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Abstract: The degradation of cellulose is an important factor influencing its mechanical, optical,
physical, and chemical properties and, hence, the lifetime of paper in libraries and archival collections.
Regardless of the complexity of the paper material, the main chemical pathways for its degrada-
tion are hydrolysis and oxidation. This study presents an overview of the analytical techniques
employed in the evaluation of the hydrolysis and oxidation processes; these techniques include
size-exclusion chromatography, Fourier-transform infrared and ultraviolet–visible spectroscopy, and
X-ray diffraction. This paper aims to determine the extent to which these instrumental methods are
useful for studying the aforementioned processes and for which lignin contents. It also highlights
how atmospheric humidity could affect the cellulose structure in paper containing lignin. It was
found that humidity causes significant changes in the cellulose chain lengths and that a high lignin
content in paper could suppress some cellulose degradation pathways. This knowledge can be
applied to developing strategies and selective chemical treatments preventing the consequences of
paper ageing.

Keywords: cellulose degradation; cellulose depolymerisation; hydrolysis; oxidation; crystallinity;
paper ageing

1. Introduction

The industrial revolution that took place around the 19th century, involving the
papermaking industry among other sectors, advanced the popularisation of prints. Si-
multaneously, both the introduction of the semi-finished product obtained from wood
(groundwood pulp) and the addition of alum in a new technological process achieved dra-
matic results, such as chemical destabilisation of the cellulose polymer [1,2]. It is claimed
that destruction of the cellulose polymeric structure, as well as lignin, is generally caused
by acidic hydrolysis of the glucopyranose rings and oxidation [3–5].

The hydrolysis of a cellulose macromolecule involves the breaking of the β(1→4)
bonds between particular D-glucose units [6]. Hydrolysis results in cellulose degradation,
during which polysaccharides are degraded to form oligosaccharides and monosaccharides.
The shortening of the cellulose chain is expressed in terms of reduction in its degree of
polymerisation (DP) [7]. Importantly, the glycosidic bonds in cellulose could only ensure its
stability in a slightly alkaline or neutral environment while the increase in the hydronium
concentration in an acidic medium could accelerate the hydrolytic process of glycoside
bond breakages [8]. Apart from the initial pH level of the paper, the rate of hydrolysis
could be determined by the temperature and presence of water vapour in the paper [9–11].
To initiate hydrolysis in paper with even a slight increase in temperature, a minimum
amount of water (5%) in the paper, under normal conditions, is sufficient (in the case of

Polymers 2021, 13, 1029. https://doi.org/10.3390/polym13071029 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-0291-9278
https://doi.org/10.3390/polym13071029
https://doi.org/10.3390/polym13071029
https://doi.org/10.3390/polym13071029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13071029
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/13/7/1029?type=check_update&version=1


Polymers 2021, 13, 1029 2 of 15

paper, the temperature is 23 ± 1 ◦C, and the relative humidity is 50%). The mechanism of
hydrolysis is relatively well known and described in the available literature [12,13].

The oxidation process, depending on the temperature, plays an important role in the
degradation of paper [14,15]. At room temperature, the rate of paper degradation due to
oxidation is low compared to the destruction caused by the acid hydrolysis process [16].
However, oxidation is a much more complex process than hydrolysis, although it is rarely
described in the literature [1,17].

Further, the stable products of cellulose oxidation reaction are the carbonyl groups.
The products of oxidation may also include primary alcohol groups and two secondary
alcohol groups in each glucose unit as well as an aldehyde group, which is a cellulose
functional group, at the end of the chain. Moreover, oxidation may also occur selectively.
The primary alcohol groups on the C(6) atom may be oxidised into an aldehyde group
and further into a carboxylic group. Further, the secondary alcohol groups on the C(2) and
C(3) atoms may be oxidised into ketone groups. Consequent to the breakage of the carbon
atom bonds, the destruction of the glucopyranose ring could occur with the formation
of aldehyde groups which may, in turn, be oxidised to carboxyl groups. The oxidation
of the hydroxyl group on the C(1) atom of the final glucose unit and the breakage of
the glucopyranose ring in the adjacent position are possible [18,19]. The oxidation of
the functional groups in glucose residues generally occurs simultaneously with breakage
of the glycosidic bonds, which contributes to the lowering of the DP as well as to the
durability of the cellulose materials in these residues. The advancements in the oxidation
process and consecutive reactions may also result in the crosslinking of the neighbouring
macromolecules through hemiacetal and ester bonds [20].

Compared to cellulose, lignin is much more sensitive to oxidation by atmospheric
oxygen. Thus, paper containing large amounts of lignin, hemicelluloses, and additives
is generally very susceptible to oxidation as well as hydrolysis and potential degrada-
tion processes, as confirmed by numerous studies [21,22]. Consequently, at the initial
degradation stage, lignin may function as a shield for cellulose. In a wider perspective,
radicals and active forms of oxygen as well as carboxyl groups, being the products of the
lignin oxidation process, will reduce the pH of paper and intensify the whole cellulose
degradation process.

Hydrolysis and oxidation processes are dependent on each other and catalyse each
other [23]. The formation of carbonyl groups because of oxidation weakens the closest
glycosidic bonds, thus making them more susceptible to hydrolysis [24,25]. Hydrolysis
of the glycosidic bonds results in the creation of new end-groups (reducing) which are
susceptible to oxidation. Moreover, water, being the byproduct of cellulose oxidation, is a
substrate for hydrolysis which enables the transportation of protons, radicals, and oxygen
active forms within the paper structure [5]. Oxidation, therefore, contributes to the creation
of carboxyl groups, thus promoting acid hydrolysis [18].

The progress of hydrolysis and oxidation could result in changes in each level of the
fibre structure. One of these changes is recrystallisation, which is demonstrated by the
reorganisation of the macromolecules of cellulose into a more ordered structure. Although
recrystallisation is not a chemical process, it can affect hydrolysis and oxidation processes.
Considering this, recrystallisation should be included in assessing the degradation states
of papers.

Degradation caused by hydrolysis and oxidation processes concerns a vast majority
of libraries and archive collections. To improve the existing methods of conservation and
rescue the collections of archival or historical values which have not been destroyed by
acid-catalysed degradation, detailed studies on the mechanisms of the ageing processes
are required [26]. Nondestructive or microdestructive analytical methods for the effective
assessment of paper-ageing processes and their expected durability are especially signifi-
cant. The most common and widely employed methods, consisting of the measurement of
the colour, acidity [27,28], and tensile properties [29,30] of paper, do not fulfil the above
requirements. Comprehensive estimation of the degradation of paper requires several
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complementary methods, which would be able to grasp the different aspects of paper
destruction, from the mechanical to chemical aspects. Here, we focused on the chemical
effects of deterioration. Viscometry, a classic analytical method which is inexpensive and
relatively easy to perform, was employed for the estimation of cellulose depolymerisation.
However, viscometry fails in the analysis of paper containing lignin. Therefore, other tech-
niques, like size-exclusion chromatography (SEC), are recommended [27]. Consequently,
SEC was employed in this work to study the changes in the DP of papers characterised by
different lignin contents. Further, the process of oxidation was monitored using molecular
spectroscopy techniques, such as Fourier-transform infrared (FT–IR) and ultraviolet–visible
(UV–Vis) range spectroscopies. The X-ray diffraction (XRD) technique was employed to
evaluate the degree of cellulose crystallinity in tested papers. The selection of methods
allowed for the assessment of paper degradation states by the characterisation of the de-
polymerisation process, development of carbonyl groups, and recrystallisation of cellulose.
Here, we attempted to examine the following issues:

• the extent to which increased humidity could affect the changes in the cellulose
structure;

• the Kappa numbers for which the instrumental methods are applicable.

To achieve these objectives, artificially aged papers with differential lignin contents
were investigated. The papers were produced at a neutral pH to eliminate the impact
of acidity on the rate of degradation processes. Previous research and experience have
shown that the rate of acid hydrolysis depends on the initial pH value [8]. The accelerated
ageing conditions were adjusted to achieve the maximum effect (climatic chamber RH 59%,
90 ◦C) and also to compare it with results for conditions obtained in a dry atmosphere
(RH 0%, 90 ◦C). Accordingly, with all the samples and techniques taken into account, we
could confirm that increased humidity causes significant changes in the cellulose chain
and that lignin acts as an antioxidant as previously shown [31,32], and high lignin content
in the paper could suppress some of the cellulose degradation pathways. This work was
a continuation of our previous research on the ageing of papers produced in a neutral
environment. Our previous publication [33] investigated the influence of lignin content on
paper strength in a humidity environment, while this work focused on the chemical effects
on ageing of paper.

2. Materials and Methods
2.1. Cellulosic Pulps

Pinewood (Pinus sylvestris L.) was utilised in this work. Pulps with a broad spectrum of
cellulose content (74.5–94.1%) were prepared from the wood, as raw material, to compare
the structural changes in lignocellulosic paper materials with the differential chemical
composition. The chemical composition of pulps was established within the scope of
earlier research [33].

Cellulosic pine pulps were prepared using the sulfate method, described by Modrze-
jewski et al. [34]. Active alkali (20–38% per batch) was added, and the water to the wood
ratio (v/w) was 4. The dry weights (DWs) of all the materials were determined before
pulping. The pulping processes were conducted in a 15 dm3 PD-114 stainless laboratory
digester (Danex, Katowice, Poland) with temperature regulation (water jacket) and agita-
tion (3 swings/min; swinging angle, 60◦) mechanisms. The wood was suspended in an
alkaline sulfate solution and heated. The maximum digestion temperature was 172 ◦C,
and the heating time was 120 min. Cooking, at the maximum temperature, also lasted
for 120 min. The temperature was thereafter decreased to 25 ± 5 ◦C with cold tap water.
After delignification, the material was washed several times with demineralised water and
incubated overnight in demineralised water to remove the residual alkali-soluble fractions.
Next, the solids were disintegrated for 3 min in a laboratory JAC SHPD28D propeller pulp
disintegrator (Danex, Katowice, Poland), after which the fibres were screened with a PS-114
membrane screener (Danex, Katowice, Poland) equipped with a 0.2 mm gap screen. After
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screening, the pulps were dried for 48 h at ambient temperature. The dry pulps were stored
in hermetically sealed vials until they were utilised for further experiments.

The residual lignin content, expressed as the Kappa number (ISO 302:2015) of the
pulps, was also determined. Cellulose was quantified as alpha-cellulose, according to
the Tappi T203 standard (alpha-, beta-, and gamma-cellulose in pulp). All the chemical
analyses were performed in triplicate for each pulp.

2.2. Nomenclature of the Paper Samples and Sheets

In this work, as well as presented in the tables and figures, the nomenclature of the
samples was based on the Kappa number, determined for each pulp, which contained in
the range 19–90.

The pulps were employed to prepare laboratory-scale test sheets. Before processing,
the pulps were soaked in water for 24 h. Next, they were treated in the aforementioned
pulp disintegrator, following PN EN ISO 5263-1 (2006), at 23,000 revolutions. Further,
they were refined in a JAC PFID12X PFI mill (Danex, Katowice, Poland) with a single
batch comprising 22.5 g of dry pulp according to PN-EN ISO 5264-2 (2011). The cellulosic
pulps were refined to 30◦ SR, where they exhibited maximum strength and could be
easily dehydrated. The Schopper–Riegler freeness was measured with a Schopper–Riegler
apparatus (Danex, Katowice, Poland) according to PN-EN ISO 5267-1 (2002). Next, the sheets
of paper were formed in a Rapid-Köthen class apparatus according to PN-EN ISO 5269-2
(2007). Each laboratory paper sheet was specified to have a base weight of 80 g/m2. Only the
sheets with base weights in the range 79–81 g/m2 were considered for the ageing tests.

2.3. Ageing Tests

The samples of the obtained papers with different delignification degrees were arti-
ficially aged under two ageing conditions. One test was conducted in a dry atmosphere,
at 90 ◦C, employing a BMT Venticell laboratory dryer (“DRY” method). Next, a parallel
set of samples was also aged according to the D6819 American Society for Testing and
Materials (ASTM) standard (2007), at an elevated temperature, in the presence of water
vapour (90 ◦C and RH 59% (“WET” method)) in a climatic chamber (Memmert HCP246).
During the ageing in both types of chambers, a large volume of the degradation products
diffused. The ageing of the sample lasted 0–90 days. The samples were collected after 48
and 90 days of ageing, employing both WET and DRY methods.

2.4. Characterisation of Cellulose in the Paper Sheets
2.4.1. Determination of the Molecular Weight Distributions by SEC

The analysis of the molecular weights of cellulose was conducted employing the
derivative of the original samples, cellulose tricarbanilate (CTC), which is soluble in
tetrahydrofuran (THF). The DP and molecular weight distributions of the papers were
determined by SEC following the method described in previous works [35–37]. The
chromatographic configuration consisted of the Waters chromatographic system, equipped
with an isocratic pump 1515, an autosampler 717+, a column oven, dual λ absorbance
detector 2487 (254 nm), a multiple angle laser-light scattering (MALLS) detector (Dawn
Heleos, Wyatt Technology, Hollister Ave, Santa Barbara, CA, US, working at 658 nm),
and a differential refractive index detector (Optilab T-rEX, Wyatt Technology, working
at 658 nm), which functioned as a concentration-sensitive detector. The separation was
performed, employing a set of two 25 cm × 1 cm mixed-bed polydivinylbenzene columns
(Jordi), which was thermostated at 35 ◦C. THF (HPLC grade, J. T. Baker) was utilised as
the mobile phase, at a flow rate of 1.0 cm3/min. The Astra 6.1.1.17 (Wyatt Technology,
Hollister Ave, Santa Barbara, CA, US) software was employed to process and analyse the
chromatographic and MALL’s data. Molecular weights and DP values were averaged from
4 measurements: 2 injections from 2 separate batches of paper.
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2.4.2. Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (DRIFTS)

DRIFT spectra were obtained on a THERMO/Nicolet 5700 spectrometer equipped
with an MCT/A detector with a Harrick Praying Mantis appliance. A piece of the sample
(diameter ca. 5 mm) was placed in the Harrick Praying Mantis appliance chamber, which
was continuously purged with dry helium (ca. 15 cm3/min). To remove water, the
temperature of the Harrick chamber was set to 110 ◦C for 10 s. Before the measurements,
the temperature was reduced back to 30 ◦C, at which the spectra were recorded. Since
the analysed samples were characterised with different lignin contents, an attempt was
made to obtain the DRIFT spectrum of pure lignin. Because pure lignin is almost black
and highly absorbs incident IR light, the recording of its IR spectrum was extremely
challenging. Moreover, lignin is hygroscopic and susceptible to thermal decomposition
and, hence, it could not be heated before the measurement (it is conducted in the case of
paper samples). Therefore, before the DRIFT analyses, pure lignin powder was diluted in
potassium bromide (KBr), and the prepared powder solution was placed in the Harrick
Praying Mantis chamber.

For the semi-quantitative comparisons of the samples with different Kappa value, the
spectra were normalised by the internal standard method (integral of the band between
2.800 and 3.000 cm−1), described in our previous works [18,19,25], and presented as a
standardised absorbance (Astd). The degradation process was investigated in the range of
1500–1900 cm−1 where the carbonyl groups evolved.

2.4.3. UV–Vis Spectroscopy

The UV–Vis spectra were measured, employing the Avantes setup, which consisted of
an Avalight-DH-S-Bal combined light source (deuterium and halogen lamps); AvaSphere-
30-REFL integrating sphere (diameter, 30 mm, Spectralon covering, Apeldoorn, Nether-
lands); AvaSpec-2048 × 14-USB2 spectrometer with a CCD detector (2048 × 14 pixels);
optical fibre with a diameter of 800 µm, channelling light from the source to the sphere;
and optical fibre with a diameter of 800 µm, channelling light from the sphere to the
spectrometer. The spectra were recorded in the range of 248–1050 nm with a resolution
of 2.4 nm. Reflectance measurements were conducted twice for each sample. Further, the
white (Rwb) and black (Rbb) spectra were also measured, and all the recorded spectra were
normalised, adopting the white standard. Employing the original Kubelka–Munk theory,
the spectra of each sample, measured in the UV-Vis range, were converted by equations
into the reflectance spectra, R, of infinite thickness.

For semi-quantitative analysis, the oxidation indexes were calculated as follows: the
band integral, at 200–800 nm, was calculated for each paper sample (unaged, aged for 48
and 90 days). For each sample characterised by a particular Kappa number, the resulting
integral values were divided by the integrals of the unaged sample. The marker, denoted
as OIUV, was considered as the general indicator of oxidation.

2.4.4. X-ray Diffraction (XRD)

XRD experiments were performed on an X’Pert Pro MPD diffractometer (Philips,
Almelo, Netherlands), equipped with a Johansson monochromator with a copper Kα1 line
(λ = 1.5405 Å) and silicon position-sensitive X’Celerator detector. The measurements were
conducted, employing the Bragg–Brentano θ–2θ geometry in the range of 2θ = 10◦–40◦, an
increment of 0.008◦, and time of 240 s for each angular step. During the measurements,
a variable divergence slit was employed to obtain constant sensitivity within a whole
range of 2θ. All diffraction spectra were recorded on an automatic divergence gap. This
implied that the whole sample surface was illuminated throughout the measurement. The
measured diffractograms were smoothened using the Savitzky–Golay method (~31 points)
and the baseline was corrected using Essential FTIR software.
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3. Results and Discussion
3.1. Impact of Accelerated Ageing on the Cellulose Depolymerisation Process: SEC Analysis

The results obtained from the SEC are shown in Figure 1. By applying chromato-
graphic separation, we could distinguish two main fractions through the molar mass
distribution (MMD) curve: first, the low molar mass values that were attributed to the
presence of hemicelluloses (armband) and, secondly, the high molar mass values that were
attributed to the presence of cellulose-containing molecules (main band) (Figure 1A). The
relative intensities of these two fractions are dependent on the relative hemicellulose and
cellulose contents of a particular paper sample. Thus, for the sample with the lowest Kappa
number, 19, the armband on the MMD curve is moderately noticeable (Figure 1B,C), while
for the sample characterised with the highest Kappa number, 90, the armband exhibited a
separated maximum at Log MW of about 5 (Figure 1N,O). Generally, a gradual decrease
in the armband was observed in all the samples as ageing progressed. This might be due
to the degradation of hemicelluloses. Moreover, as the ageing time was extended, the
cellulose depolymerisation process also progressed significantly as expressed by a shift in
the main band towards lower molar mass values and Log MW, consequently. Therefore,
the cellulose and hemicellulose fractions could have overlapped for samples at the final
stages of ageing.
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Figure 1. MMD curves of (A) unaged paper samples with different lignin contents and (B–O) papers containing different
amounts of lignin aged in dry and humid atmospheres, DRY and WET, respectively.

For the quantitative comparison of the trends, DPs were derived from the weight-
averaged molar masses of cellulose, determined by SEC (Figure 2A,B). The DP values for
the unaged samples are different among the samples because the raw wood material was
subjected to different chemical treatments.

Depolymerisation largely occurred in the case of the samples, which were aged indepen-
dently in the presence of water vapour in the lignin (Figure 2B). Accordingly, for the samples
aged in dry air, the DP value did not fall below 1000 in any case (Figure 2A). This highlights
the role of water in the depolymerisation of cellulose, i.e., water is a medium for protons
during acidic hydrolysis (H3O+).
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(A) dry atmosphere and (B) humid atmosphere.

Because the initial DPs differed significantly among the samples, all the DP values ob-
tained for the aged samples (after 48 and 90 days of ageing in dry and humid atmospheres)
were normalised by dividing them by their corresponding initial DP values. Thus, the
changes were expressed as percentage decreases from their initial values (Table 1).

Table 1. Decrease in DP values after 48 and 90 days of ageing.

Percentage Fall of DP upon Ageing

Kappa Number
[–]

After 48 Days After 90 Days

DRY WET DRY WET

19 21.35 58.30 36.28 73.09
24 30.49 71.60 46.66 77.74
30 17.70 68.45 44.35 77.91
47 36.36 75.68 42.29 81.48
64 28.80 67.58 40.24 72.96
77 23.40 58.30 36.23 70.39
90 12.76 44.11 24.22 62.27

The changes in DP during ageing in a chamber, both with dry air and controlled RH,
may indicate a slow cellulose depolymerisation process for the samples with high Kappa
numbers considering the percentage loss in the initial DP after 90 days of ageing.

Further, an increased lignin content could protect cellulose from depolymerisation,
especially in a humid atmosphere. Considering that water molecules could be sources of
radicals, we hypothesised that the polyphenols present in lignin may have captured the
radicals and, therefore, reduced the number of glycosidic bond breakages in cellulose.

3.2. Impact of Accelerated Ageing on Cellulose and the Lignin Oxidation Process: DRIFT

The DRIFT results, obtained for the lignin and paper samples, are presented in
Figure 3A–P. The interpretation of the lignin spectrum (Figure 3A) was complicated because
of the high noise level. However, a broad scope in the spectral range of 1550–1800 cm−1

with a maximum at ~1600 cm−1 was well distinguished. This maximum could be assigned
to the lignin aromatic ring vibrations and C=O stretching vibrations [38]. For the paper
samples, as the Kappa number increased (and thus the lignin content), the intensity of the
band around 1598 cm−1 evolved (Figure 3B). Therefore, the intensity of this band reflected
the relative lignin content, as expected when comparing the different paper samples with
various lignin concentrations.
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Regarding the aged samples (Figure 3C–P), the gradual evolution of the new bonds
were observed at ca. 1734 cm−1 and ca. 1661 cm−1. They are assignable to the lignin
and hemicellulose components, e.g., the phenolic alcohols (coniferyl, sinapyl, p-coumaryl
alcohols) and their degradation products (quinone derivatives). The intensities of those two
bands (expressed as standardised absorbance) increased with increasing Kappa numbers.
Notably, a difference in those band evolutions was observed, under the ageing conditions.
The spectra of the paper samples aged under “DRY” conditions displayed bands with
similar shapes after 48 and 90 days of ageing. Moreover, for the samples, aged in a “WET”
atmosphere, significant broadening and growth in the intensity of the band at 1734 cm−1

were observed. Thus, it could be concluded that the rate of cellulose/lignin oxidation was
slower in the absence of water. Generally, the evolution of the 1734 and ca. 1661 cm−1 bands
was more pronounced when the samples were aged in the climatic chamber under “WET”
conditions. Additionally, for the samples aged in the humid atmosphere, a shift in the band
at 1600 cm−1 towards higher wavenumbers as the ageing time increased was more evident
than in corresponding samples aged in the absence of water vapour. This shift is attributable
to the –C=O stretching vibrations of aldehydes (coniferylaldehyde, sinapylaldehyde, and
coumarylaldehyde) and ketones resulting from the oxidative degradation of lignin. It could
be further deduced that the role of water in the oxidative degradation mechanism was at
least two-fold: it acted as a transport medium for both protons in acidic hydrolysis (H3O+)
and radicals in oxidation (OH•), and it acted as a plasticiser, which facilitated the access of
cellulose and lignin to degradation agents.

3.3. Impact of Accelerated Ageing on the Cellulose Oxidation Process: UV–Vis Analysis

UV–Vis reflectance spectroscopy enabled the observation of the formation of the
carbonyl groups. However, it was not employed on a larger scale. The limitation of the
analysis is the low-characteristic spectra of the non-oxidised and oxidised papers, which
lacked clearly formed bonds.

Three major bands were distinguished in the UV–Vis reflectance spectra of the unaged
paper samples: 245, 280, and 335 nm. The band at ca. 240 nm was assigned to the
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hexenuronic acid groups [39]. The most intense band, at 280 nm, was assigned to lignin
in the pulp [40], and the band at 335 nm could be assigned to the α-carbonyl structures
and some conjugated structures. This band could also be attributed to the presence
of coniferylaldehyde, which is a product of coniferyl alcohol oxidation and is a major
contributor to the colour of lignin. Its absorption maximum is at 350 nm of the UV spectra
of chemically treated and aged paper samples [41].

Observation of the OIUV oxidation coefficient (Figure 4) indicated that the most
changes occur in a series of samples aged in a humid atmosphere. Further, an evident
growth in the OIUV index was observed after 48 days and was still noticeable after 90 days.
Regarding the samples aged in the dry atmosphere, a significant change in the oxidation
index was noticed only after 90 days of ageing. This observation is consistent with the
DRIFT results, which also indicated more evident formations of oxidation products during
ageing in the humid atmosphere. No particular trend was observed when evaluating
correlation of the lignin content with the extent of oxidation.
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3.4. Impact of Accelerated Ageing on the Crystallinity of Cellulose

Diffraction patterns with fitted Gauss functions for the model cellulose sample are
presented in Figure 5.
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Typical cellulose, I, diffraction pattern also exhibited six characteristic reflections,
which were assigned to the cellulose crystalline regions [42–44]. The diffractogram of
the model sample of the microcrystalline cellulose powder exhibited all the characteristic
reflections, namely (101), (101̄), (021), (002), (040), of the cellulose structure, I, described in
the literature [44]. In addition to the crystal reflections, the measured diffraction pattern
was also affected by the amorphous phase of cellulose, which generated a broad peak
with a maximum, at about 21◦ and a half-width of about 5◦. The diffractograms of the
samples with high cellulose content differed from those of microcrystalline cellulose with a
more amorphous phase. The high concentration of lignin was manifested by obscuring the
reflex (021) and raising the local minimum, at about 18◦, relative to the background of the
diffractogram. The diffractograms of lignin were observed as wide plateaus between 12
and 25◦.

The determination of the crystallinity indexes required a comparison of the intensities
of reflection with a value of 2θ, corresponding to the crystalline and amorphous phases.
Two methods were employed to determine the crystallinity of the tested model paper
samples [42]:

• CIheight, calculated as the ratio of the peak height from the reflex (002) to the minimum
height between the reflections (002) and (101̄), is proportional to the amount of the
amorphous phase, obtained by the formula: CIheight = (I002− Iamorphous)/I002× 100%;

• CIdeconvolution, calculated as the percentage of the peak areas were derived from
the crystalline phase, (101), (101̄), (002), (040), on the total surface of all the fitted
Gaussian curves.

CIheight index was relatively easy to calculate, and this is probably the reason it is
widely employed in the literature. However, it demonstrated several limitations:

• This factor did not accurately reflect the amount of the amorphous phase that was
responsible for the formation of a wide peak with a maximum of about 21.9◦ while
the intensity of the minimum, at about 18.5◦, was employed to calculate CIheight. An
underestimation of the amount of amorphous phase is associated with the overlap of
the reflex, derived from the amorphous phase with the most intense peak, derived
from the crystalline phase (002) at about 22.6◦. As a result, the sensitivity of the
intensity of the measured Iamorphous to changes in the amount of the amorphous phase
was low and further weakened by the contribution of the peak (101̄) to the value
of Iamorphous. Accordingly, the CIheight index values, compared to other crystallinity
indexes, were not very accurate.

• The number of crystalline phases was calculated based on the intensity of the peak
(002): one of the four, observed on the diffractograms. In the case of the relative
differences in the intensities of the reflections from the walls, (101), (101̄), (002), (040),
this could be a source of error.

• The reflections on the diffractograms of the lignocellulose samples were characterised
by a large width, which changed with the progression of degradation. It also depended
on the size of the crystallites and may vary under different measuring conditions.
Therefore, the estimation of the amount of crystalline and amorphous phases in cellu-
lose should depend on the calculation of the peak areas derived from the individual
phase reflections and not on the comparison of the relative peak heights (expressed
as intensities).

The calculation of the CIdeconvolution index required an adjustment to the experimen-
tally obtained diffractograms of several Gauss functions. One Gauss function and an
additional one, simulating the reflex originating from the amorphous phase, were fitted
for each considered crystal reflex. The CIdeconvolution index was expressed as a percentage
of the surface of the crystal reflections concerning the surface of all the reflections. In the
literature, five Gauss functions are fitted to calculate CIdeconvolution (for phase reflections:
(101), (101̄), amorphous (021), (002), (040)) or six ((101), (101̄), amorphous (040), (002), (040)
and (021), at 2θ 21◦) [42].
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The deconvolution of the diffractograms, measured for the studied paper samples
with variable lignin contents, was performed employing five Gauss functions (Figure 5).
Of note, for the papers containing lignin, the calculated crystallinity indexes would be
subject to an error related to the presence of lignin. Hence, it must be assumed that the
underestimation of the degree of crystallinity might be greater with an increase in lignin
content. Both the lignin and amorphous cellulose phases afforded a nonspecific signal,
typical of the amorphous phase and, thus, the determined CIdeconvolution values would be
most likely underestimated.

Since the XRD measurements were time-consuming, only one XRD measurement
was performed per sample. Considering the uncertainty of the measurement, paper
heterogeneity (estimated at a low level) and the lack of a distinguished direction of fibre
arrangement relative to the incident X-ray beam, the crystallinity indexes determined
by the deconvolution method afforded a relative standard deviation of <1%. Notably,
the values of the crystallinity indexes were underestimated because of the presence of
amorphous lignin. Although the CIdeconvolution index is more accurate than CIheight, it did
not allow the determination of the absolute contents of the crystalline and amorphous
phases of cellulose. However, it was possible to employ it for tracking of the trends of
changes in crystallinity.

The values of the crystallinity coefficients for the samples containing lignin (Figure 6)
reflected the content of the cellulose crystalline phase in the paper sample but not in the
total cellulose mass because the signal from the amorphous phase of cellulose and lignin
was indistinguishable.
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Recrystallisation is a physical degradation process that could be accelerated by both
oxidation and hydrolysis. Figure 6 presents the values of the crystallinity coefficients as a
function of ageing time, determined for the unaged and aged samples after 48 and 90 days.

For most of these samples, a slight increase in the CIdeconvolution value could be ob-
served. The changes in the values of the crystallinity index with ageing time are irregular,
which may indicate that the random error of the CIdeconvolution calculation method was
comparable to the observed changes. Noticeable changes in crystallinity were observed for
the series of samples aged in a humid atmosphere, while the changes were slightly lower
for the samples aged in a dry atmosphere. A ventilated atmosphere with RH, oscillating
around 59%, could facilitate the repeated penetration and desorption of moisture, thereby
causing permanent changes in cellulose crystallinity. Consequently, when ageing in a dry
atmosphere, this process was very slow because of the stabilisation of the atmosphere and
the minimum water content in the environment. Additionally, water is a plasticiser, which
changes the geometry of hydrogen bonds, thus causing the approximation and formation
of new hydrogen bonds between macrofibrils.
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Comparing the relative changes in the crystallinity indexes (Figure 7), no specific
dependence on the lignin content or ageing conditions was observed. Generally, it was
observed that a greater change in the CI values was observed after the ageing of samples
with a lignin content of between 9.6% to 11.5% (samples with Kappa numbers 64 and
77, respectively). The samples with lower lignin contents underwent moderate (samples
with Kappa numbers 30 and 47) changes in their crystallinity. Regarding the samples with
the lowest and highest lignin content (2.9%; Kappa number 19; 13.5%; Kappa number 90,
respectively), crystallinity change could depend on the ageing conditions. In a dry atmo-
sphere, the samples with low lignin contents exhibited only 0.27% change in crystallinity,
while in humid air, an almost 10-fold increase in the relative change of CI was observed
(Figure 7A,B).
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Regarding the samples with the highest Kappa number, we observed a trend, which
was a reverse of that observed in the samples with Kappa number 19. When the sample
was subjected to dry air conditions, the crystallinity value dropped by ~3.13% after 90 days
of ageing. However, in the case of ageing in the presence of water vapour, this change was
significantly lower and was equal to ~0.51%.

Both hydrolysis and oxidation occurred mainly in the amorphous areas of cellulose
considering the changes in the crystallinity index values of a series of samples aged in
humid and dry atmospheres (Figure 7). For the sample with the lowest Kappa number, the
crystallinity index increased in both ageing series, while for the sample with Kappa number
90, this increase was only observed for the series with ageing in a humid atmosphere. Thus,
it could be assumed that the rate of hydrolysis decreased when the crystallinity index
increased, and vice versa. When the percentage of the crystalline phase decreased, the
course of the hydrolysis process became likelier. This corresponds to the trends obtained
by SEC for samples aged in humid air (Figure 2, Table 1).

4. Conclusions

This work aimed at resolving two issues: First, it studied how humidity in the air
affected the cellulose structure in papers containing lignin and cellulose. Secondly, it
assessed the extent to which the instrumental methods were applicable and beneficial to
study of the aforementioned challenges and for which lignin contents.

Employing chromatographic, spectroscopic, and diffraction techniques, it was possible
to tackle the structural changes in cellulose and lignin caused by artificial ageing in dry
and humid atmospheres. Significant changes in the cellulose chain lengths were observed,
and these changes were associated with humidity during ageing. The formation of new
functional groups was confirmed using two spectroscopic techniques, DRIFT and UV–
Vis. For lignocellulosic materials, DRIFT could also deliver complex information about
the degradation products of lignin. The SEC technique demonstrated the role of lignin
as a protective shield for cellulose in the paper. Additionally, the XRD technique was
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employed to observe the influence of water vapour on the crystalline structure of cellulose
and its possible implications on other degradation pathways. Overall, it was observed that
degradation processes are faster in humid atmosphere possibly because of the protons and
OH• radicals supplied by water molecules. Interestingly, a high concentration of lignin in
the paper could suppress some of the degradation pathways because of the polyphenols,
which acted as radical scavengers.

Regarding the significance of the above techniques for testing lignocellulosic paper ma-
terials with different Kappa numbers, we demonstrated that paper with a broad spectrum
of lignin content could be studied using non-invasive (UV–Vis, X-ray) or nondestructive
(UV–Vis, X-ray, DRIFT) methods. Further, to the best of our knowledge, this is one of the
few works that has utilised IR spectroscopy to study lignin and lignocellulosic materials.
The SEC technique involves destruction of the sample. However, because of the small
amount of sample required, SEC could be considered as a microdestructive technique.
More significantly, the SEC technique was the most appropriate method to study DP of
lignocellulose materials because it afforded information on the whole molar mass distribu-
tions during the processes leading to cellulose depolymerisation and was not limited to
pure cellulose samples. Importantly, all the techniques afforded complementary informa-
tion and availed a comprehensive picture of the structural changes in lignocellulosic paper
materials for a broad range of Kappa numbers.
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18. Łojewska, J.; Lubańska, A.; Łojewski, T.; Miśkowiec, P.; Proniewicz, L.M. Kinetic approach to degradation of paper. In situ FTIR
transmission studies on hydrolysis and oxidation. e-Preserv. Sci. 2005, 2, 1–12.
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25. Łojewski, T.; Miśkowiec, P.; Missori, M.; Lubańska, A.; Łojewska, J. FTIR and UV/vis as methods for evaluation of oxidative
degradation of model paper: DFT approach for carbonyl vibrations. Carbohydr. Polym. 2010, 82, 370–375. [CrossRef]

26. Baty, J.W.; Maitland, C.L.; Minter, W.; Hubbe, M.A.; Jordan-Mowery, S.K. Deacidification for the coservation and preservation of
paper-based works: A review. BioResources 2010, 5, 1955–2023. [CrossRef]
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35. Łojewski, T.; Zięba, K.; Kołodziej, A.; Łojewska, J. Following cellulose depolymerization in paper: Comparison of size exclusion
chromatography techniques. Cellulose 2011, 18, 1349–1363. [CrossRef]
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