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Abstract: In order to meet the needs of constantly advancing technologies, fabricating materials with
improved properties and predictable behavior has become vital. To that end, we have prepared
polydimethylsiloxane (PDMS) polymer samples filled with carbon nanofibers (CFs) at 0, 0.5, 1.0, 2.0,
and 4.0 CF loadings (w/w) to investigate and optimize the amount of filler needed for fabrication with
improved mechanical properties. Samples were prepared using easy, cost-efficient mechanical mixing
to combine the PDMS and CF filler and were then characterized by chemical (FTIR), mechanical
(hardness and tension), and physical (swelling, thermogravimetric analysis (TGA), differential
scanning calorimetry (DSC), and coefficient of thermal expansion) analyses to determine the material
properties. We found that hardness and thermal stability increased predictably, while the ultimate
strength and toughness both decreased. Repeated tension caused the CF-filled PDMS samples to
lose significant toughness with increasing CF loadings. The hardness and thermal degradation
temperature with 4 wt.% CF loading in PDMS increased more than 40% and 25 ◦C, respectively,
compared with the pristine PDMS sample. Additionally, dilatometer measurements showed a 20%
decrease in the coefficient of thermal expansion (CTE) with a small amount of CF filler in PDMS. In
this study, we were able to show the mechanical and thermal properties of PDMS can be tuned with
good confidence using CFs.

Keywords: Sylgard™ 186; polydimethylsiloxane; carbon nanofibers; hardness; young’s modulus;
degradation temperature; coefficient of thermal expansion

1. Introduction

Polydimethylsiloxanes (PDMSs), also called siloxanes or silicones, are widely used,
silicon-based organic polymers that have backbone flexibility, low intermolecular interac-
tions, low surface tension, biocompatibility, and thermal stability [1–3]. These properties
make them appealing for many applications, such as textiles, coatings, construction, ad-
hesive, electronics, photonics, transportation, and medical applications [4–14]. However,
PDMS has certain mechanical properties that limit its use in several applications. Two of the
greatest challenges are the low elastic modulus and high coefficient of thermal expansion
(CTE) [15]. As an example, PDMS’s high CTE limits its applicability in electronic circuits,
which have become faster and denser, requiring materials that are capable of dissipating
heat and retaining their origin shape. Unmodified PDMS is not able to keep up with these
improvements in circuit technology [14,16,17]. Therefore, tuning PDMS’s properties and
processability with optimized filler loadings is necessary, in particular, where coating,
sealing, potting, and casting fabrication processes are required.

In order to overcome the mechanical and thermal shortcomings of PDMS, extensive
research has focused on improving the material properties using different fillers. Carbon
nanofibers and nanotubes [18–20], graphite [21], graphene [22], nanodiamond [23], carbon
black [18], silica [24], nanoclay [25], and other fillers have all been used to improve the
properties of PDMS and other polymer materials. Specifically, carbon fibers have several
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qualities that make them an appropriate filler for polymer materials. They have excellent
tensile properties (high strength and high modulus), thermal and electrical conductivities,
and low density [26–28]. The tensile strength and Young’s Modulus from carbonized poly-
acrylonitrile were reported as 300–600 MPa and 40–60 GPa, respectively [29]. Furthermore,
previous investigation has shown that a 10 wt.% carbon nanofiber loading can decrease the
CTE of an epoxy resin by 11.6% compared with neat epoxy [30]. Based on the improved
properties reported in previous studies, carbon fibers were chosen for this study to be
added to PDMS-based materials due to their excellent mechanical and thermal properties
(mechanical strength, Young’s Modulus, and CTE).

Here, we present the mechanical, thermal, and dimensional stability behavior of
Sylgard™ 186, a PDMS polymer, filled with varying CF loadings. Prior to fabricating
the materials for mechanical and thermal characterization, rheological analysis of the CF-
filled PDMS composites was employed to evaluate whether the viscoelastic properties
were appropriate to fabricate devices for various engineering applications. In addition,
rheology was used to confirm the dispersion of CFs in the PDMS matrix. Five different
CF concentrations were used to understand the behavior of CF-filled PDMS in this study:
PDMS pristine (i.e., Sylgard™ 186), 0.5, 1.0, 2.0, and 4.0 wt.% CF in PDMS (w/w). During
our review of the literature, we found that the vast majority of studies used the low
molecular weight Sylgard™ 184 PDMS polymer (Component A: Mn = 5.8 × 103 Da;
Component B: Mn = 7.5 × 103 Da). Few studies looked at the behavior of the higher
molecular weight Sylgard™ 186 polymer (Component A: Mn = 4.8 × 106 Da; Component
B: Mn = 1.6 × 106 Da) [31]. Therefore, Sylgard™ 186 was chosen as the polymer matrix to
provide a good guideline for tuning relevant properties with CF fillers.

2. Materials and Methods
2.1. Materials

Polydimethylsiloxane (Dow Sylgard™ 186) was supplied by Ellsworth Adhesives
(Germantown, WI, USA). The base (or component A) to curing agent (or component B)
ratio used was 10:1, w/w, as specified by Dow, and was kept constant for all formulations.
Sylgard™ 186 is an addition cure-type PDMS elastomer comprising two components.
Curing, which is a direct result of crosslinking, occurs when component A (elastomer
base), a viscous liquid containing vinyl-terminated polydimethylsiloxane, is combined
with component B (elastomer curing agent), a less viscous liquid containing a platinum
catalyst and a methylhydrosiloxane-dimethylsiloxane copolymer (Scheme 1) [32,33].
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Scheme 1. Hydrosilylation reaction between vinyl-terminated polydimethylsiloxane and
methylhydrosiloxane-dimethylsiloxane copolymer [32,33]. Crosslinking occurs between the vinyl
terminated group from Component A and the Si–H group from Component B in the presence of the
Pt based catalyst. The chemical bonds active in crosslinking are shown in red, and the thick red line
indicates the newly formed crosslinks.
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Carbon nanofibers (PR-19-XT-PS) were supplied by Pyrograf Products, Inc. (Cedarville,
OH, USA). The fibers have a chemically vapor-deposited layer of carbon over a graphitic
tubular core fiber and have an average diameter of 150 nm and an estimated length be-
tween 50 and 200 µm [34]. HPLC-grade toluene (Thermo Fisher Scientific, Waltham, MA,
USA) was used for solvent swelling experiments. All materials and chemicals were used
as received.

2.2. Fabrication of Carbon Nanofiber/Polydimethylsiloxane (CF/PDMS) Composites

Samples were first prepared by, first, hand mixing the Sylgard™ 186 base with the
appropriate CF content until the dispersion had become visually homogenous. After
mixing, the curing agent was added and then hand mixed until visually homogenous
(~30 s). The mixture was then immediately mixed using an ARV-310 Thinky Planetary
Mixer (THINKY USA Inc., Laguna Hills, CA, USA)—samples were placed in a chilled
container during mixing to reduce heating and subsequent premature curing during
mixing—at 2000 rpm under a vacuum for 2 min (Thinky container, THINKY USA Inc.,
Laguna Hills, CA, USA). Hardness samples (buttons) were cured at room temperature
(25 ± 3 ◦C) in Teflon molds (29 mm diameter, 13 mm deep). The hardness change of the
samples was observed with time to determine the room temperature curing characteristics.
Sheets for tension, swelling, thermogravimetric analysis (TGA), and differential scanning
calorimetry (DSC) were cured in aluminum molds (4.25 in length, 3 in width, 1 mm deep)
lined with polytetrafluoroethylene (PTFE) glass cloth tape (3M, 5151–5153) at 150 ◦C for
30 min. For the CTE experiment, the mixed samples were placed in a syringe and centrifuged
(Thermo Fisher Scientific, Megafuge 8) at 1000 rpm for 1 min 30 s to remove air bubbles.
Samples were then pipetted into a rod-shaped Teflon mold (size: 5.0 mm in diameter and
20.0 mm in length) and cured at 150 ◦C for 30 min. In this work, Sylgard™ 186, and 0.5, 1, 2,
and 4 wt.% of CF filler in Sylgard™ 186, are referred to as PDMS pristine, CF-0.5/PDMS,
CF-1.0/PDMS, CF-2.0/PDMS, and CF-4.0/PDMS, respectively, and carbon-filled PDMS
composites are referred to as CF/PDMSs.

2.3. Characterization and Measurements
2.3.1. Tension

Tension (or tensile) tests were carried out to understand how the CF/PDMS compos-
ites would behave initially and after being pulled to 100% elongation. Samples were cut
using a Type-A die (ASTM D412) and run on the ADMET eXpert 7601 (Norwood, MA,
USA) testing system. The samples were placed in ADMET vice grips with a gap of 50 mm.
The samples were loaded so they were barely taught (no visual sag nor noticeable tension).
The samples were then pulled to 100 mm at 3.84 mm/s and returned to the 50 mm home
immediately. The samples were then pulled until failure at 3.84 mm/s. The toughness
was calculated using the integral of the area under the stress-strain curve. Samples were
1.00 ± 0.15 mm in thickness.

2.3.2. Hardness

Hardness tests were run according to the methods noted by Murphy and coworkers [6].
Samples were kept in a dark environment at 25 ± 3 ◦C for the duration of the experiments.
Three measurements were performed on three different locations of a given button, and
three different buttons for each of the pristine and CF/PDMS composites were tested. The
value and error reported are the average and standard deviation, respectively.

2.3.3. Thermogravimetric Analysis (TGA)

Samples of 5–10 mg were run on a TA Instruments Discovery Series 550 (New Castle,
DE, USA). The samples were first equilibrated at 50 ◦C, then heated to 900 ◦C at a heating
rate of 10 ◦C/min under a nitrogen atmosphere. The degradation temperature is reported
as the temperature at which 5% mass loss occurred. Peak degradation temperatures were
found using the first derivative graphs.
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2.3.4. Differential Scanning Calorimetry (DSC)

Measurements were taken using a TA Instruments Discovery Series 2500, with a
5–10 mg sample. The following procedure was used: heating from −150 ◦C to 100 ◦C at
a heating rate of 10 ◦C/min (1st heating ramp), 5-min isothermal, cooling from 100 ◦C to
−150 ◦C at a cooling rate of 10 ◦C/min, 5-min isothermal, and heating −150 ◦C to 100 ◦C
at a heating rate of 10 ◦C/min (2nd heating ramp). The second heating ramp was used
for analysis. The glass transition temperature (Tg), melting temperature (Tm), crystalline
temperature (Tc), enthalpy of melting (∆Hf) and crystallization enthalpy of crystallization
(∆Hc) values were calculated using TRIOS software. Crystallinity was calculated using the
equation below (61.19 J/g is the theoretical enthalpy of fusion for a fully crystalline PDMS
polymer) [35]:

χ (%) =
∆Hf
61.19

× 100 (1)

2.3.5. Solvent Swelling Ratio (%)

Discs (12.7 mm diameter, 1.00 ± 0.15 mm thick) were swollen in excess toluene in
a sealed vial at room temperature for one week in a dark environment. Samples were
then dried at 70 ◦C under a vacuum for 24 h. The swelling ratio was calculated using the
equation below:

Swelling ratio (%) =
mw − md

md
× 100 (2)

where mw is the swollen mass, and md is the dried mass. Samples were run in triplicate
and standard deviation is reported as the error.

2.3.6. Fourier-Transform Infrared (FTIR) Spectroscopy

A Nicolet iS50 FT-IR from Thermo Fisher Scientific was used for FTIR analysis. 32 scans
were taken, giving a resolution of 4 cm−1. A range of 4000 cm−1 to 500 cm−1 was used.
The spectra were normalized using the Si–CH3 peak at 780 cm−1.

2.3.7. Rheology

Rheological measurements were conducted using a Discovery Hybrid Rheometer-2,
a TA Instruments rheometer using parallel plate fixtures with a diameter of 25 mm. To
evaluate the viscoelastic properties of PDMS pristine and CF/PDMS composites, stress
sweeps were performed in the range of 10 to 6500 Pa at a fixed angular frequency of
10 rad/s for each measurement.

2.3.8. Coefficient of Thermal Expansion (CTE)

The CTE rods were tested using a TA Instruments DIL 802 dilatometer. Samples
were heated from room temperature to 150 ◦C at 5 ◦C/min under a nitrogen atmosphere.
Sapphire rods were used as a standard to calibrate the instrument. All samples showed a
relatively constant alpha (CTE) value between 60 ◦C and 75 ◦C; therefore, this region was
used to calculate the alpha for all samples. Samples were 5.0 ± 0.5 mm in diameter and
20.0 ± 1.0 mm in length.

3. Results and Discussion
3.1. Preparation of Carbon Fiber Filled Sylgard™ 186

Understanding the rheological behavior (e.g., viscoelastic properties, viscosity) of car-
bon fiber filled PDMS (CF/PDMS) composites is essential to prepare samples and fabricate
devices for various engineering applications, particularly sealing, casting, and potting
applications. PDMS pristine and CF/PDMS composites were prepared to investigate rheo-
logical behavior; namely, how increasing the CF content affects the mechanical properties
of the final product.

We selected 0.5, 1, 2, and 4 wt.% CF filler in PDMS to compare with PDMS pristine as
a control sample. As shown in Figure 1, the solid-like property (G’: storage modulus) of
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CF-4.0/PDMS is very close to the liquid-like property (G”: loss modulus) (G’ ≈ G”), even
with a significant increase in the viscosity. This demonstrates that 4 wt.% CF filler in PDMS
is too thick, indicating that it is not appropriate for material fabrication processes requiring
low viscosity materials. In addition, shear thickening behavior, where G’ increases with
increasing oscillation stress, has not been observed, which indicates the CF fillers are well
dispersed in the PDMS matrix without filler clustering/rearrangement [36].
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3.2. FTIR Spectroscopy

The FTIR for all samples showed excellent agreement with previous FTIR results for
PDMS [12,37,38]. Several characteristic peaks were identified and are shown in Figure 2:
the peak at 2965 cm−1 corresponds to the C–H stretch, the peak at 1260 cm−1 corresponds
to the –CH3 deformation in Si–CH3, the peaks at 1400 and 1420 cm−1 correspond to –C–H
bending, the peak between 930 and 1200 cm−1 corresponds to Si–O–Si stretching, the peak
between 825 and 865 cm−1 corresponds to the Si-C rocking peak, and the peak between
785 and 815 cm−1 corresponds to the Si–CH3 rocking peaks. In addition, a peak at around
2200 cm−1, corresponding to Si–H stretching, was not observed for any sample, as shown
in Figure 2, verifying that the crosslinking reaction (i.e., hydrosilylation reaction shown in
Scheme 1) reacted and a similar high crosslink density was achieved for all samples [39].

3.3. Effects of the CF Filler on Mechanical Properties and Dimensional Stability

Hardness tests were used to understand how the material behaves over time, or more
specifically, how the final hardness changes and how the CF filler affects the curing of
PDMS. It is important to note that these samples were cured at room temperature; therefore,
the crosslinking reaction was ongoing for these samples. Figure 3a shows the change in
hardness over 72 days. All of the samples exhibit a sharp increase in hardness over the first
three to four days. After this sharp increase, the samples continue to increase but much
slower, almost reaching a steady state after 21 days. There is no discernable difference in
the shape of the curing curves, which suggests the CF filler does not disrupt the curing of
the polymer matrix itself. Although an apparent steady state has been reached for all the
samples after about 21 days, the PDMS pristine and the CF-0.5/PDMS samples showed a
statistically significant increase in hardness, even after 72 days. It was observed that these
samples were still curing at 72 days.
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Each data set was fit using a logistic curve and shows good agreement with all
CF loadings—all R2 values are greater than 0.985. Using the fits shown in Figure 3a,
the hardness at infinite time were calculated for all samples: 27.2 ± 0.5, 28.7 ± 0.4,
31.5 ± 0.3, 35.2 ± 0.4, and 39.1 ± 0.2 were determined for PDMS pristine, CF-0.5/PDMS,
CF-1.0/PDMS, CF-2.0/PDMS, and CF-4.0/PDMS, respectively. Dow reports the Shore
A hardness of Sylgard™ 186 as 24 [40]. This difference can be explained by the curing
conditions (humidity, temperature, etc.), which have been shown to have a significant
effect on the final mechanical, thermal, and physical properties of PDMS [41–43]. Figure 3b
shows the percentage increase in hardness when compared with PDMS pristine after 72
days (black squares) and at their ultimate hardness (hardness at infinite time, values given
above; red triangles). The agreement between the black and red fits means that, despite
continued crosslinking by the PDMS pristine and the CF-0.5/PDMS sample, the materials’
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hardness can be confidently tuned within the given CF loadings for its extended use in
various applications by applying the simple second degree polynomial equations shown in
Figure 3b.

In order to understand how the elastic properties of PDMS change with the addition
of CF fillers, tension tests were performed. Table 1 shows the resulting elongation, ultimate
strength, toughness, and Young’s Moduli with increasing CF loadings. Previous investiga-
tions using CFs as a filler material in other polymer matrices have found that the alignment
of CFs in the polymer matrix plays a significant role in how the mechanical properties of
the material change [44–46]. Specifically, they note that the greatest increases in mechanical
properties are observed when the CF fillers are aligned parallel to the applied force. As
we discussed previously in relation to the rheological properties of CF/PDMS composite
formulations, CF fillers in the PDMS are well dispersed, indicating that their orientation in
the PDMS matrix was random. The results of the tension tests for the CF/PDMS samples
showed a decrease in the elongation, ultimate strength, and toughness, but an increase in
the Young’s Modulus with increasing CF loadings. Microscopic investigation in previous
works showed that holes, voids, and other defects are formed by moving CFs in the PDMS
polymer matrix when stress was applied to the material [44,47]. The accumulation of these
defects in the CF-containing samples likely caused the sample to break before reaching the
same ultimate strength and elongation as the PDMS pristine. This decrease in ultimate
stress and elongation led to a decrease in toughness.

Table 1. Tension data for PDMS pristine and CF-filled PDMS.

Elongation (%) Ultimate Strength (MPa) Toughness (MPa)
Young’s Modulus (MPa)

Initial After 100% Elongation

PDMS pristine 461 4.92 8.44 1.13 1.13
CF-0.5/PDMS 394 3.95 6.41 1.48 1.42
CF-1.0/PDMS 422 4.48 8.03 1.65 1.52
CF-2.0/PDMS 356 3.60 5.88 1.72 1.53
CF-4.0/PDMS 335 3.47 5.87 1.76 1.52

This study also explored how the CF filler affects repeated tension performance
(Table 1 and Figure 4). The samples were first elongated to 100% (red curves in Figure 4)
and then elongated a second time until they failed (black curves in Figure 4). Since the
region between 0% and 100% elongation is within the elastic domain of PDMS pristine,
there is no difference between the first and second trials for the PDMS pristine, as expected.
It is clear that as the amount of CF increases, the separation between the red and the black
curves increases, denoting that the polymer is no longer fully elastic in this region, which
we attribute to the defects caused by the CF filler, as mentioned before. In Figure 5, to
evaluate the mechanical behavior changes in the range of 0% to 100%, the differences in
Young’s Modulus and toughness are displayed. Interestingly, both the initial trial and the
second trial (tension test after 100% initial elongation) showed a threshold point at 2 wt.%
CF filler. At this stage, the Young’s Moduli (initial and second trial) reached an apparent
steady state, and additional CF showed no clear increase in the Young’s Moduli, signifying
2 wt.% CF loading in this PDMS (i.e., Sylgard™ 186) is the optimum concentration for a
high Young’s Modulus value, even after repeated tension testing.

There is a significant loss of toughness (in the range of 0% and 100%) seen in all of
the CF/PDMS samples between the first and second elongation, as shown in Figure 5b.
This loss in toughness between the 1st and 2nd trials also supports the reasoning that the
2 wt.% loading of CF filler is the optimal loading for improved mechanical properties:
2 wt.% is the point where the Young’s Modulus appears to level off, while minimizing the
loss of toughness. While the CF-4.0/PDMS sample has a slightly larger initial Young’s
Modulus, the loss of toughness is much greater than the CF-2.0/PDMS. This may limit the
applicability of the CF-4.0/PDMS sample.
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Solvent swelling tests were used to probe the effect of the CF filler on the PDMS
crosslink density. As shown in Figure 6, the PDMS pristine, CF-0.5/PDMS, and CF-
1.0/PDMS samples show statistically similar swelling after 1 week, while the CF-2.0/PDMS
and CF-4.0/PDMS samples both show significantly decreased swelling compared with
PDMS pristine. In general, a decrease in the swelling ratio is associated with an increase
in crosslink density; however, the FTIR analysis mentioned previously showed no Si–H
peak for any samples, indicating that all samples had reached a similar high degree of
crosslinking. Consequently, crosslinking density would not explain the results as shown in
Figure 6. This result suggests that the CF filler (≥2 wt.%) acts as a physical cross-linker in
the PDMS matrix, therefore increasing the dimensional stability of the samples. In addition,
since there is no change in the chemical bonding and crystallinity (FTIR and DSC), nor in
the crosslinking (hardness), the CF filler must only have weak interactions with the PDMS
polymer matrix [48]. Thus, we infer that the CF filler only fills the free volume between the
polymer molecules in the matrix, partially inhibiting the solvent from completely entering
the matrix during swelling. Swelling at equilibrium is reached when the chemical potential
gradient forcing the solvent into the PDMS polymer matrix (diluting the monomers in
the polymer, thus achieving greater entropy) is balanced by the elasticity of the polymer
network, which resists infinite deformation [49]. In the CF-0.5/PDMS and CF-1.0/PDMS
samples, there was a slightly greater chemical potential forcing the solvent into the polymer
network than the PDMS pristine sample due to the increase in entropy from diluting the
CFs. However, this force was balanced by the slight extension in the polymer network
caused by the CF filler, which we attribute as the reason there is no change between the
PDMS pristine, CF-0.5/PDMS, and CF-1.0/PDMS samples. In the CF-2.0/PDMS and
CF-4.0/PDMS samples, however, the distension of the polymer network resisting swelling
dominates the increased entropy associated with diluting the CFs; therefore, there is a
significant decrease in the swelling ratio.
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These data show that there is a CF loading limit between 1.0 and 2.0 wt.% where the
CFs inhibit the solvent from entering and swelling the PDMS network, indicating good
chemical resistance and dimensional stability with ≥2 wt.% loading of CF filler in PDMS.

3.4. Effect of the Amount of CF Filler on Thermal Behaviors

The thermal degradation behavior of the PDMS pristine and CF/PDMS samples was
monitored using thermogravimetric analysis (TGA), as shown in Figure 7 and Table 2. The
degradation exhibits three steps for all samples, which can be seen from the three peaks
in the derivative graph in Figure 7a. Zhou and coworkers showed a similar degradation
profile for PDMS. The first degradation is a slow degradation step at about 300 ◦C [50].
This degradation occurred before the degradation temperature (Td), denoted by a 5%
weight loss, was reached, and we attribute this to the loss of small molecules or non-
crosslinked polymer chains trapped in the polymer matrix. After this step, the samples
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reach their degradation temperatures. In Figure 7b, there is an increase in the degradation
temperature with increasing CF content. Similar to the increase in hardness (Figure 3b), the
increase in degradation temperature follows a second-degree polynomial equation, shown
in Figure 7b, with high agreement (high R2 value = 0.991). Using this information, the
thermal degradation of CF/PDMS can be tuned to meet the needs of specific applications.
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Table 2. Thermal degradation behaviors of PDMS pristine and CF/PDMS samples.

Td (5% Wt. Loss) (◦C) Degradation Peak 1 (◦C) Degradation Peak 2 (◦C) Degradation Peak 3 (◦C)

PDMS pristine 410.9 298.6 491.0 620.4
CF-0.5/PDMS 415.7 317.5 479.4 625.7
CF-1.0/PDMS 420.4 309.7 478.2 624.0
CF-2.0/PDMS 430.4 315.9 484.7 623.1
CF-4.0/PDMS 437.8 314.2 490.1 622.3

Additionally, there are two more degradation peaks seen in the derivative graph,
which occur at ~480 and ~625 ◦C. The peak temperature for both of these degradation steps
does not appear to be significantly altered by the presence of the CF filler. However, the
first degradation step, which is present in the PDMS pristine curve, becomes increasingly
pronounced with the addition of CF fillers. Based on the increase in degradation with
increasing CF filler, we ascribe this degradation temperature to the CF filler. In a previous
study, styrene filled with CFs showed the CF degradation temperature to be between
480 ◦C and 550 ◦C, which supports our findings [51]. The third degradation temperature is
the maximum degradation peak for all samples, which we attribute to depolymerization of
PDMS [52].

Differential scanning calorimetry (DSC) measurements were run to evaluate how
the incorporation of the CF filler affected the glass transition temperature (Tg), melting
temperature (Tm), enthalpy of fusion (∆Hf), crystallization temperature (Tc), and enthalpy
of crystallization (∆Hc). Figure 8 shows the DSC curves for all the samples, and the
resulting values are given in Table 3. As shown in Table 3, there is no significant change
in any of the given values. As shown in Figure 8, there is a single endothermic peak in
both the cooling ramp (top curves) and the heating ramp (bottom curves), corresponding
to a single crystalline structure. There is no broadening or shift in either the fusion peak
or the crystallization peak, which indicates a similar crystalline structure in all samples.
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Since formation of the crystalline structure is largely dependent on the steric stresses,
it is clear the CFs do not have any significant bonding/interaction with the polymer
matrix, as these interactions would have increased the steric hindrance of the polymer
molecules [53]. Furthermore, as Table 3 shows, there is also no significant change in the
degree of crystallinity (38%).
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Table 3. Physical Properties of PDMS pristine and CF/PDMS samples by DSC.

Tg (◦C) Tm (◦C) ∆Hf (J/g) Tc (◦C) ∆Hc (J/g) Xc (%) *

PDMS pristine −123.3 −47.5 23.7 −78.4 24.1 38.7
CF-0.5/PDMS −123.6 −47.7 23.8 −80.7 23.2 38.9
CF-1.0/PDMS −123.2 −47.8 23.6 −78.9 23.1 38.6
CF-2.0/PDMS −121.0 −46.8 23.3 −77.4 25.0 38.1
CF-4.0/PDMS −123.3 −46.05 23.4 −77.4 23.1 38.2

* Calculated using 61.19 as the enthalpy of fusion for a fully crystalline PDMS polymer [35].

This indicates that the CF filler has no effect on the formation of the polymer matrix,
and there are only weak interactions (i.e., Van der Waals) between carbon nanofibers and
the PDMS polymer. Furthermore, the minute changes in the glass transition tempera-
ture without exothermic peaks in the DSC curves indicate an equal and high degree of
crosslinking in all the samples [48].

Lastly, the coefficient of thermal expansion (CTE) was determined. Figure 9 shows
the CTE values for the different CF loadings. The CTE given by Dow is 3.3 ×10−4 K−1 for
SylgardTM 186 [40]. In this study, however, a value of 2.12 ± 0.06 × 10−4 K−1 was attained.
As mentioned before, the hardness of the PDMS pristine sample attained in this study was
slightly higher than the reported value by Dow. Differences in the curing conditions have
been shown to affect the final properties of PDMS [41–43], and it is consistent to have a
lower CTE value, given that the PDMS showed a slightly higher hardness value.

The more significant result, however, is how the CF filler affects the CTE. These
data show a significant decrease (20%) in the CTE for the CF-0.5/PDMS sample. Thus,
a significant reduction in CTE can be achieved with minimal CF filler, making CF-filled
PDMS more applicable to certain applications such as potting material for electronics. The
other three samples show similar CTE values as the CF-0.5/PDMS sample and exhibit little
dependence on the CF concentration.
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4. Conclusions

In summary, carbon nanofiber (CF)-filled PDMS samples were fabricated to evaluate
how CFs would affect the mechanical behavior, thermal properties, and dimensional
stability of PDMS. Rheological behavior of CF/PDMS composite formulations showed that
the CF fillers were well dispersed in the PDMS polymer matrix without rearrangement
of the filler. Hardness values were increased with increasing CF loadings in PDMS. In
particular, they were significantly increased by more than 40% (39.1) with the addition of
4 wt.% CF filler in PDMS, compared with that of the PDMS pristine (27.2). The results of the
tension tests displayed a decrease in the elongation, toughness, and ultimate strength as CF
content increased. This was attributed to defects produced in the polymer matrix by filler
dislocation during mechanical testing. The Young’s Modulus was increased to 1.76 MPa
(>50%) with the addition of 4 wt.% CF filler, compared with 1.13 MPa of PDMS pristine.
In addition, the both the initial and repeated tension performance showed an apparent
maximum/steady state Young’s Modulus, which was reached with the 2 wt.% sample.
Furthermore, this sample had a relatively small loss of toughness, making it an optimal
sample. This observation provides a good guideline for users to modify the mechanical
properties of these materials according to specific applications. With the addition of 2 wt.%
of CF filler in PDMS, the CF/PDMS composite showed good dimensional stability with
a significant decrease in the swelling ratio. This is attributed to the CF filler acting as a
physical crosslinker in the PDMS matrix. Thermal degradation temperatures increased
by about 25 ◦C with increasing CF loading in PDMS. Even at 0.5 wt.% CF filler, a 20%
reduction in the CTE was observed. Given the results presented in this study, Sylgard™
186 filled with carbon nanofibers with between 0 and 4.0 wt.% loadings can be tuned
to specific applications. CF loadings between 1.0 and 2.0 wt.% in the PDMS polymer
matrix present good advantages for applications that require fabrication processes with
fine control of their rheological properties, and CF loadings between 2.0 to 4.0 wt.% would
work well in areas that require good mechanical properties (e.g., hardness and Young’s
Modulus), dimensional stability, and higher thermal degradation. Therefore, the present
work provides a good guideline for users to tune Sylgard™ 186 with carbon nanofibers.
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