-8} to 1 x 10^{-3} g/ml. The calculated relative intensity ratio I_1/I_3 of Py peaks versus the copolymer concentration in water for the PnBA₃₀-b-POEGA₇₀ and PnBA₂₇-b-POEGA₇₃ copolymers is shown in Figure S1. Higher M_W of PnBA (7800) induces a significant reduction in the CMC value of PnBA₂₇-b-POEGA₇₃ diblock (red line) compared to PnBA₃₀-b-POEGA₇₀ diblock (black line), which is evident in Figure S1 and consistent with the literature data [1]. Both CMC values are presented in the main text in Table 2.

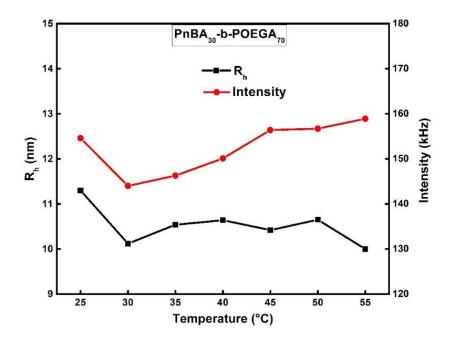

Figure S1. Comparative diagram of calculated relative intensity ratio I₁/I₃ of pyrene peaks versus the copolymer concentration in water for the PnBA₃₀-b-POEGA₇₀ and PnBA₂₇-b-POEGA₇₃ copolymers.

1.2. FBS Interactions with PnBA-b-POEGA Block Copolymers

DLS stability studies of PnBA27-b-POEGA73 micelles in FBS solutions were performed to assess the Rh, PDI, and Intensity values of the protein–polymer mixtures. A comparison of intensity size distributions of bare PnBA27-b-POEGA73 (red line) micelles and FBS (black line) is exhibited in Figure S2a. The analysis of trimodal size distributions of FBS is reported in the main text. Protocol 1 [mixing of 50 μ l sample with 3 mL FBS:PBS (1/9 v/v)] used for the preparation of protein–polymer mixtures is denoted in Figure S2b, whereas protocol 2 [mixing of 100 μ l sample with 3 mL FBS:PBS (1/9 v/v) and 3 mL FBS:PBS (1/1 v/v)] in is denoted in Figures S2c to S2d. Only a few conclusions can be drawn after the incubation of PnBA27-b-POEGA73 micelles with FBS (for both protocols)

Polymers 2021, 13, 1164 2 of 3

due to the intrinsic difficulty in separating the DLS signals of the bare micelles (24 nm) and the second population of FBS (23 nm). A bimodal distribution appeared in Figure S2b, corresponding to protocol 1, with peaks emerging at 8 nm (possibly free BSA) and 60 nm (possibly protein–polymer complexes). Based on protocol 2 at FBS:PBS (1/9 v/v) ratio, a co-existence of free serum proteins at 4 nm and decreased size micelles at 17 nm is depicted in Figure S2c. A rather broad size distribution emerged in Figure S2d at FBS:PBS (1/1 v/v) ratio using protocol 2, the size of which is slightly decreased (18 nm) compared to bare micelles (24 nm). Ultimately, the PnBA₂₇-b-POEGA₇₃ micelles maintained their synthetic identity after the incubation with FBS, indicating good stability in a biological medium.



1.3. DLS measurements as a Function of Temperature

Figure S2. a) Comparative size distributions of bare PnBA₂₇-b-POEGA₇₃ micelles and FBS, b) intensity size distributions of PnBA₂₇-b-POEGA₇₃+FBS:PBS (1/9 v/v) using protocol 1, c) size distributions of PnBA₂₇-b-POEGA₇₃+FBS:PBS (1/9 v/v) using protocol 2, and d) size distributions of PnBA₂₇-b-POEGA₇₃+FBS:PBS (1/1 v/v) using protocol 2.

Aqueous micellar solutions of PnBA-b-POEGA block copolymers were prepared and characterized using DLS to further probe the effect of temperature on their self-assembly. The measurements were performed at a concentration of 10^{-3} g / ml and pH = 7 and at a temperature range of 25 °C–55 °C. Figure S3 exhibits the Rh and intensity measurements as a function of temperature at a 90° angle for the PnBA₃₀-b-POEGA₇₀ diblock copolymer. The scattered light intensity slightly increases as temperature rises from 25 °C to 55 °C, resulting to the formation of increased-mass nanostructures. In parallel, the Rh decreases with increasing temperature due to the shrinkage of polymer chains and the intrinsic aggregation tendency of the system. In relation to DLS data, the PnBA₃₀-b-POEGA₇₀ micelles may be considered temperature-independent.

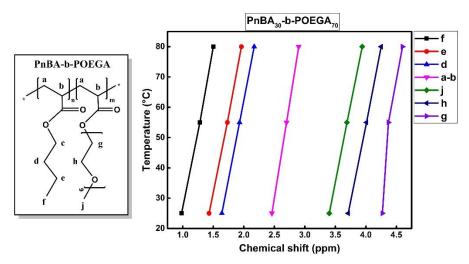

Polymers 2021, 13, 1164 3 of 3

Figure S3. Rh and Intensity measurements as a function of temperature for the PnBA₃₀-b-POEGA₇₀ block copolymers in aqueous solutions at 90 degrees.

1.4. Chemical Shift as a Function of Temperature

The changes in chemical shift as a function of the temperature of PnBA₃₀-b-POEGA₇₀ block copolymers is presented in Figure S4 to provide a clearer view of the shift of the ¹H-NMR spectra (Figure 15 exhibited in the main text) to the lower field regions.

Figure S4. ¹H-NMR chemical shifts as a function of temperature for the PnBA₃₀-b-POEGA₇₀ block copolymers.

References

1. Antoun, S.; Gohy, J.-F.; Jérôme, R. Micellization of quaternized poly (2-(dimethylamino) ethyl methacrylate)-block-poly (methyl methacrylate) copolymers in water. *Polymer* **2001**, 42, 3641-3648, doi:10.1016/S0032-3861(00)00746-1.