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Abstract: Lignin accounts for approximately 30% of the weight of herbaceous biomass. Utilizing
lignin in asphalt pavement industry could enhance the performance of pavement while balancing
the construction cost. This study aims to evaluate the feasibility of utilizing lignin as a bitumen
performance improver. For this purpose, lignin derived from aspen wood chips (labeled as KL) and
corn stalk residues (labeled as CL) were selected to prepare the lignin modified bituminous binder.
The properties of the lignin modified binder were investigated through rheological, mechanical and
chemical tests. The multiple stress creep recovery (MSCR) test results indicated that adding lignin
decreased the Jnr of based binder by a range of 8% to 23% depending on the stress and lignin type.
Lignin showed a positive effect on the low temperature performance of asphalt binder, because at
−18 ◦C, KL and CL were able to reduce the stiffness of base binder from 441 MPa to 369 MPa and
378 MPa, respectively. However, lignin was found to deteriorate the fatigue life and workability of
base binder up to 30% and 126%. With bituminous mixture, application of lignin modifiers improved
the Marshall Stability and moisture resistance of base mixture up to 21% and 13%, respectively.
Although, adding lignin modifiers decreased the molecular weight of asphalt binder according to
the gel permeation chromatography (GPC) test results. The Fourier-transform infrared spectroscopy
(FTIR) test results did not report detectable changes in functional group of based binder.

Keywords: lignin; bituminous modifier; lignin modified bitumen; chemical analysis; rheological
behavior; mechanical properties

1. Introduction

Lignin is a typical biopolymer of lignocellulosic biomass, which is abundantly gener-
ated in paper making and biofuel industry. It accounts for approximately 30% of the weight
of herbaceous biomass [1]. The chemical nature of lignin is a hydrocarbon consisting of
benzene ring, which are connected by methoxy groups, carbonyl groups and aliphatic
double bonds randomly [2]. Lignin consists of plentiful aromatic rings attached with
alkyl chains. It is a highly branched and amorphous biomacromolecule with the average
molecular weight in the range of 1000 to 20,000 g/mol, depending on the production
process. Although it is known as the second most abundant biopolymer around the world,
the traditional application of lignin is mostly limited to fuel, while only a small amount
of lignin has been used as value-added bioproducts [3]. With the features of well-sources
and high content of aromatic structures, lignin is an underlying green bio-resource which
can be utilized as a modifier to substitute for other industrial aromatic polymers. For
instance, it is potential to be utilized as bitumen modifier on pavement engineering for
better engineering performance and cost saving.

As a by-product of the petroleum refining, bitumen has been extensively applied as
gluing binder to bond the loose aggregates for pavement construction [4]. Bituminous
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pavement has been extensively accepted and largely convincing because of its attractive
advantages including improved smoothness, low traffic noise and easy maintenance. As
the rheological properties of bitumen largely determine the performance of the pavement, a
series of bitumen modifiers have been developed and applied to improve the durability of
pavement. Bitumen modifiers reduce the temperature sensitivity of asphalt binder, making
it harder in evaluated temperate and softer in low temperature condition, thus enhancing
the rheological behavior as well as the service life. The schematic of the mechanism of the
bitumen-lignin working system is shown in Figure 1. The incorporation of lignin modifier
results in the absorption of bitumen liquid phase into the bitumen-lignin interacting area
during the mixing process, which forms the bitumen-lignin working system and changing
the viscoelastic behavior of bitumen binders. Conventional bitumen modifiers include
styrene-butadiene-styrene (SBS polymer [5,6], crumb rubber [7,8], bio oil [9], plastics [10]
and various fibers [11,12]. The main components of raw bitumen are statures, aromatics,
resins and asphaltenes, which have compatibility with the above-mentioned modifiers.
For example, SBS modifier forms the swallowed modifier network in asphalt fraction and
makes the bituminous fractions more viscous [13]. Crumb rubber enhances the engineering
performance by both the polymer modification effect of soluble components and the
particle effect of insoluble particles [14]. However, the use of bitumen modifiers increase
the material cost of asphalt pavement construction [15]. As the second most abundant
biopolymer around the world, lignin is fully adapted to the requirements of large-scale
applications in bitumen pavements with limited additional expense [16]. Therefore, the
application of different types of lignin as bitumen modifier has been a hot research topic
for pavement researchers.
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Figure 1. Schematic of the mechanism of the bitumen-lignin working system.

Previous researches have shown encouraging findings on the application of lignin as
bitumen modifier. It is now well established that the performance of modified bitumen
materials largely depended on the types of lignin. Xu et al. evaluated the feasibility of
the application of lignin as a substitute for bituminous binder by rheological method. The
results also demonstrated that lignin can improve the stiffness and rutting resistance in
bituminous binder without deteriorating other properties [17]. In McCready and Williams’s
study, it was proven that lignin can improve the temperature sensitivity of raw bitumen [18].
Pan found that lignin delayed the ageing rate of bitumen [19]. Batista et al. showed
that bituminous binder will be superior in both rutting and cracking resistance after
modification. The incorporation of lignin also improve thermal stability of bitumen [20].
Arafat et al. used three different types of lignin for asphalt modification, and obtained a
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significant improvement in rutting resistance, cracking resistance, and moisture damage
susceptibility [21]. In the study of Xie and coauthors, the feasibility of lignin as a sustainable
bitumen modifier were demonstrated in terms of engineering and economic [22]. Gao et al.
found that the incorporation of lignin from waste wood chips reduced the fatigue life of
the bitumen, but the reduction was small when the content of lignin was below 8% [23].
Norgbey et al. reported that the addition of 10% lignin form corncobs insignificantly
influenced the workability and compactability of the mixture [16].

Although plenty of studies have demonstrated the feasibility of utilizing lignin as a
bitumen modifier, the application of the Kraft lignin (KL) and the corn stalk lignin (CL) as
bitumen modifier are quite limited. Both KL (25 million tons/year) and CL (250 million
tons/year) have abundant source from paper producing industries and agricultural produc-
tions [20,24], respectively. To date, the performance of lignin modified bituminous binder
and mixture have still not been comprehensively investigated. Hence, this study was
conducted to obtain a more comprehensive understanding of lignin modified bituminous
binder and mixture by a series of experimental tests. To achieve this goal, rheological tests
including Superpave performance grading test [25], frequency sweep test [26], multiple
stress creep recovery(MSCR) test [27], liner amplitude sweep test [28], gel permeation chro-
matography test [29], and Fourier-transform infrared spectroscopy test [30] were performed
on lignin modified asphalt (LMA) binders. Moreover, corresponding mechanical properties
including Marshall Stability [31], aging resistance [32], and moisture susceptibility [33]
were tested. It is expected that this paper can provide helpful information regarding to
sustainable lignin-based alternatives for pavement materials.

2. Materials and Methods
2.1. Raw Materials and Preparation of Sample
2.1.1. Materials

Bitumen with penetration value range from 60 to 70 (shortly named as Pen60/70) was
used as virgin binder in this research [34]. Pen60/70 was supplied by Guangzhou Xinyue
Transportation Technology Co. Ltd., Guangdong, China. Two different lignin powders
(with size less than 100 mesh) were used to modify virgin bitumen by wet process. They are
Kraft lignin (KL) from Nanjing Dulai Biotechnology Co., Ltd. (Nanjing, China) and corn
stalk lignin (CL) from Jinan Yanghai Environment Materials Co., Ltd (Jinan, China). They
were passed through a #100 sieve, i.e., the size of lignin power is below 0.15 mm. Their
properties are given in Table 1.The Kraft lignin (KL) powder in the brown was derived
from aspen wood chips. Another one, the yellow lignin power was extracted from the corn
stalk residues. This lignin was labeled as CL. The figures gathered by the scanning electron
microscope (SEM) were shown in Table 1. It can be observed that KL had a relatively
clear hemispherical hollow shell structure. In comparison, CL presented a loose powdery
structure under the electron microscope due to its poor conductivity.

The diabase aggregates and mineral powder were selected. Then the aggregates
were subjected to washing, drying, and sieving to satisfy the grading requirement. The
stone matrix asphalt mixture with 10-mm nominal maximum aggregate size (SMA10) was
selected as the gradation for the preparation of asphaltic mixture, which is widely used in
south China. The designed gradation information is shown in Table 2.
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Table 1. Properties of KL (Kraft lignin) and CL (corn stalk lignin).

KL CL

Feature
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PH Value 8 7–8

Ash Content (by weight) 1.3% Less than 1%
Water Content (by weight) 5% Less than 5%
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Table 2. Design gradation information.

BS Sieve Size Percent Passing by Mass (%) Passing Requirement (%)

14 mm 100 100
10 mm 96 92–100
5 mm 35 28–42

2.36 mm 26 19–33
75 um 9.8 7.8–11.8 (including 2% hydrated lime)

2.1.2. Sample Preparation

Two lignin modified asphalt binders were prepared in this research, KL modified
asphalt binder (labeled as KLA) and CL modified asphalt binder (labeled as CLA). They
were prepared by mixing KL and CL modifiers (5% by weight Pen60/70) with virgin
asphalt, respectively. A high-shear radial flow impeller was used to mix the virgin asphalt
binder and modifiers. All blended mixes were prepared at the temperature of 160 ◦C for
one hour. The mixing speed of 4000 rpm was selected in this study.

All unaged asphalt binder samples (including modified and virgin asphalt binders)
were aged under different ageing processes. According to different aging conditions, the
aging degree can be divided into three types: unaged, short-term aged and long-term aged.
In this study, the short-term aging process of asphalt binder was achieved through the
rolling thin-film oven (RTFO) method in line with AASHTO T240 [35]. Then, the short-term
aged samples were exposed to the long term aging through the pressure aging vessel (PAV)
test according to AASHTO R28 [36]. In the PAV test, this research simulated the aging of the
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asphalt binder after 10 years of used on the actual road surface. To remove moisture before
being mixed with hot asphalt binder, the pre-treated diabase stones and mineral powder
were placed in an oven for more than 4 h with the temperature 180 ◦C. The optimum
asphalt content was determined based on JTG F40-2004 [37]. The final determined contents
were 4.5% identically. The blending temperature of asphalt and diabase stones and the
preparing temperature of KLA and CLA were set at 160 ◦C. The compacting temperature
was set at 140 ◦C. As AASHTO and ASTM requires, 4% target air void for specimens in
Marshall test [31] and the Indirect Tensile Stiffness Modulus (ITSM) [32] test, whereas 7%
in Indirect Tensile Strength (ITS) test [33].

2.2. Methods
2.2.1. Rheological Tests
Penetration and Softening Point Test

The empirical properties of the binder were assessed by the penetration test [38]
and softening point test [39]. The consistency of bitumen binders was estimated through
penetration test. According to test specification, it depends on the depth of the needle
(100 ± 0.1 g) penetrating a standard bitumen sample under the condition of 5 s and 25 ◦C.
A steel ball weighting 3.5 g was put on the surface of the formed binder during the softening
point test. The test temperature increased at a constant rate until the steel ball dropped out,
and then the temperature, which was an index to assess the high-temperature performance,
was recorded to be the softening point of bitumen binder.

Rotational Viscosity Test

The workability of bitumen binder can be characterized by measuring its rotational
viscosity. The test was measured at 135 ◦C and 160 ◦C. 135 ◦C is the conventional viscosity
testing temperature required by AASHTO PG testing standards [40], and 160 ◦C is the
common testing temperature for polymer modified asphalt due to its higher viscosity.
All test procedures are in compliance with AASHTO T316 [40]. A Brookfield rotational
viscometer was employed to evaluate the rheological properties of bitumen binder. It was
noted that the types of asphalt binder should matched to the sized of spindles.

Rutting Parameter Test

The rheological properties of bitumen binder can be obtained by conducting the
Rutting Parameter test [26]. In this test, a dynamic shear rheometer (Malvern Kinexus
Lab+, Malvern analytical Company, Malvern, UK) was utilized. The rutting parameter
was the characterization of the high-temperature performance of all types of binders. The
complex shear modulus (G*) and phase angle (δ) were used to obtain rutting parameter
G*/sinδ. Unaged and RTFO-aged bitumen binders were prepared for the rutting parameter
test with a plate 25 mm diameter and a 1 mm plate gap. The rutting parameter G*/sinδ
test begun with 64 ◦C with an interval of 6 ◦C, then temperature automatically increased
until the obtained rutting parameter was smaller than the critical number detailed in
AASHTO T315 [26], i.e., 1.0 kPa for unaged asphalt binders and 2.2 kPa for RTFO-aged
asphalt binders.

Fatigue Parameter Test

The rheological properties of bitumen binder can be determined by conducted the
Fatigue Parameter (G*sinδ) test [26]. The fatigue parameter characterizes the intermediate
temperature performance of all kinds of binders. In this test, a dynamic shear rheometer
(Malvern Kinexus Lab+, Malvern analytical Company, Malvern, UK) was used. PAV aged
asphalt binders were prepared for the fatigue parameter test with a plate 8 mm diameter
and a 2 mm plate gap. The fatigue parameter test begun from 28 ◦C and have an increasing
gap of 3 ◦C until the fatigue parameter exceeded 5000 kPa.
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Bending Beam Rheometer (BBR) Test

The low-temperature performance of all types of binders can be estimated by con-
ducted the BBR test. Two important parameters the stiffness and m-value, were used to
estimate the low-temperature thermal cracking resistance according to AASHTO T313 [41].
The bitumen binder after PAV procedures was prepared for the BBR test [41]. The BBR test
was conducted in a temperature fluid bath at constant load of 980 ± 50 mN and 240 s, and
test temperatures started at −6 ◦C with a decrement of 6 ◦C. Moreover, The BBR test was
complied with AASHTO T313, a small asphalt beam specimen was made to simulate the
stress applied in pavement structure in a low-temperature environment.

Multiple Stress Creep Recovery (MSCR) Test

The MSCR test was performed to quantify the resistance of bitumen binder to per-
manent deformation according to AASHTO T350 [27]. The test temperature was set at
60 ◦C. R% is a parameter that presents the average percent recovery, Jnr is another pa-
rameter that expresses the irreversible creep compliance and Jnr-diff is a parameter that
evaluates the stress sensitivity calculated at both stress levels. R%, Jnr and Jnr-diff were the
chosen parameters to value the recoverable and non-recoverable deformation of bitumen
binders. Following AASHTO MP19 [27], a creep load was implemented to test samples
for 1 s and then recovered for 9 s under unloading condition. Creep and recovery cycles
were implemented for 10 cycles at the lower stress level (0.1 kpa), followed by another
10 cycles at the higher stress level (3.2 kPa) Superior resistance to permanent deformation
is associated with lower Jnr, while the stress sensitivity was evaluated by Jnr-diff. The R%
and Jnr parameters were calculated by following equations [42].

R% =
εm − εnr

εp
(1)

Jnr =
εnr

σ
(2)

where εm/εnr/εp is the maximum/non-recoverable/percentage strain; σ is the stress level,
0.1/3.2 kPa.

Linear Amplitude Sweep (LAS) Test

The Linear Amplitude Sweep (LAS) test was performed to calculate the anti-fatigue
damage capacity of bitumen binders. The PAV-aged bitumen binders were prepared and
the test temperature was 25 ◦C. The test procedures were completely in compliance with
AASHTO TP101-14 [28]. In the LAS test, the first step was performed using the frequency
sweep test, followed by linear amplitude strain sweep. During the frequency sweep test,
a strain level of 0.1% was applied at a frequency range of 0.2–30 Hz. Linear amplitude
sweep test was performed at a frequency of 10 Hz within the range of 0–30% strain after the
frequency sweep test was completed. The viscoelastic continuous damage (VECD) method
was employed to calculate the value of cycles to failure at 2.5% and 5% strain levels. Finally,
the fatigue resistance of the sample can be represented by the number of cycles to failure
(Nf). The Nf was calculated using the following equation.

Nf = A(γ)B

where A is the VECD model coefficient; B = 2a (a is the fitting coefficients); γ is the applied
strain (2.5% and 5%).

Frequency Sweep Test

Except for the above tests, the virgin and modified binders were also swept at different
temperatures and frequencies to evaluate their overall rheological properties. According
to the principle of time-temperature superposition, the reference temperature was set at
60 ◦C. To assess the overall rheological performance of test binders, a master curve of G*
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was recorded. A series of sweeps were performed at frequencies from 30 to 0.01 Hz over a
range of 4 to 76 ◦C with a 12 ◦C gap. Based on Williams–Landel–Ferry (WLF) equation, the
test data were matched to the best, and then the single master curve was obtained [9,43].

2.2.2. Chemical Tests
Gel Permeation Chromatography (GPC) Test

The gel permeation chromatography (GPC) test was performed to analyze the molec-
ular weight distribution of test samples [14]. A P230 Elite GPC with two chromatographic
columns (PLgel 5 lm 103 + Å PLgel 3 lm Mixed-3) was utilized to segregate the constituents
of the bitumen binders according to molecular size. The test samples were melted in
Tetrahydrofuran (THF), and the THF-sample solution was drained through the chromato-
graphic columns. The flow rate of injection was restrained (0.5 mL/min) as well as the
chromatographic column temperature was also controlled at 40 ◦C. The percolation se-
quence of molecules in the GPC column was from the large molecules to small molecules.
The concentrations of components were recorded using a refractive index differential
(RID) detector, and to obtain the chromatogram consequently. Then the molecular size
distribution was obtained by analyzing the chromatogram.

Fourier-Transform Infrared Spectroscopy (FTIR) Test

The FTIR test was conducted to analyze the chemical bonds of test samples. The in-
strument, Bruker Vertex 70 (Billerica, MA, USA) was used in FTIR test. Since each chemical
functional group owns Special infrared ray absorption characteristics, the spectrum was
measured by using the FTIR technique, and then the measured spectrum was compared
with the known spectrum so as to analyze the chemical bonds of test samples [44]. It has
been proven that FTIR is a useful probe to evaluate the chemical bonds and functional
groups within asphalt material [45,46]. In the FTIR test, an FTIR spectrometer and pellets
with a thickness of around 1 mm were used to scan the test samples and to gain the required
infrared spectroscopy ranging.

2.2.3. Mechanical Property Tests
Marshall Test of Stability and Flow Value

The resistance of bituminous mixtures to deformation can be evaluate through Mar-
shall test [31]. In the test, two parameters, namely Marshall Stability and flow value,
were measured. The maximum experimental force that the specimen can bear under a
specified loading condition with a constant speed (50 mm/min) is termed as Marshall
Stability. Meanwhile, flow value is defined as the sum of deformed accumulation of the
specimens when failure to resist. To assess the resistance to water damage, the specimens
were placed in a constant temperature water bath, the test temperature was set at 60 ◦C
and the experimental time was set at 30 min or 48 h. The residual Marshall stability (RS)
was defined as the ratio of Marshall Stability of the specimen to the virgin specimen after
soaking in hot water for 48 h. The higher value of RS indicates better moisture stability.

Moisture Susceptibility Test

The indirect tensile strength (ITS) test [33] was performed to calculate the moisture
susceptibility of test specimens. During this test, the ratio between the indirect tensile
strength after moisture adjustment and before moisture adjustment was employed to
characterize the moisture susceptibility of tested specimens. To make a comparison, every
kind of asphalt mixture specimen was divided into two groups, the control one and the
freeze-thaw one. The control group was tested before any moisture adjustment; however,
the freeze-thaw group was to make water saturated by a vacuum pump firstly, followed
by a freeze-thaw cycle. During the freeze phase, the test specimens were placed at the
condition of −18 ◦C for 16 h following by a thawing phase, the specimens were put in
a thermostatic water bath at the condition of 60 ◦C for 24 h. After that, water bath in
the condition of 25 ◦C for 2 h was applied to those specimens. Finally, the ITS test was
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conducted. A vertical loading with a specified loading rate (51 mm/min) was pressured by
a circular arc with a certain width until the end of the fracturing of test specimens.

Indirect Tensile Stiffness Modulus Test (ITSM)

The ITSM test [32] was performed to analyze the stiffness of mixtures. ITSM Ra-
tio (ITSMR) was employed to reflect the aging sensitivity of test specimens, which was
calculated after and before the long-term aging. In the test, the control group and the
long-term aging group were set and each group of ITSM was acquired at 20 ◦C and 30 ◦C.
The long-term aging group was put in a constant temperature oven (85 ◦C) for the five-day
aging process, mimicking the aging conditions of a pavement after the construction of
five to ten years of service life. ITSM Ratio (ITSMR) was employed as an indicator of the
aging sensitivity of test samples, ITSMR equals to the ratio of the ITSM after and before the
long-term aging and was calculated by following equation [47].

ITSMR =
ITSMafter aging

ITSMbefore aging
(3)

where ITSMafter aging is the ITSM after the long-term aging and ITSMbefore aging is the ITSM
before the long-term aging.

3. Results and Discussion
3.1. Rheological Tests
3.1.1. Softening Point and Penetration

Figure 2 illustrates the consequences of penetration test (a) and softening point test
(b). As the bar chart shows, it was observed that the application of lignin brought lower
penetration values. The sink depths of the binders were measured by the penetration test.
The lower penetration value indicates higher stiffness. It is clear from the chart that LMA
reduced the penetration value of Pen60/70 regardless of lignin type, the penetration values
of KLA and CLA decreased from 64 to 58 and 57 (0.1 mm), respectively. This result is
consistent with the previous finding [20], the 5 wt.% of lignin addition caused a decrease
in penetration. In contrast, higher softening points brought by the application of lignin
were observed. This result is also similar to past studies [16]. The softening point values of
KLA and CLA were 2.1 ◦C and 1.4 ◦C higher than Pen60/70, respectively. By comparison,
LMA owned the lower penetration values and higher softening points showed superior
performance in high service temperature. KLA behaved similarly to CLA, while KL had a
slight improvement in high-temperature performance than that of CL.
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3.1.2. Workability

The viscosity values of the modified binder with 5 wt.% of lignin at temperatures
of 135 ◦C and 160 ◦C are described in Figure 3. As a critical and widely used parameter,
viscosity value can evaluate the mixability and workability of bitumen binders. In order to
ensure adequate liquidity, the appropriate viscosity with good workability was necessary.
As expected, the viscosity of test samples increased with the decreased temperature. The
viscosity of Pen60/70, KLA, and CLA at 135 ◦C was 384.5, 487.5, and 443.8 cp, respectively.
It is apparent from the line graph that all viscosity results meet the specifications of the
requirement of AASHTO specification (i.e., 3000 cp). For construction purpose, all the
bitumen binders have sufficient fluidity to be pumped. Same as previous studies, the
application of lignin raised the viscosity of asphalt binders [20]. As depicted in Figure 3, at
160 ◦C, the viscosity of Pen60/70, KLA, and CLA was 134, 302.5, and 230.5 cp, respectively.
It can be found that the viscosity of LMA is higher at all temperatures than that of Pen60/70.
What’s more, KLA has the highest viscosity value, followed by CLA. At 160 ◦C, KLA has a
viscosity value 2.2 times larger than the value of Pen60/70, and the viscosity value of CLA
is 1.7 times larger than that of Pen60/70.
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3.1.3. Rutting Resistance

The rutting resistance of bitumen binders are evaluated using the parameter G*/sinδ.
The higher G*/sinδ is, the greater rutting resistance the bitumen binder has. Unaged and
RTFO-aged, virgin and modified bitumen binders were tested. Figure 4a and c exhibit the
testing temperature and the corresponding G*/sinδ value. The final failure temperatures
(1.0 kPa for unaged asphalt and 2.2 kPa for short-term aged asphalt) are plotted in Figure 4b
and d. As shown, with the application of lignin, the higher value of rutting factor and
failure temperature of Pen60/70 were obtained regardless of the sources of lignin. When
5 wt.% of lignin was added, KLA contributed the highest improvement in performance
at high failure temperature (68 ◦C), followed by CLA (67.6 ◦C). The G*/sinδ values of
RTFO-aged binders were evaluated at 58 ◦C, 64 ◦C, and 70 ◦C. The results make it clear
that adding lignin increased the G*/sinδ values regardless of aging stages. The results
are similar to the past study conducted by Xu [17]. The addition of lignin promoted the
high-temperature grade of RTFO-aged samples regardless of the lignin sources. By contrast,
the difference between KLA and CLA was not prominent in short-term aged condition,
and unaged KLA owned slightly stronger resistance to rutting at the high temperature.
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The MSCR test was also implemented to value the binder performance at high temper-
ature, the recovery and non-recovery characters of the RTFO-aged binders were analyzed
with the stress levels of 0.1 kPa and 3.2 kPa. The Jnr and R% are exhibited in Table 3.
The maximum difference of Jnr is no more than 8%, which is obviously in compliance
with the specification of AASHTO MP19 (<75%). As the stress level increased, all R%
values decreased while Jnr values increased. Table 3 shows that the unmodified binder
did not have any recoverable portion at 3.2 kPa stress level at 64 ◦C, while the recovery
ratio of lignin modified binders at 3.2 kPa stress level had 0.1% (KLA) and 0.2% (CLA),
respectively. By comparison, the virgin bitumen owned the highest Jnr values at both stress
level, lignin modified binders owned close Jnr values, showing moderate improvement
in the resistance to rutting. The results were consistent with those obtained by softening
point test as well as G*/sinδ. Similar results were found by Arafat [21]. Furthermore, CLA
possessed the lowest Jnr values at both stress levels and highest R% value at high-stress
level, proving that the application of CL resulted in more elastic behavior of asphalt binder.
KLA possessed highest R% value at low-stress level, which indicated that adding KL led to
more deformations recovered.
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Table 3. MSCR test results (The numbers after “±” are standard deviations).

Binder Types
% Recovery Jnr

0.1 kPa (kPa−1) 3.2 kPa (kPa−1) 0.1 kPa (kPa−1) 3.2 kPa (kPa−1) Jnr-diff

Pen60/70 0.400 ± 0.350 0.000 ± 0.000 2.578 ± 0.070 2.766 ± 0.056 7.300 ± 0.700
KLA 1.350 ± 0.050 0.100 ± 0.000 2.366 ± 0.041 2.552 ± 0.046 7.850 ± 0.050
CLA 1.050 ± 0.050 0.200 ± 0.000 2.025 ± 0.011 2.180 ± 0.010 7.650 ± 0.050

3.1.4. Fatigue Resistance

The fatigue resistance of bitumen binders was investigated by the LAS test and the
evaluation indicators is G*sinδ. Figure 5a shows the connection between test temperatures
and G*sinδ values. Figure 5b provides the corresponding failure temperatures when the
G*sinδ value was equal to 5 MPa specified by AASHTO M320. As shown in Figure 5a, as
test temperature decreased, the G*sinδ values of all kinds of bitumen binders increased.
Both at 31 ◦C and 28 ◦C, the G*sinδ values of KLA were the highest, that of Pen60/70
was the lowest. The fatigue resistance of the test binder will deteriorate with the increase
of the fatigue failure temperature [9]. Figure 5b presents the failure temperatures, it can
be observed that the failure temperature of KLA was 30.6 ◦C, the highest value of the
three bitumen binders, followed by the CLA (30.5 ◦C). The virgin asphalt without lignin
had the lowest failure temperature, which indicated the modest negative effect on the
resistance of bitumen binders to fatigue brought by the application of lignin. The effect
of lignin modifier on fatigue performance is negative. However, the negative effect is not
significant. At 31 ◦C, the addition of KL and CL increased the G*sinδ value by 12.7% and
11.4% respectively. While at 28 ◦C, the addition of KL and CL increased the G*sinδ value
by 21.1% and 11.2% respectively. In terms of failure temperature, it is noted that KL and
CL modified asphalt have 1.4 ◦C and 1.3 ◦C higher than virgin binder, indicating poorer
fatigue resistance. The findings support previous works by Xu and Norgbey [16,17]. By
comparison, The KL further enhanced the negative effect by increasing the temperatures
by 1.4 ◦C, 0.1 ◦C higher than that of CL.
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The fatigue performance of bitumen binders was measured through LAS test using
the PAV-aged samples. The results at two strains levels (2.5% and 5%) are presented in
Figure 6. The fatigue life (Nƒ) results reflect that the high strain applied to the bitumen
binders reduced the fatigue life regardless of whether the lignin was used and whatever the
sources of lignin were. The higher value of the cycles to fatigue (Nƒ) is, the worse fatigue
resistance the test binder owns [47]. According to Figure 6, Pen60/70 was responsible for
the higher cycles and the application of lignin reduced the values of Nƒ at both strain levels.
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By comparing with Pen60/70, the Nƒ value of KLA was smallest at two strains levels,
followed by CLA. The Nƒ value of KLA decreased by 11.65% at the strain level of 2.5%
and 32.04% at the strain level of 5%, the Nƒ value of CLA decreased by 6.05% at the strain
level of 2.5% and 8.68% at the strain level of 5%. The results indicate that the incorporation
of lignin modifiers brought the reduction of fatigue life to the test binders. The similar
LAS result on the negative impact of lignin on the fatigue resistance of bitumen binders
was also found by other studies [16,17]. This is because the application of lignin can make
the asphalt binder hard [17]. In addition, compared to KL, CL possessed better fatigue
resistance performance.
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3.1.5. Low Temperature Performance

The BBR test was done to analyze the low-temperature properties of test binders at
three low temperatures (−6, −12 and −18 ◦C). Two parameters, stiffness and the creep
rate (m-value) of test binders, were showed in Table 4. Binders with higher m-value and
lower stiffness provided better performance in low-temperature condition. Table 4 shows
the stiffness of all binders are less than 300 MPa and the m-value are greater than 0.3
at −6 and −12 ◦C, which conforms to AASHTO T313. Compared to Pen60/70, it was
observed that the LMA binders owned lower stiffness and greater m-value. Compared to
KLA, the m-value of CLA was slightly larger and the stiffness was smaller except −18 ◦C.
Thus, LMA showed a slightly better low-temperature performance than raw binder, the
low-temperature properties of CLA was slightly better than KLA. The BBR test results were
inconsistent with previous study that adding lignin into bitumen binder had little negative
effect on thermal cracking potential [17]. However, the finding was also supported by other
study that lignin binder had higher resistance to thermal cracking at low temperatures [20].

Table 4. BBR test result analysis.

Binder Types
−6 ◦C −12 ◦C −18 ◦C

Stiffness
(MPa)

m-Value
(×10−2)

Stiffness
(MPa)

m-Value
(×10−2)

Stiffness
(MPa)

m-Value
(×10−2)

Pen60/70 156 34 284 31 441 21
KLA 142 35.9 233 32.5 369 24.5
CLA 132 37.1 226 38 378 29
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3.1.6. Overall Rheological Behavior

The test binders were swept at different temperatures (4–76 ◦C) and a series of fre-
quencies (30–0.01 Hz) in the frequency sweep test. Then master curves of G* at 60 ◦C
within a broad frequency angle (10−3–10−7 Hz) were depicted according to the principle of
time-temperature superposition. To get the master curves, many complicated calculations
were performed. First of all, the WLF equation (Equations (4) and (5)) was replaced with
the sigmoid function (Equations (6) and (7)). Furthermore, Equation (7) was used for
nonlinear surface fitting to obtain two parameters (C1, C2). Finally, WLF equations and the
parameters (C1, C2) were used for optimal fitting to get the single master curve.

log(a(T)) =
−C1∆T
C2 + ∆T

(4)

log(ξ) = log(ƒ) + log(a(T)) (5)

where a(T) is the shifting factor at specific temperature T, ∆T is the temperature difference
between the test temperature and the specified temperature. C1 and C2 are model constants.
ξ and ƒ are the reduced frequency at the specified temperature and the test temperature,
respectively.

log(G∗) = δ+
α

1 + eβ+γ log(ξ)
(6)

log(G∗) = δ+
α

1 + eβ+γ(log (ƒ)+−C1∆T
C2+∆T )

(7)

where β and γ are the shape parameters of the equation; α, δ is the span of G* values and
the minimum modulus value, respectively.

Table 5 shows the parameters of the sigmoid function and WLF equation. In this
Table, the column “Sigmoidal Function”, “R2@|G*|” means the determination coefficient
of |G*| value.

Table 5. Model parameters.

Parameters
WLF Equation Sigmoidal Function

C1(-) C2(-) δ(Pa) α(Pa) β(-) γ (-) R2@|G*|

Pen60/70 13.88 191.7 −3.64 9.189 −0.2065 −0.4195 0.9988
KLA 11.78 176.4 −4.861 10.83 −0.1006 −0.3637 0.9987
CLA 15.82 222.1 −3.304 9.071 −0.4636 −0.445 0.9978

The results of the target master curves of bitumen binders are shown in Figure 7. The
sigmoidal fitting curves were obtained by the frequency sweep to value the overall rheo-
logical behavior of bitumen binders. As the principle of time-temperature superposition of
viscoelastic materials indicates, high frequency is related to low temperature. As shown
in the graph, it is clear that the increase in frequency led to the increase in modulus (G*).
The G* values of LMA were higher in low frequencies compared to Pen60/70, but close
in high frequencies, which reflected better performance in high temperatures, but it was
not obvious. Meanwhile, the close results in high frequencies showed that the negligible
effect in low-temperature performance of test binders with lignin. This finding supports
past works conducted by Wang [47]. By comparison, lignin from wood chips had a slight
improvement in high-temperature performance than that of lignin from corncobs. The
results obtained from the main curves are consistent with the results of the MSCR test.
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3.2. Chemical Tests
3.2.1. MWD (Molecular Weight Distribution)

The gel permeation chromatography (GPC) test results of virgin bitumen are illus-
trated in Figure 8. As shown in Figure 8, the chromatogram is drawn mainly from 13 to
16.8 min of retention time, the retention time ranges from 13 to 16.8 min refers to Mw range
is from 6076 to 272. As plotted, the main peak of each type of binder is mainly at 15.3 min
and there is a small fluctuation of each test binder that occurred nearly 16 min.
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According to numerical statistics analysis, the GPC parameters are shown in Table 6
and Figure 9. To evaluate the molecular weight distribution of bitumen binders, five
parameters including Mw, Mn, Mp, Mz, and PDI were selected for the statistical analysis of
molecular weight distribution. Their meanings were listed as follows:

• Mn = number-average molecular weight (g/mol);
• Mp = peak molecular weight (g/mol);
• Mz = z-average molecular weight (g/mol);
• Mw = weight-average molecular weight (g/mol);
• PDI = Mw/Mn = polydispersity Index (-).
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Table 6. GPC parameters (The numbers after “±” are standard deviations).

Sample ID Mn (g/mol) Mp (g/mol) Mz (g/mol) Mw (g/mol) PDI (-)

Pen60/70 827 ± 13 920 ± 13 1603 ± 111 1142 ± 21 1.38151 ± 0.0473
KLA 812 ± 11 903 ± 10 1326 ± 2 1043 ± 6 1.28472 ± 0.0089
CLA 780 ± 18 873 ± 26 1241 ± 48 991 ± 29 1.27060 ± 0.0084
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In general, the larger the PDI, the broader the molecular weight [29]. As summarized
in Table 6, Pen60/70 had the largest PDI value, indicating the broadest molecular weight,
followed by KLA and CLA. Moreover, the Mw and Mn values are plotted in Figure 9a,b.
It is apparent that KLA and CLA have lower molecular weight compared with Pen60/70
that is probably because the modification of KL and CL melts in bitumen fractions. The
lignin with lower molecular weight melted in THF may be another reason for decreasing
the molecular weight of the modified binder. CLA owned the lowest Mw and Mn values,
therefore, the different sources of lignin led to the different molecular weight distributions
of modified binders. In addition, the products of reaction between lignin as well as virgin
binder may be insoluble in THF, which could be ascribed to the decrease of the molecular
weight of bitumen binder.

3.2.2. Fourier-Transform Infrared Spectroscopy

FTIR was used as a probe to evaluate the chemical bonds and functional groups of
lignin, binder, and lignin modified binder [48]. The FTIR results are shown in Figure 10. The
fingerprint region between 400 and 1800 cm−1 wavenumbers were selected. The spectral
analysis determined the spectral characteristics associated with the differences caused
by lignin types [49]. Only KL showed an 880 cm−1 vibration correlated with guaiacyl
lignin, while only CL showed 836 cm−1 vibration correlated with the C-H deformations
asymmetric. In the CLA, there were other vibrations at 984, 1127 and 1462 cm−1 correlated
with the C-H deformations asymmetric stretching [50]. CLA exhibited a more prominent
the C-O group peak at nearly 1259 cm−1 and a stronger Stretching vibration of the C=O
bond at 1697 cm−1 [46,49].

Figure 10 shows the absorption spectra of Pen60/70, KLA, and CLA. As shown in
Figure 10c–e, it is obvious that the absorption spectra of KLA and CLA are similar to
Pen60/70, but the peak area is different. These results show that each type of lignin is
evenly distributed in bitumen. After lignin was added to virgin bitumen, there was no
obvious chemical reaction occurred and KLA did not form different chemical bonds, while
CLA had new functional groups. In the CLA, there are also obvious differences between
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regions the regions 1127 cm−1 and 1272 cm−1, for the conjugated C-O bond and C-H bond
in syryngyl rings, respectively. A clear absorption at 1653 cm−1 was observed in the spectra
of CLA, while that of KLA and Pen60/70 had no obvious absorption peak.
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3.3. Mixture Test
3.3.1. Marshall Test of Stability and Flow Value

As empirical indicators, Marshall Stability and flow value [51] were employed for
quantifying the potential of bitumen mixture to permanent deformation. Marshall Stability
estimated the maximum force that the mixture can withstand, and flow value evaluated
the resistance of bitumen mixture to plastic deformation. The results of test specimens
before and after 30 min or soaking in hot water for 48 h in a specific temperature (60 ◦C)
are illustrated in Figures 11 and 12 and Table 7. Figure 11a shows that mixtures with LMA
own the higher Marshall Stability compared to mixtures with Pen60/70 in both soaking
conditions. In 30 min soaking condition, the mixtures using KLA or CLA binders improved
the Marshall Stability of the Pen60/70 mixture by 18.09% and 3.04%, respectively. In 48 h
soaking condition, the Marshall Stability of the Pen60/70 mixture was improved by 20.91%
and 5.67%, respectively, by the application of KL and CL. After soaking in hot water for
48 h, the flow value of mixtures using LMA was universally lower than Pen60/70, although
the flow values of LMA mixtures after water soaking for 30 min were slightly higher than
that of Pen60/70 mixtures, their differences were not significant. The higher Marshall
Stability and the lower flow value is, the better performance at higher service temperatures
the mixture has [47]. The Marshall stability and flow value test results indicate the positive
effects on the permanent deformation resistance of Pen60/70 brought by lignin. Compared
to CL, it can be concluded that KL further enhanced the positive effect on the high service
temperature performance as its higher Marshall stability values.
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Table 7. Marshall stability and flow value test analysis (The numbers after “±” are standard deviations).

Binder Types
Strength (kPa)

RS (%)
Flow Values (mm)

Soak (30 min) Soak (48 h) Soak (30 min) Soak (48 h)

Pen60/70 6.91 ± 0.27 6.17 ± 0.01 89.3 4.01 ± 0.55 3.62 ± 0.11
KLA 8.16 ± 0.54 7.46 ± 0.28 91.5 4.30 ± 0.40 3.35 ± 0.26
CLA 7.12 ± 0.02 6.52 ± 0.01 91.6 4.41 ± 0.01 3.13 ± 0.55

Residual Marshall Stability (RS) [52] refers to the ratio of Marshall Stability of the
specimen to the virgin specimen after soaking in hot water for 48 h. The higher value of
RS indicates better moisture stability [51]. As depicted in Figure 12, LMA mixtures are
responsible for the higher RS values compared with the RS value of 89.3% of Pen60/70 mix-
ture. KLA mixture and CLA mixture have similar RS values, 91.5%, and 91.6% respectively,
indicating a better performance at resisting water damage. By comparison, The KL and
CL further enhanced the positive effect on the water damage resistance by increasing RS
value, 2.2% and 2.3% higher than that of Pen60/70. It can be observed that the difference
among RS values of KLA and CLA were not obvious, the results show that the effect of
lignin modifiers on the water damage resistance of mixture is basically same.
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3.3.2. Moisture Susceptibility

ITSR refers to the ratio of the soaked specimens which had been through one freeze-
thaw cycle to that of the original sample. Different from the RS method, ITSR evaluated the
moisture susceptibility in hot and cold water condition. The ITS results of test specimens
before and after the freeze-thaw cycle are plotted in Figure 13 and Table 8, It is apparent
from the figures that LMA specimens possesses the higher ITS and ITSR in dry condition
and freeze-thaw conditions. As shown in Figure 13a, in both conditions, KLA mixture
was responsible for the highest ITS value, CLA mixture was responsible for secondary ITS
value, followed by Pen60/70 mixture. The enhancement effect of the lignin modifiers was
responsible for the higher ITS value of the LMA mixtures. The ITS test results indicate
that lignin brought the positive effects on the indirect tensile strength both in hot and cold
water condition. Moreover, it can be concluded that KL further enhanced the positive effect
as its higher ITS values than those of CL.
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Table 8. The ITS and ITSR values (The numbers after “±” are standard deviations).

Binder Types Freeze Samples (kPa) ITSR (%) Dry Samples (kPa)

Pen60/70 729.8 ± 19.7 73.1 998.2 ± 56.5
KLA 998.1 ± 56.6 79.9 1249.6 ± 35.2
CLA 977.3 ± 9.0 82.9 1178.3 ± 59.9

Figure 13b and Table 8 presents the ITSR values of test specimens, the test results
of mixtures range from 73% to 83%. The ITSR values of all specimens were higher than
the minimum value in the specification requirement. The ITSR values of LMA mixtures
were 9–13% higher than that of Pen60/70 mixture, presenting a better performance of the
moisture damage resistance in cold conditions. Besides, CLA mixture had the best moisture
damage resistance, followed by KLA mixture and Pen60/70 mixture. Thus KL and CL
further enhanced the moisture damage resistance in freezing condition due to their higher
ITSR values than those of Pen60/70. It can be observed that the ITSR value of KLA was
79.9%, less than the 82.9% of CLA. However, the difference among ITSR values of KLA and
CLA was not obvious. The ITSR results show that the effect of lignin modifiers on the frost
damage resistance of mixture is basically similar.

3.3.3. Aging Resistance and Modulus Stiffness

Figure 14 shows the ITSM and ITSMR results before and after the long-term ageing.
Before the long-term ageing, the ITSM values, in ascending order, were KLA, CLA and
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Pen60/70 mixture, both at 20 ◦C (a) and 30 ◦C (b). After the long-term ageing, the sequence
of ITSM values followed the trajectory before aging process at 20 ◦C, but at 30 ◦C. It was
observed that CLA mixture had the highest ITSM, followed by KLA and Pen60/70 mixtures.
The ITSM test results show the enhancement of stiffness effect brought by lignin modifiers
and aging procedure. At 20 ◦C, it can be seen that KL and CL slightly enhanced the stiffness
as their ITSM values were similar with those of Pen60/70 after aging. However, at 30 ◦C,
after aging, the enhanced effect on stiffness modules brought by CL was significant. CL
had the largest ITSM value, showing the worst aging situation.
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ISTMR is the ratio of ISTM after the ageing process divided by ISTM before the
aging process. The value indicates the samples’ ageing sensitivity. As shown in Figure 14,
the ISTMR values of Pen60/70, KLA, and CLA at 20 ◦C were 199%, 173%, and 177%,
respectively. At 20 ◦C, LMA mixtures presented superior aging resistance than Pen60/70
mixture due to their lower ISTMR. Therefore, LMA mixtures may be performed better in
colder climates. The ISTMR values of Pen60/70, KLA, and CLA at 30 ◦C were 152%, 154%,
and 194%, respectively. The results show that Pen60/70 and KLA mixtures owned similar
ITSMR values at 30 ◦C, indicating that KLA and Pen60/70 mixtures had similar aging
resistance, and both exhibited better aging resistance than CLA mixture, which had the
highest ITSMR value. Overall, it is found that the incorporation of KL improved the aging
resistance of Pen60/70 mixture at 20 ◦C, while almost didn’t affect the aging resistance at
30 ◦C. To sum up, it is believed that KL is a better choice than CL considering the aging
resistance of the mixture.

4. Conclusions

This paper evaluated the feasibility of lignin modification as performance improver
for bituminous materials in details. A series of tests were performed on virgin and modified
with lignin. The following findings can be obtained based on the test results:

• Lignin modified binder (5 wt.% of Pen60/70) showed the insignificantly improved
high-temperature performance and low-temperature performance than virgin bitumen
binder (Pen60/70).

• The lignin modification improved the viscosity, stiffness, soften point, rutting resis-
tance, and elastic recovery of virgin binder (Pen60/70). However, lignin had slightly
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negative effects on the fatigue resistance, and reduced the fatigue life of the bitumen
binder.

• Bituminous mixture with 5% lignin improved the permanent deformation resistance,
moisture susceptibility, and aging resistance. LMA mixtures outperformed bitumen
binder (Pen60/70) mixture in low temperature.

• The FTIR results indicate that the application of lignin did not remarkably change
functional groups of bitumen binder. Lignin has different chemical bonds depending
on lignin sources. KL showed an 880 cm−1 vibration correlated with guaiacyl, while
CL showed 1697 cm−1 vibration correlated with carbonyl. The GPC results show that
the application of lignin decreased the molecular weight of asphalt binder.

• KL had better improvements in rutting resistance of binder, permanent deformation
resistance and aging resistance of mixture than CL. However, CL was slightly better
at improving the workability and low-temperature performance of mixture. Overall,
the Kraft lignin derived from wood chips showed superior performance in bitumen
modification than that extracted from corn stalk residue.

Finally, this research provided a more comprehensive understanding of the lignin
modification as a performance enhanced for bituminous materials. Future study will be
focused on the thermal characteristics, the in-situ validation and life cycle assessment of
bituminous pavement with different lignin modifiers.
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