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Abstract: Lignocellulosic biomass fractionation is typically performed using methods that are some-
how harsh to the environment, such as in the case of kraft pulping. In recent years, the development
of new sustainable and environmentally friendly alternatives has grown significantly. Among the
developed systems, bio-based solvents emerge as promising alternatives for biomass processing.
Therefore, in the present work, the bio-based and renewable chemicals, levulinic acid (LA) and
formic acid (FA), were combined to fractionate lignocellulosic waste (i.e., maritime pine sawdust)
and isolate lignin. Different parameters, such as LA:FA ratio, temperature, and extraction time,
were optimized to boost the yield and purity of extracted lignin. The LA:FA ratio was found to
be crucial regarding the superior lignin extraction from the waste biomass. Moreover, the increase
in temperature and extraction time enhances the amount of extracted residue but compromises
the lignin purity and reduces its molecular weight. The electron microscopy images revealed that
biomass samples suffer significant structural and morphological changes, which further suggests
the suitability of the newly developed bio-fractionation process. The same was concluded by the
FTIR analysis, in which no remaining lignin was detected in the cellulose-rich fraction. Overall, the
novel combination of bio-sourced FA and LA has shown to be a very promising system for lignin
extraction with high purity from biomass waste, thus contributing to extend the opportunities of
lignin manipulation and valorization into novel added-value biomaterials.

Keywords: biomass fractionation; formic acid; levulinic acid; lignin; maritime pine

1. Introduction

Lignocellulosic biomass valorization for potential use in the production of biochem-
icals, biofuels, biomaterials, and other added-value products, represents an important
opportunity to reduce and valorize agroforest residues [1,2]. In this respect, an impor-
tant contribution can come from the pulping industry where considerable amounts of
lignin-rich fractions are still poorly explored and valorized, despite their potential as a
natural source of polyphenols [3]. Typically, such pulping approaches target cellulose
isolation via somewhat environmentally harmful processes, such as kraft. Despite the
major scientific and technical advancements and investments to reduce the environmental
impact, the development of novel “green” biomass fractionation methodologies has been
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gaining growing attention from industries and governments. This shift in behavior has
been triggered particularly by the sustainability goals established by the United Nations
agenda [4]. Due to the high variety and heterogeneity of biomass raw materials and the
complex hierarchical arrangement and interactions among the different biomacromolecules
(such as cellulose, lignin, and hemicellulose [1,5]), fractionation and isolation are still a
great challenge. Of particular interest is lignin, the second most abundant biopolymer in
the world, constituting ca. 25% of the terrestrial plant biomass [6]. It is an inexpensive and
renewable resource that possesses numerous attractive properties, such as high stability,
biodegradability, and antioxidant activity [7]. All these attractive features, make lignin
a very interesting raw-material to be applied in different areas, such as biomedical and
pharmaceutical applications, resins, biofoams, or food packaging [8]. This biopolymer is
water insoluble and stable in nature, and acts as the “glue” that connects cellulose and
hemicellulose in the fibers of the plant cell walls [1,9–11]. Furthermore, since lignin is a
highly branched amorphous polymer composed of phenol derivatives, it is regarded as an
important bio-renewable source of aromatic compounds [10]. Despite its huge potential,
most of it is still discarded or burned as fuel for energy production, and only ca. 1–2% of
lignin has been, so far, utilized as a high value product [10,12].

Numerous physical, thermal and chemical pre-treatments and their combinations have
been developed to boost biomass fractionation and isolation [13,14]. These pre-treatments
of the lignocellulosic biomass are crucial for its efficient valorization. Nevertheless, such
approaches are typically cost-intensive, accounting for up to 40% of the total processing
expenses [15]. From the available pre-treatments for lignocellulose fractionation and lignin
isolation, ethanol organosolv has been shown to be the most effective method for extracting
lignin from pine [16]. Ethanol organosolv is referred to as a selective pre-treatment able
to hydrolyze the internal bonds in lignins as well as lignin–hemicellulose bonds, contrary
to the acidic hydrolysis conditions, which easily hydrolyses α-ether linkages (lignin), but
it is likely that β-aryl ether bonds (cellulose) are also broken under the conditions used
in many organosolv-based processes [17]. Another interesting system used in pulping is
formic acid (FA), which is a by-product from lignocellulosic biomass processing [18].

As an environmentally benign and green solvent, water is most always preferred
and has been extensively utilized for biomass fractionation and chemical production [19].
However, it has been demonstrated that water-based systems (i.e., subcritical water) can
cause excessive and non-selective degradation if too high temperature and long residence
times are employed [20].

Recent studies demonstrate the suitability of eutectic solvents and ionic liquids for
biomass fractionation [21–25]. These systems are reasonably easy to prepare in a pure state,
do not require the presence of any solvent, and produce no waste. In this respect, mixtures
of bio-sourced cations and anions look very attractive.

Despite the recent efforts to improve lignin isolation and purification, it is clear that the
vast majority of lignin is still obtained as a low-quality byproduct from pulping industries.
To continue boosting the lignin-based materials and chemicals expansion towards novel
advanced and demanding applications, superior fractionation strategies are required to
improve lignin quality and its selective extraction. Therefore, in this work, using a closed
reactor, capable of handling high pressures, a novel binary mixture composed of LA and
FA is suggested as an efficient medium for lignocellulosic biomass fractionation.

LA has been identified as a sustainable platform and building block for many valuable
chemicals [26]. This acid can be obtained from fructose or cellulose, and is catalyzed by ho-
mogeneous or heterogeneous catalysts, such as phosphotungstic acid [27]. Also, FA pulping
is one of the most promising organosolv-based fractionation chemicals, allowing an efficient
fractionation of the raw biomass into a cellulose-rich fraction, a water-soluble fraction rich
in sugars, and a lignin fraction [25]. FA can be easily recovered by distillation [28].

The fractionation suitability of this novel binary system was studied, and the extraction
conditions, such as the LA:FA ratio, temperature, and extraction times, were optimized to
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maximize the lignin yield and purity. The extracted lignin was further characterized by
Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).

2. Materials and Methods
2.1. Materials

Maritime pine (Pinus pinaster Ait.) sawdust was kindly supplied by the Portuguese
company Valco–Madeiras e Derivados, S.A (Leiria, Portugal). The sawdust was initially
sieved (mesh size of 20) and oven dried at 105 ◦C. LA (98 w/w%, MW = 116.12 g/mol
and a density of 1.13 g/mL) was purchased from Acros Organics and FA (99 wt %,
MW = 46.03 g/mol and a density of 1.22 g/mL) was purchased from CARLO ERBA. Lac-
tic acid (90 w/w%, MW = 90.08 g/mol and density of 1.21 g/mL) and glacial acetic acid
(99.9 w/w%, MW = 60.05 g/mol and density of 1.05 g/mL) were acquired from VWR Chem-
icals, while sulphuric acid (72%) was obtained from Chem-lab NV (MW = 98.08 g/mol
and a density of 1.63 g/mL). De-ionized water was used for the preparation of all solu-
tions. Dichloromethane (DCM) was purchased from Sigma-Aldrich and the 4-nitroanisol
was acquired from Dagma. Microcrystalline cellulose Avicel PH-101, with an average
particle size of 50 mm and degree of polymerization of ca. 260, was acquired from Sigma
Aldrich. For the intrinsic measurements and molecular weight (MW) estimation of lignin,
n,n-dimethylformamide (DMF) (≥99.8%) ACS Reagent, was used.

2.2. Biomass Fractionation

The fractionation of pine sawdust was performed using different temperatures, ex-
traction times and LA:FA ratios. In a typical experiment, the desired amount of biomass,
ca. 1.5 g (dry basis), previously dried in an oven at 105 ◦C, was weighed and transferred
to a metallic cylindric reactor, able to support high pressure. The reactor was filled with
the solvent up to its maximum capacity (10 ml) and the vessel was properly closed. The
reactor was placed in an oven, at the desired temperature (i.e., 120, 140, and 160 ◦C) and
time (i.e., 1, 2, 4, and 6 h). After the end of the extraction, the vessel was carefully opened
and the extracted lignin content estimated, as described below.

2.3. Statistical Analysis

Extraction yields were calculated as the average of extracted residue in duplicate and
total lignin recovery was determined based on the residue yield and lignin content [25].

Statistical analysis was performed using one-way ANOVA (α = 0.05) to evaluate
significant differences between the extraction yields.

2.4. Determination of Lignin Content

The lignin content extracted by the solvent was estimated using the standard LAP-004
protocol from the National Renewable Energy Laboratory (NREL) [29]. In brief, ca. 300 mg
of the extract was weighed and hydrolyzed in 3 mL of 72 % of sulphuric acid solution
(12 M) for 60 min at 30 ◦C, with intermittent stirring. Then, the hydrolysates were diluted
to obtain a 4 % sulphuric acid solution, and autoclaved at 121 ◦C for 60 min, and left at
room temperature to cool down. The autoclaved solutions were vacuum filtered using
weighted filtering crucibles (40 mm diameter and porosity grade G2), to allow gravimetric
determination of the “acid-insoluble lignin”, after washing the insoluble material. Aliquots
of the filtrates were adequately diluted and used in the determination of the “acid-soluble
lignin” by measuring the absorbance of the solution at 205 nm in a UV-VIS spectrometer
(JASCO V650 Spectrophotometer).
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2.5. Viscosity Average Molecular Weight of Lignin

The average molecular weight (MW) of the extracted lignin was estimated from the
intrinsic viscosity, according to the Huggins equation [30]. The intrinsic viscosity [η] can be
related to the MW of the polymer by the semi-empirical Mark–Houwink equation [31],

[η] = KMwα

where K and α are constants specific for the determination conditions (in this case, α = 0.11;
K = 2.51 [30]). The lignin was dissolved in DMF at a concentration of ca. 5 g/L. The solution
was agitated for 2 h and allowed to stand for 24 h. Then, it was filtered with a 0.45/µm nylon
syringe filter (filtraTech) to exclude any large particles from the solution. Subsequent lower
concentrations, used for the [η] determination, were obtained by automatic volumetric
dilution in a Viscologic TI1viscometer (Sematech, Nice, France).

2.6. Solvatochromic Kamlet–Taft Measurements

The solvatochromic probe 4-nitroanisol was used to estimate the Kamlet–Taft pa-
rameter π* (polarizability index). A stock solution of the dye in DCM was prepared to a
concentration of 4 mM. The dye stock solution was added to the solvents understudy to a
final concentration of 0.1 mM, which enables to obtain the absorbance values within the
required measurable range, and DCM was removed by evaporation at room temperature.
The absorption spectra of the solvatochromic probe were recorded from 250 nm to 500 nm
in a quartz cell with a 10 mm path length, using a Shimadzu UV/VIS spectrometer UV-
1700 at 1 nm stepwise. The wavelength at maximum absorption νmax was determined for
the probe in each solvent. The solvatochromic π* parameter was determined using the
equation [32].

π∗ =
(34.12 − νmax)

2.343
The constant values were obtained from multiple correlation equations where the

best fit for ∆νmax was normalized to provide π* values for 28 solvents on a scale of 0 to 1,
which was consistent with a π* of zero for cyclohexane, due to its low polarity, and unity
for dimethyl sulfoxide, which is a highly polar organic liquid [33].

2.7. Scanning Electron Microscopy

The microscopic morphology of the pine sawdust particles was evaluated before and
after the fractionation procedure, using a tungsten cathode scanning electron microscope
SM 6010LV/6010LA, Jeol (Tokyo, Japan). Secondary electron mode, an acceleration voltage
of 1 kV and a working distance of 9 mm, were selected as the operational conditions.
Uncoated samples were deposited directly on the carbon tape.

2.8. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR-ATR spectra of the different samples were obtained on a JASCO FT/IR-4200
spectrometer (JASCO, Tokyo, Japan) using a MKII Golden Gate accessory. The spectra
were recorded in the 500–4000 cm−1 range with a resolution of 4 cm−1 and 64 scans.

3. Results
3.1. Optimization of the Lignin Extraction Conditions

The raw lignocellulosic material used in this work was pinewood sawdust and its
lignin content was initially estimated to be 27.36 ± 7.93%, which is in agreement with the
literature [1,34,35].

As the extraction conditions are determinant for a successful fractionation process, it
was intended to initially study the effect of the extraction time (i.e., 1, 2, 4 and 6 h) and
temperature (i.e., 120, 140, and 160 ◦C) on the extraction yield, by systematically varying
these two parameters for a fixed LA:FA solvent ratio of 1:1 (v/v) (Figure 1).
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Two striking observations can be made from the analysis of Figure 1: (1) the increase in
temperature favors the extraction yield; (2) the content of extracted lignin also increases for
longer extraction times. Nevertheless, above 4 h, no significant improvements are observed,
and, in some cases, the extraction yield even decreases. This decrease in the extraction
yield can be related to condensation reactions of lignin with reactive degradation products
from hemicellulose, and consequent re-adsorption of these pseudo-lignin products on
the surface of wood particles [36]. It is also noted that the greatest improvement in the
extraction yield was obtained when the extraction time was extended to 2 h.
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Figure 1. Extraction yield of LA:FA (1:1) as a function of extraction time for 120 ◦C (•), 140 ◦C (�)
and 160 ◦C (N).

Similarly, to other biomass residues, the pinewood sawdust consists not only of lignin
but also of cellulose, hemicellulose, pectins, sugars and other minor compounds [29,37].
Often, during the fractionation process, the extracted lignin is contaminated with other
compounds, particularly if the method used is poorly selective. To understand the selectiv-
ity of the novel LA:FA solvent system, the purity of the extracted fractions, obtained from
the different pine fractionation conditions, was analyzed. Figure 2 shows the purity of the
extracted fractions for 1:1 LA:FA solvent, at different temperatures and extraction times up
to 6 h. As discussed above, the purity was not analyzed for extraction times longer than 6h
since the extracted yield is not improved.
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As it can be observed in Figure 2, the increase in temperature and extraction time
apparently benefits the purity of the extracted lignin. The only exception is observed for
the extraction performed at 160 ◦C and 4 h, where a drop in purity is observed. A slight
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fluctuation in purity of the extracted lignin for longer extraction times, was noticed. This is
most likely due to dissolution of other wood compounds, such as hemicellulose, increasing
the extraction yield, but decreasing the purity of the extracted lignin. In fact, the standard
deviation obtained for longer extraction times is typically larger than for shorter extraction
times. It is also noted that, at the lowest temperature, even after 4 h of extraction, the purity
of the obtained lignin is quite unsatisfactory (below 50%).

Similarly to the purity of the lignin, the MW is also influenced by the extraction time
and temperature (Figure 3). The increase in temperature and extraction time generally
causes the depolymerization of lignin (see arrows Figure 3). As can be observed in Figure 4,
depolymerization is also inferred by the different colors of the extracted lignin, both the
dried residue and in solution. Typically, the lower the MW, the darker the dried lignin
powder and solution are.

Figure 3. Average MW of the lignin obtained by fractionation of the pine sawdust with the 1:1 LA:FA
solvent system at different extraction times and temperatures.

Lignin is almost colorless in wood, while industrial lignin presents color due to the
appearance of different chromophores during the extraction process. Lignin mainly in-
cludes quinoids, catechols, aromatic ketones, stilbenes, conjugated carbonyls with phenolics
and metal complexes that are able to modify its coloration [38]. In addition, other chro-
mophore groups may arise from leucochromophore oxidation and/or from carbohydrate
contamination [39].

The LA:FA ratio was also analyzed (Figure 5) regarding its effect on the extraction
yield and lignin purity, for the optimized extraction conditions (i.e., 160 ◦C and 4 h).

All tested ratios induce enhanced lignin purity from ca. 62 to 83%, considerably above
the 56% obtained for FA alone. Regarding the extraction yield, it remains fairly constant
(around 29%) when the FA content in the solvent mixture varies between 50 to 90%. The
highest extraction yields (around 40%) are obtained for the 7:3 and 6:4 ratios (LA:FA);
however, the purity was compromised. Lignin with a lower MW is obtained when solely
using FA as the extraction solvent. The lignin depolymerization strongly depends on the
FA/LA ratio and, therefore, depending on the intended application, it is possible to obtain
lignins with different MW without the need of using other depolymerization processes [40].

Overall, data suggests that a balance between the two acids is favorable for the pine
sawdust fractionation, where enhanced extraction yields can be obtained with reasonable
specificity, thus avoiding other expensive and complicated pre-treatments. Moreover, these
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two solvents appear to have different roles during the lignin extraction process but, when
combined, their synergy results in a more efficient fragmentation; as a smaller molecule,
FA is capable of penetrating into the sawdust structure and destabilize it, while LA seems
to establish preferential interactions with lignin, via its extra ketone groups.
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3.2. Extraction Efficiency and Solvent Polarizability

The effect of using other monocarboxylic acids in combination with LA on the extrac-
tion efficiency was also assessed. The results show a clear dependence of the extraction
yield with the acid being used in combination with LA; lower extraction yields were ob-
tained for the binary solvent systems in the following order: LA:FA > LA:lactic acid >
LA:acetic acid (Figure 6a). The solvent efficiency regarding lignin extraction was correlated
with their polarizability via the solvatochromic parameter π* (Figure 6b).

Data suggests that the lignin extraction is favored when using acidic solvents with
higher π* values; LA and FA have the highest polarization indexes and, when combined to
form a binary solvent system, were found more effective than LA:lactic acid or LA:acetic
acid. These results are in accordance with our previous work where it was demonstrated
that LA and formic acids have a similar and superior dissolution efficiency for “model”
lignin (kraft lignin) and also the highest π* values, in comparison to other carboxylic
acids [41]. A similar relation between π* and lignin solubility was also verified in alcohols,
where π* of methanol was higher than that of 2-propanol [42] and the lignin was more
soluble in the former alcohol. Our results reinforce the hypothesis that the polarizability of
the solvent influences its ability to dissolve lignin. This can be an important parameter to
consider when developing new solvent systems for lignin extraction/dissolution [43].

3.3. Scanning Electron Microscopy

Scanning electron microscopy was used to observe the microscopic morphological
features of pine sawdust, before and after fractionation with a solvent ratio mixture of
6:4 (LA:FA) at different extractions times and temperatures (Figure 7). The starting pine
sawdust material exhibits a dense fibrous structure, where the characteristic “pits” of
pinewood and some longitudinal fractures between the fibers can be observed, probably
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originated from the mechanical cut (Figure 7a). Depending on the extraction conditions,
pores appear with different extent combined with “pits” (Figure 7b–d). In Figure 7d, the
entire shape of the fibers is visible, suggesting a good fractionation of the biomass at 160 ◦C;
while in Figure 7b,c, the fractionation of the biomass structure at 140 ◦C, is not so evident.
At 160 ◦C, the fiber bundles were disrupted resulting in the removal of cross-linking
structures between hemicelluloses and lignin, thus exposing the cellulose fibrils. These
observations are in agreement with the extraction yields depicted in Figure 2, where the
highest values were obtained at 160 ◦C with the solvent ratio of 6:4 (LA:FA). A careful
observation suggests that the fractionation process leads to a decrease in the particle size
and a slight browning of the recovered material. This can be associated with incomplete
lignin extraction, with some residual lignin remaining in the cellulose-rich fraction or with
the appearance of chromophores during the fractionation process [44].
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3.4. Fourier Transform Infrared Spectroscopy

FTIR spectroscopy can provide reliable insights on structural and chemical features
of lignocellulosic materials [45]. Therefore, to clarify the efficiency and specificity of the
fractionation methods used, the presence/absence of lignin in the cellulose-rich solid
residues was evaluated by FTIR and the spectra are depicted in Figure 8.

The characteristic fingerprints from functional groups of carbohydrates and lignin
appear in the 1800–1200 cm−1 region while the OH and CH vibration modes are detected
in the 3800–2700 cm−1 region [46]. The vibrational band at ca. 1530–1480 cm−1 is mostly
attributed to the stretching of the C=C bonds, part of the aromatic skeletal of lignin
molecules. Furthermore, the C=O stretching conjugated to the aromatic ring bending mode
is assigned to the band at ca. 1720–1660 cm−1. Finally, the bands at 1490 and 1510 cm−1

can be assigned to the vibration modes of the aromatic rings in lignin [47]. The previously
highlighted bands can also be identified in the starting raw material, as well as in the
extracted fraction (lignin-rich portion). However, in the cellulose-rich material and in
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the microcrystalline cellulose spectrum, these bands are not visible, thus confirming the
remarkable ability of the novel binary LA:FA solvent mixture to fully extract lignin from
pine sawdust.
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Figure 8. FTIR spectra for low (a) and high (b) wavenumbers of pre-extracted pine sawdust (raw
material), the lignin obtained from the fractionation with 4:6 LA:FA (4 h at 160 ◦C), the lignin
obtained from the fractionation with 6:4 LA:FA (4 h at 160 ◦C), cellulose-rich material obtained from
the fractionation of pine sawdust with 6:4 LA:FA and “model” microcrystalline cellulose (MCC) from
a commercial supplier.

4. Conclusions

Environmentally benign and selective methods for biomass fractionation, enabling the
isolation and valorization of the different fractions, such as cellulose, hemicellulose, and
lignin, have been targeted in much recent research. In this work, a novel binary solvent
composed of bio-sourced and renewable FA and LA was developed and successfully
applied to fractionate pine sawdust waste biomass. In comparison with the individual
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solvent systems, the appropriate tuning of temperature, extraction time and LA: FA ratio,
allows the extraction of lignin with high yield and purity. Generally, higher temperatures
and extraction times led to better results. Apart from the time–temperature balance,
the solvent nature was sought for, further envisioning the industrial translation of the
developed method. This study further suggests that LA has a good affinity with lignin,
also proven by the higher MW obtained for lignin extracted solely with LA compared with
the lignin extracted with only FA. Both the electron microscopy and FTIR data support the
enhanced lignin extraction performance by the novel binary LA:FA mixtures developed.
This eco-friendly and sustainable approach is potentially very interesting for future lignin
valorization into novel biomaterials of added-value.
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