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Abstract: This work evaluates the mechanical properties of the glass fiber reinforced polymer (GFRP)
material taken from an out of service 100 KW power wind turbine blade which has been in service
life of 20 years old. Investigated samples were taken from two positions of undamaged regions at
1.6 m and 5.4 m from the rotor hub, respectively. Microstructure investigation and lay-up analysis
were carried out. Fiber weight fraction of the investigated samples was ranging between 0.55–0.60.
Tensile and compression tests were carried out at the temperature range from −10 ◦C to +50 ◦C on
specimens which were machined so as to be loaded in the blade length direction LD, transverse to
the blade length TD and off axis; 45◦ to the blade length. Tensile elastic modulus of the investigated
GFRP was determined in the three direction tested. The number of fiber fabric layers found to
be decreasing along the blade length away from the root and the density of the fibers along the
length is the highest (858 gm/mm2) and in the transverse direction is the lowest (83 gm/mm2). The
microstructure of the GFRP composite showed good wetting for the fiber by the polymer with some
features of lack of penetration at the high density fiber bundles and some production porosity in the
matrix. The tensile Properties at room temperature (RT) and high temperature are almost similar
with the highest properties for the samples aligned with the blade length. The compressive strength
is highest at the transverse direction samples and lowest at the blade length direction and decreasing
with the increase of the test temperature. The bending properties are significantly affected by the
fiber orientation with the highest properties for samples aligned with the blade length and the lowest
for the samples with the transverse direction.

Keywords: composites; mechanical experiments; lay-ups; potential damage sources; wind tur-
bine materials

1. Introduction

The operational conditions and parameters affecting the wind turbine blades require
optimization of three material properties that are stiffness, density, and fatigue life [1,2].
The high material stiffness is required to maintain optimal aerodynamic performance, the
low density is required to reduce self-loading and gravity forces, and the long-fatigue life is
required to reduce material failure and degradation [1]. To meet these requirements, the ma-
terial of choice is based on fiber-reinforced polymers, wood, and combinations of them [2].
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The reinforcements used are mainly fabrics of continuous glass fibers and/or carbon
fibers [1–3]. The laminated fabrics are combined in layered structure using thermosetting
polymers, such as polyester, or epoxy [1–3]. This composite material is commonly referred
to as glass fiber reinforced polymer (GFRP) [1].

The materials selection [4] of GFRP in this application is based on the requirements
of high stiffness, low weight, and long fatigue life [5]. Merit material index for beam
Mb (Mb = E1/2 ρ) is depending on the elastic modulus E, and the material density, ρ [1].
The wind turbine blades are subjected to sever service environmental and mechanical
loading conditions. Such sever conditions will certainly affect the mechanical properties of
the blade material. So that evaluation of the blade material after long life cycle is impor-
tant for understanding the mechanical behavior and the degradation of this material [6].
Ataya et al. [7] carried out visual inspection on 81 blades of 20 years old wind turbines and
defined with allocation of the different forms of discontinuities over the wind turbine blade
length. Such damage forms were related to either internal structural defects in the blade
materials or outer long life experienced environmental reasons [7,8]. The design life of
the modern 5MW wind turbine is proposed to be 20 years [9,10], so that it is important to
investigate the wind turbine blade material health at the border of its life. This is of further
significance due to the limited investigations of this material and also it can be utilized to
reevaluate the proposed service life. In addition, it can be important consideration in the
manufacturing of the new wind turbine blades. There are still two particular weaknesses of
the laminated fiber-reinforced composites [2], namely; their low tensile and shear strength
in the out-of-plane direction and the anisotropic properties as the improvement that pro-
mote their stiffness and tensile strength in the fiber direction do not usually have equal
beneficial effect on the compressive strength. There are some results for testing of different
sizes of the full blade either in new or after-service condition to compare the test results
with the design data [11–13]. Sayer et al. [14] explored the influence of a wind turbine
service life on the mechanical properties of the blade material after service life of 18 years.
New blade has been also tested through testing samples from different positions on the
blade length. From the conducted tests (tensile, compression, fatigue, and inter-laminar
shear strength tests) it has been found that it is not possible to attain clear statement to
the aging behavior of the blades, as the results are not statistically relevant. However, it
was obvious that degradation occurred in the tension and the compression strength due
to service life. However, it is concluded that the material degradation due to static and
fatigue testing of the test rotor blade is higher than the material degradation in the service
blades due to operation [14]. This conclusion shows the difficulty of exploring the effect of
service life on the degradation of the rotor blade.

Recently Zangara et al. [15,16] studied the effect of continuous fibers orientation with
respect to the loading direction in composite sandwich core structures under low velocity
(4.7 m/s) impact, which is of great consideration under load [15,16]. The effect of heating
the matrix is of great importance on the polymer composites, Ferdous et al. [17] found
that even self-heating up to 10 ◦C due to internal friction caused by the increased loading
frequency has a considerable effect on the fatigue life of GFRP. In another study on epoxy
based concrete, Ferdous et al. [18] found that the compressive loading at temperature
higher than 40 ◦C caused a clear stress drop due to the sensitivity of the epoxy matrix to
the temperature.

Wind turbines are designed to operate for a life time of 20 years with normal mainte-
nance and replacing of some parts [10]. In 2016 Beauson and Brøndsted have discussed the
end-of-life prospective after the decision of decommissioning of the world first offshore
windfarm constructed in Denmark, near Ravnsborg, after turning 25 years [19]. The diffi-
culty is not only located in decommission but also the scenarios after that, which could
be one of the following: refurbishment, incineration, or mechanical grinding. Similar
end-of-life scenarios are under study for to recycle high amount of tonnage of blades which
can reach 2 million tons of by 2050 in USA [20]. Different end-of-life options of the wind
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turbine blades and their environmental impact have been studied by Liu et al. [21] depend
on the blade material and depend also on the type of wind turbine [22].

The difficulties of wind turbine end-of-life processing make it not easy to take such
decision. The end-of-life decision should be based mainly on designed life data, running
cost compared with the produced power, and close inspection results. There different life
prediction using fatigue studies of wind turbine blades which represent the most important
structural element of the wind turbine [10]. Other studies are based on fatigue stiffness
degradation model [23]. Quasi-static test results can be utilized in prediction the residual
stiffness of the blade in subsequent fatigue tests.

From the above discussed literature it can be said that most available works are
conducted on the effect of fiber orientation and temperature on the mechanical properties
of GFRP were in recently manufactured parts. However, still there is not much data
available in the literature reporting the effect of these parameters on the structural and
mechanical properties of the blade materials after such long service life. Thus, the aim of
this study is to investigate fiber orientation and temperature on the mechanical properties
of 20 years old turbine blade material after experiencing this severe service loading and
environmental conditions. In this study, the structure of the GFRP will be characterized
through identifying the stacking sequence, density of glass fiber layup and investigating
the effect of the microstructural discontinuities formed during production of the blade
composite material.

2. Materials and Methods
2.1. Material Sampling

GFRP samples were cut from a failed blade of a 100 KW wind turbine. The blade is
9.8 m in length and operated for 14 years in the wind turbines site in Hurghada, Egypt, and
left out of service for 6 years in the atmospheric conditions. Such working life is nominally
equivalent to a number of 6.8 × 107 cycles. In the mentioned site, the average measured
wind speed over the year is 6.5 m/s at a height of 24 m. The blade under investigation has
an internal longitudinal reinforcing foam web instead of GFRP carrying main spar or webs
which are used in most construction of the currently designed blades [24–26]. The studied
materials were taken from non-broken areas of the blade. Three sample positions were
defined (as shown in Figure 1): sample (1) is the thinner test section which is near to the
blade tip and at 6.6 m from the root (≈4.8 mm thick), sample (2) is at 4.6 m from the root
(≈5.6 mm thick), and sample (3) is taken at 1.6 m from the hub (8–9.2 mm thick).

Figure 1. (a) Samples location and orientation with respect to the blade length. (b) Middle section
(Sample 2) of the blade (c) Section near to the root (Sample 3).
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2.2. Characterization Method
2.2.1. Lay-Up Sequence and Microstructure

To investigate the fiberglass fabric layers lay-up, GFRP samples of 100 × 100 mm2

were soaked in an electric resistance muffle furnace (Naberthern, Lilienthal, Germany) at
600 ◦C for 90 min. The samples have been weighted before and after soaking (calcination)
to determine the weight fraction of the fibers. The density of the different layers (in gm/m2)
was determined. Microstructure of the wind turbine blade materials has been investigated
on the as-received sample and on the mechanically tested specimens. The samples were
cut in a proper size, cold mounted, and prepared according to the preparation procedures
for GFRP composites that experienced in Risø DTU (National Laboratory for Sustainable
Energy), Technical University of Denmark (TU-Denmark). The samples were ground using
SiC papers of 320, 500, 1000, 1200, and 1200 grit size for the times of 1, 2, 4, 6, and 8 min,
respectively. Then polished on a 1 µm cloth with the help of 1 µm diamond suspension,
this followed by rinsing with water and alcohol cleaned, then air dried. The prepared
samples were investigated under Scanning Electron Microscope (SEM) Type Jeol GSM 5410
(Tokyo, Japan) working at 30 KV.

2.2.2. Mechanical Testing

Tension test specimens were prepared according to ASTM D3039 standard in which
the specimen dimensions are 25.4 mm (1”) in width and 254 mm (10”) in length. The
sample thickness was kept as the sheet thickness of the investigated section. Samples
were taken in three directions relative to the blade length, longitudinal direction (LD),
transverse direction (TD) and at the diagonal (45◦) to the LD. Universal testing machine
(Instron-4208–300 kN capacity, Norwood, MA, USA) equipped with a heating furnace up
to 700 ◦C and extensometers was used. Tensile testing was carried out at room temperature
(RT), and at 50 ◦C using a quasi-static strain rate of 0.001 s−1. Specimens for three point
bending test were prepared according to ASTM D7264 standard. The specimen width was
12.7 mm with a span length between the two supporting points to thickness ratio of 32:1.
The studied sample thicknesses (t) were 8 mm and 5.6 mm. The sample length was cut to
be 30 t + 50 mm. Samples were taken in three directions relative to the blade length, LD, TD
and at 45◦ to the LD and tested at a cross head speed of 2 mm/s. For each condition, the
specimens were tested one time by making the gelcoat to top and other time as gelcoat to
bottom. Moreover, compression test samples were prepared according to ASTM D695 and
ISO 604 in which the specimen dimensions are 12.7 mm in height and 25.4 mm in width.
Samples were taken in three directions relative to the blade length, LD, TD and at 45◦ to
the LD. Compression testing was carried out at different temperatures of −10, 10, 30 and
50 ◦C at an initial strain rate of 0.001 s−1. The temperature was set using an environmental
chamber erected on the universal testing machine. The test temperature range was selected
(between −10 ◦C and +50 ◦C) to include with margin the real temperature range (between
10 ◦C and +38 ◦C) of the wind field under investigation.

3. Results and Discussion
3.1. Lay-Up and Microstructure

The mechanical properties of the GFRP are varying depending on many material
parameters such as fraction of the reinforcing fibers in the matrix, fiber orientations, density
of the used fiber layer fabrics (gm/m2) in each orientation, type of matrix and production
quality. The wind turbine blade material (GFRP) was close characterized to investigate
the effect of such parameters on the mechanical properties. The stacking sequence of the
fiberglass fabric layers from the bottom layer which represents the internal surface of the
blade to the gelcoating which represents the outer surface is shown in Figure 2, for sample 2.
This sample thickness was 5.6 mm, and it was taken from the blade at 4.6 m from the blade
root. It can be noted that the total number of fiber fabric layers in this sample is 13 layers
with the orientation shown in the figure. The lay-up sequence of the three samples obtained
after the calcination process at 600 ◦C for 90 min is listed in Table 1. It can be observed



Polymers 2021, 13, 1144 5 of 15

that the number of fiber fabric layers are varied based on the distance from the blade rotor
and it is decreasing as the distance increases. So that the number of the fiber fabric layers
found to be 11, 13, and 19 for samples 1, 2 and 3, respectively, which correspond to sample
thicknesses of 4.8 mm, 5.6 mm, and ~8.6 mm, respectively. Moreover, the fiber weight
percent for the different samples is ranging between 55% and 60%. The GFRP structure
from outside surface starts with a gelcoating layer (G) followed by a chopped strand mat of
randomly (R) oriented fibers and then the different fiber layer fabrics. The Gelcoat thickness
found to be around 0.4 mm. Usually the gelcoat thickness is ranging between 0.25 and
1 mm and in most cases it has a thickness of 0.6 mm [27]. The main functions of the Gelcoat
are to protect the blade from ultraviolet degradation, water penetration and to increase
the erosion resistance in the sand stormy environments. Filaments of the fiber fabric layer
are held together using stitching yarn to keep each filament bundle in its position during
the process of manufacturing. Figure 3 shows SEM image for the whole sample cross
section starting from the gelcoating layer at the top and the different fiber fabric layers
towards the bottom of the image. The dark background represents the polymer matrix,
and the features of the different fiber fabric layers are in gray can be observed, as well as
the pores, lack of penetration and the stitching yarn. The presence of the stitching yarns
in the arrangement shown in Figure 3 indicates that the lay-ups are bidirectional stitched
fiber layers. The stitching yarn is burned out during calcination process. The lay-up next to
the chopped strand mat is one or more layers of bidirectional ±45◦ fibers, depending on
the GFRP section thickness and location. Then it is followed by a number of bidirectional
0◦/90◦ fibers and ended by one bidirectional ±45◦ fiber layer. The graded tapering, both
in external shape and in thickness of the shells/beams/webs, is usually designed to ensure
the same materials loadings, e.g., a maximum strain as design allowable [1]. The change in
the density of the various layers can be observed in Figure 2 and from the fibers bundle size
shown in Figure 3 which indicates that the fiber density in the blade length LD (0◦) is much
higher than the density of fiber in the transverse direction TD (90◦). The densities of the
fibers in the diagonal directions +45◦and −45◦are equal. A quantitative measurement of
the density of the different layers (in gm/m2) is presented in Table 2. To increase the rigidity
and the load carrying capacity of the blade; which has no carrying spar; the manufacturer
tends to increase the number of the 0◦/90◦ which have higher fiber density in the blade
length direction LD.

Table 1. Fiber fabric lay-up sequence in the GFRP from internal to external surface *.

Samples Fiber Density
(wt.%)

Lay-Up Sequence of GFRP

1,2 3,4 5,6 7,8 9,10 11,12 13,14 15,16 17,18 19,20

Sample 1 (S1) 59 ±45◦ 0◦/90◦ 0◦/90◦ 0◦/90◦ ±45◦ R/G − − − −
Sample 2 (S2) 60 ±45◦ 0◦/90◦ 0◦/90◦ 0◦/90◦ ±45◦ ±45◦ R/G − − −
Sample 3 (S3) 55 ±45◦ 0◦/90◦ 0◦/90◦ 0◦/90◦ 0◦/90◦ 0◦/90◦ 0◦/90◦ ±45◦ ±45◦ R/G

* ±45◦: Equal density bidirectional stitched fibers, 0◦/90◦: Bidirectional stitched fibers, much denser in 0◦ (LD) than in 90◦ (TD) direction,
R: Chop strand mat of random oriented fibers, and G: Gelcoat.

Table 2. Fiber density of the different layers and the individual orientations from GFRP calcination.

Orientation Random +45◦ −45◦ 0◦ 90◦

Fibers density (gm/m2) 161 598 598 858 83
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Figure 2. Lay-up sequence of fiberglass fabric layers sequence of S2 (sample 2) (5.6 mm thick) taken
at 4.6 m from the root and obtained after sample calcination at 600 ◦C for 90 min. The numbering
from 1 to 13 represent the numbers of glass fiber fabrics layers in the GFRP sample from the internal
surface to the outer surface of the blade and 14 is the gelcoat layer.

Figure 4a–c illustrates higher magnification SEM micrographs with more detailed
features for the whole cross section SEM micrograph shown in Figure 3. Figure 4a shows
two different orientations of the fiber glass fabric 0◦ (aligned with the LD of the blade)
and 90◦ (Aligned perpendicular to the LD). It can be observed that the fiber fabric of
the 0◦ orientation has the fiber highest density (858 gm/m2 Table 2) to give the blade
the required properties (load carrying ability, stiffness, and fatigue resistance), while the
90◦ orientation has the lowest fiber density (83 gm/m2 Table 2) as there are no loads
affecting in this direction. One of the whiter features in Figure 4a, observed in the 0◦

orientation fiber bundle is magnified and presented in Figure 4b. Generally, there is a
good wettability for the fibers by the resin, except some little areas inside this high density
bundle indicating lack of penetration which appearing as a whiter region. In addition,
some larger pores were observed in the matrix regions, Figure 3. Figure 4c shows the
circular cross section of the fiber while the stitching yarn which holds the different bundle
orientations of the bidirectional oriented fiber bundles (±45◦ and 0◦/90◦) have a polygonal
shape. Figure 4c includes micro-pores (marked by a circle) around some glass fibers and
the stitching yarns too. It is difficult to decide if they lack penetration during production or
fibers decohesion due to service fatigue loading of the investigated blade which operated
for 14 years (6.8 × 107 cycles). This number of cycles is much higher than the usual fatigue
test life of the full blade which assigned to be in the range 2 × 106–2 × 106 cycles according
to the guidelines for design of wind turbine [28]. It will be discussed in the next sections if
the larger pores and the lack of penetration contribute to the initiation of cracks and failure
under tensile loading.
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Figure 3. Scanning Electron Microscope (SEM) micrograph for the whole glass fiber reinforced
polymer (GFRP) cross section for sample 1.

3.2. Material Behavior under Tensile Loading

Figure 5 shows the stress-strain curves for the blade material loaded at the three
different directions LD, TD, and 45◦ at room temperature and 50 ◦C. A clear anisotropic
property behavior of this material is shown from the different stress levels. It can be
observed that the samples taken parallel to the blade length LD (0◦) have the highest tensile
strength at both temperatures. This is mainly due to the alignment of the reinforcing fiber
with the tensile force axis. However, the samples taken perpendicular to the LD have
the lowest tensile strength. This is mainly due to the alignment of the reinforcing fiber
perpendicular to the tensile force axis. As it was expected, the results of the samples taken
at 45◦ have tensile strength at intermediate values relative to the other two directions (LD
and TD). This anisotropic behavior of fiber reinforced plastics is consistent with the density
and direction of fiber within the blade materials. The ultimate tensile strength and tensile
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strain at fracture for the curves in Figure 5 for the different sample orientations at RT and
at 50 ◦C are plotted in Figure 6.

Figure 4. SEM micrographs of as-received wind turbine blade material sample taken in the LD
direction. (a) Overview (b) and (c) different magnifications of the glass fibers and stitching yarn,
respectively.

Figure 5. Tensile stress-strain curves of the old wind turbine blade GFRP tested at (a) RT and (b)
50 ◦C.

The elastic modulus was calculated and found to be about 15.6 GP for the specimens
loaded in the longitudinal direction. Whereas the elastic modulus for the specimens loaded
in TD and 45◦ is found to be 7.4 and 10.9 GPa, respectively. These values are much lower
than the reported values of the new GFRP (26.7 GPa in LD and 9.2 GPa in the TD) [29].
However the long working life of the investigated materials (14 years, 6.8 × 107 cycles)
can result in stiffness degradation and reduction of the elastic modulus [5,30]. In testing
of GFRP containing 36 wt% fibers the elastic modulus was decreased from 24.6 GPa to
~19 GPa after fatigue loading life of 4 × 105 at R = 0.1 [29,30]. The attained tensile strength
in this study at room temperature was around 350 MPa in the longitudinal direction is
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lower than the values (achieved for samples from 100 KW blades [14], whereas the fracture
strain is comparable with the values in the same reference. This results confirms the
statement that the glass fibers reinforced composites have a moderate tensile properties
among other reinforcing materials such as natural or carbon fibers [31].

Figure 6. The relation between the tensile properties of the wind turbine blade composite materials tested at room
temperature (RT) and 50 ◦C and the sample orientation relative to the blade length (a) ultimate tensile strength (b) strain
at fracture.

The damage features of the tensile samples after testing is shown in the SEM micro-
graphs in Figure 7. Under tensile load, the cracks were started from the lack of penetration
areas and grown perpendicular to the tensile loading direction (F). A coalescence of initi-
ated cracks was taken place in the fiber bundles and passed through the matrix to other
fiber bundles (Figure 7b). Although the large matrix pores (which can be seen as a produc-
tion defect) are located near to the crack pass or the highly loaded area, no cracks were
observed to originate from these pores. It means that the pores cannot be described as
a primary cause for the failure. In addition, fracture of the glass fibers aligned with the
loading direction was also frequently observed.

Figure 7. SEM micrograph for some fracture features observed in the fractured tension test sample of wind turbine blade
material showing: (a) crack through fibers’ bundle and (b) manufacturing pores are not the origin of the cracks.

3.3. Compression Test Results

Polymers are usually sensitive to temperature [32,33], so that is important to explore
the temperature effect on the mechanical properties. Compression loading of GFRP at
various temperatures (−10–50 ◦C) showed that the samples taken in the TD direction (90◦)
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have the highest compressive strength at all temperature (Figure 8). This is because most
reinforcing fibers are aligned parallel to the applied force. However, the samples taken with
the blade length (LD or 0◦) has the lowest compressive strength at all temperatures, where
most fibers are extending perpendicular to the applied force. At the tested temperature
range, slight temperature effect was observed in LD and 45◦ samples. Generally, the
compressive strength of the GFRP is higher than that of other competitive reinforcing
materials such as natural or carbon fibers [31].

Figure 8. (a) Compressive stress–strain flow curves of wind turbine blade materials tested at various temperatures.
(b) Schematic drawing for the compressive load position relative to the blade length upon testing.

3.4. Three-Point Bending Behavior

Three-Point bending test assembly of the GFRP at the start of the test and after
the sample loaded till fracture is shown in Figure 9a,b respectively. The test has been
conducted for GFRP material from sample 2 and 3. Figure 10 shows the flexural bending
load represented against the deflection of the GFRP tested samples. It can be noticed that,
for the same sample, higher bending load was reached when the gelcoat was towards
the top. Although the span distance L was changed in relation to the specimen thickness
(L = 32 t mm) it has shown that higher deflection was achieved in the thick sections. The
maximum flexural stress σf and flexural strain εf are calculated according to the formula
indicated in ASTM D790 and ISO 178 for rectangular section:

σf =
3PL
2bd2 , ε f =

6Dd
L2 (1)

where P is the load, L is the support span, b is the width of test section, d is the height of
test section, and D is the maximum deflection at the beam center. The maximum flexural
bending stress and strain are presented in Figure 11. Logical arrangement of the bending
load with the sample orientation can be shown in the thick section, Figure 10. Where higher
load carrying capacity was observed in specimen taken from the thicker sample, which
located near to the blade root. Six layers of the bidirectional stitched fabric 0◦/90◦ of the
highest density fibers in the LD (0◦) direction and only two layers from the bidirectional
stitched fabric ±45◦ of the equal density in both directions leads to increased load carrying
capacity of the composites in the blade length. Whereas, away from the blade root, the
number of the thinner reinforcing layer (0◦/90◦) in the blade length LD decreases to reach
only three layers against three layers of the equal density bidirectional stitched fabric ±45◦

in the S2 (sample 2) of the thickness of 5.6 mm. The flexural strain in percent for the samples
tested in the different orientations is presented in Figure 11b. specimens oriented in the
blade length (LD) have shown the highest strain in the different samples, while the TD
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specimens have indicated the lowest strain. Higher strain was attained on loading thinner
specimens (S2) than on loading the specimens (S3) which taken at 1.6 m from to the root.

Figure 9. Three-point bending test of glass fiber reinforced polymer (GFRP) sample (S2) 5.6 mm (a)
at the test start, and (b) at fracture.

Figure 10. Effect of sample orientation and the gelcoating on bending load—deflection curves of the
blade materials (a,b) samples S3 (8 mm thick) and (c,d) S2 (5.6 mm thick).

Figure 12 shows the SEM micrograph of the bending test sample (S3, 8 mm thick), it
shows cracking through the matrix area between the fiber layers (Figure 12a). Moreover, the
fibers extending parallel to the specimens length showed partial fiber fracture (as indicated
by the arrows), these lead finally to delamination of the GFRP section. Shear at 45◦ to the
loading direction through the glass fiber bundles extending transverse to the specimen
length with cracking at around 45◦ to the loading direction (Figure 12b). In addition, fiber
fracture and fibers cracking (indicated by the arrows) were observed around the path of
the main crack.
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Figure 11. Effect of sample orientation and gelcoating of the blade materials on (a) bending maximum
stress and (b) bending strain at maximum deflection. Note: Legend is the same for (a) and (b).

Figure 12. SEM micrograph of fractured bending test sample (S3, 8 mm thick) of wind turbine blade material showing fibers
fracture; (a) through matrix cracking, and (b) through fibers bundle cracking.

3.5. Effect of Fibers Orientation

The advantage of construction with GFRP is to benefit from the ability to increase
load carrying capacity in the fiber direction which is known as the tailorability available
in composite materials in general. Due to this strong tailorability, composite materials
can be designed to satisfy the needs of technologies related to the energy, construction,
aerospace, automobile, and other industries. Thus, composite materials constitute most of
the commercial engineering materials nowadays [34–36]. On the other hand, this can result
in anisotropy of the evaluated mechanical properties due to the different concentration of
fibers in the different directions. As shown in Table 1 the internal lay-up are mainly with
the arrangement of 0◦/90◦ with the maximum density for the 0◦ lay-up which reaches
858 gm/m2, while the 90◦ lay-up is of low density (83 gm/m2). This results in the high-
est strength being in all loading conditions of this GFRP maximum on the longitudinal
direction of these composites. Gelcoat fractures rapidly when found on the lower fiber
of the bending specimens and this accelerates the total fracture of the GFRP. In terms of
the tensile loading the samples aligned with the LD of the blade gave the highest tensile
properties and this is mainly due to the high density of the fiber oriented in this direction
that enhances the load carrying capacity in this direction. The samples aligned with the
TD gave the lowest tensile properties due to the low density of fibers oriented with this
direction. As expected the samples at 45◦ at average level between the two cases. This
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behavior is mainly because in the tensile loading the fibers are the main carrier for this
load, and thus the tensile properties directly affected by the fiber orientation and density.
This behavior is slightly different in case of the compressive test results as in this case, the
matrix has a role with the fiber and once the matrix failed the sample will fail in total. Thus
in compression, the samples aligned with the TD direction gave the highest compressive
strength and that aligned with the LD gave the lowest compressive strength. In the bending
test results another factor play a role which the gelcoat towards the top or towards the
bottom. It can be noted that when the gelcoat towards the bottom this gave low bending
strength as the gelcoat is brittle and fracture quickly and play as a crack initiation for the
GFRP that accelerate the fracture and reduce the bending forces.

3.6. Effect of Temperature on the Composites Mechanical Properties

In case of the GFRP, the temperature mainly affects the matrix material and make it
softer, while the fiber as a thermally stable material expected not to be affect by the range
of temperatures examined Although the selected range of test temperature (up to 50 ◦C)
is still away from the softening temperature of the epoxy, the matrix it seems affected
by increasing the testing temperature specially in case of the compressive loading. The
compressive strength for the samples in all directions is reduced slightly by increasing the
test temperature (Figure 8). Thus, it is expected the prolonged exposure for this temperature
can affect the compressive loading behavior. On the other hand, the tensile testing result
showed almost no effect for this range of temperatures on the tensile properties in the
samples examined in all direction. Of course, the tensile loading is more important to be
safe in this instance due its effect on the crack propagation. Ferdous et at. [18] examined
epoxy matrix concrete at different temperatures and found that the clear softening takes
place at 60 ◦C and higher.

The investigated composite material was taken from a blade of a failed turbine due
control defect not due to blade failure, while other 25 turbines of similar blades are still
operating in Hurghada wind field. The failure mode of the tested samples was mainly
related to the test loading not due to any manufacturing defects. Inspection results [7,8]
of the wind turbine blades have showed some cracks at some critical geometrical change
region. A follow up inspection after one year did not show development of such stable
cracks. The operation team is facing the normal running and maintenance in repair and
replacement of some mechanical part.

Decommissioning of the wind turbines could be decided based on environmental,
safety, and economic studies of wind field. Moreover, there are some opinions in the
Egyptian Authority for Renewable Energy to keep this wind site containing 100 kW and
300 kW turbines as a memorial site. So that, periodical inspection is recommended to
detect any serious damage originated from the early found discontinuities or due to any
new issue.

4. Conclusions

In the current study the fiber fabric lay-up, microstructure, tensile properties, compres-
sive proprieties, bending properties of A 20 years old wind turbine blade GFRP material
have been investigated and the following conclusions can be drawn:

(1) The number of fiber fabric layers is decreasing along the blade length away from the
root and the density of the fibers along the length is the highest (858 gm/mm2) and in
the transverse direction is the lowest (83 gm/mm2).

(2) The microstructure of the GFRP composite showed good wetting for the fiber by the
polymer with some features of lack of penetration at the high density fiber bundles
and some production porosity in the matrix.

(3) The tensile properties at RT and high temperature are almost similar with the highest
properties for the samples aligned with the blade length.

(4) The compressive strength is highest at the transverse direction samples and lowest at
the blade length direction and decreasing with the increase of the test temperature.
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(5) The bending properties are significantly affected by the fiber orientation with the
highest properties for samples aligned with the blade length and the lowest for the
samples with the transverse direction. The bending properties also affected by the
gelcoat layer and the thickness of the sample.

(6) Flexural loading has led to the following damage features: fiber fracture, through
matrix cracking and cracking the fibers bundle.

Future work: The investigated wind field still has 25 working wind turbines (100
kW) with blades similar to the current investigated one. So that, further studies will be
carried out to determine the degradation date of the wind turbine blades and to indicate
the feasibility of leaving those working wind turbine operating based on the findings of
the current studies and the severity of detected discontinuities in the previous studies.
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