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Abstract: A transparent polyamide, poly(4,4′-aminocyclohexyl methylene dodecanedicarboxylamide)
(PAPACM12), was studied and characterized by in situ wide-angle X-ray diffraction (WAXD) to
establish the relationship between its crystallization behavior, crystalline form transition under
external fields, and macroscopic properties. During the heating process, cold crystallization occurred
and increased, and there was no form transition below the melting point. During the isothermal
process, PAPACM12 exhibited the same crystalline structure as that during the heating process.
The crystalline structure of PAPACM12 was attributed to α-form crystal, which is the stable form,
according to the WAXD diffraction peaks of the conventional AABB-type polyamides. During
stretching deformation, the crystal transition from α-form to γ-form and strain-induced crystallization
were observed to contribute to the PAPACM12 with higher breaking strength and elongation. This
study firstly determine the crystalline structure of transparent polyamides, and then the controlled
strain-induced crystallization and transformation are demonstrated to be effective preparation
methods for polyamides with high properties.

Keywords: transparent polyamide; cold crystallization; crystallization form transition; strain-
induced crystallization; extension

1. Introduction

Polyamides, with amide groups in the chain backbone to form inter- and intra-molecular
hydrogen bonds, have high crystallinity, thermal, and mechanical properties [1–5]. Their
unique performances make polyamides one of the five major engineering thermoplastics
and enable them to be widely used in the textile, electronics, aerospace, automotive, and
medical device industries, as well as other fields [6,7]. With the demand for some special
applications, an increasing number of polyamide varieties are appearing [8,9]. The transpar-
ent polyamide is a novel kind of polyamide and is different from conventional, commercial
ones, e.g., PA6 and PA66, in which the alicyclic or aromatic structures increase steric hin-
drance and reduce the density of hydrogen bonds and the crystallization ability [10,11].
Transparent polyamides are usually in the amorphous state or contain microcrystals whose
size is smaller than the wavelength of visible light. Consequently, transparent polyamides
show considerably high transparency, high mechanical strength, good rigidity, superior
thermal stability, and good chemical resistance [12–14]. They are widely used in optical
instruments, glasses, aerospace, and other fields. The microstructures determine the macro-
scopic properties. Therefore, it is necessary to study the microstructure of the transparent
polyamide in order to improve its use in more fields.
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Polyamides can be divided into AB and AABB types from the perspective of the
repeating units or the monomers [15,16]. Among them, the AB-type polyamide is poly-
merized by either lactam or ω-amino acids, and the AABB-type polyamide is obtained
by polymerization of dehydration condensation of dicarboxylic and diamine acid [17].
Transparent polyamides belong to AABB-type polyamides. Regarding the study of the
microstructure of ABBB-type polyamides, as early as 1947, Bunn et al. [18] reported for the
first time that the crystal phase of the α-form is the triclinic structure of PA66 and PA610
and found that in the X-ray diffraction (XRD) patterns, the α-form crystal has two charac-
teristic diffraction peaks, denoted as (100) and (010)/(110) lattices, respectively. Among
them, the d-space of (100) lattice in the diffraction pattern is 0.44 nm, which represents
the space between adjacent chains within a hydrogen-bonded sheet. The overlap of the
diffraction peaks of planes (010) and (110) with two close d-space values is about 0.37 nm.
In 1959, Kinoshita [19] proposed the γ-form crystal of polyamides, which is generally
formed under high temperatures and stretching fields. The structure of a γ-form crystal is a
pseudo-hexagonal structure. In the X-ray diffraction pattern, there is only one characteristic
diffraction peak.

Numerous studies also discussed the microstructure evolution of AABB-type polyamides
under external fields. Brill [20] found that during the heating process of PA66, the α-
form crystal and γ-form crystal could undergo a reversible transformation, which was
defined as the Brill transition, and the corresponding temperature of transformation was
defined as the Brill transition temperature (TB). Atkins et al. [2,21,22] studied the nature of
crystal transition of AABB-type polyamides from the perspective of chain structures by
transmission electron microscopy (TEM), XRD, and thermal analysis. They then proposed
that the crystal transition only involves local atomic cooperative motion perpendicular to
the chain axis and that the TB is therefore independent of the length of the chain. Tashiro
et al. [23] thoroughly studied the crystal transition by the infrared spectra of PA1010 under
the temperature field and also observed a sequence of characteristic peaks related to crystal
transition. By using variable temperature wide-angle X-ray diffraction (WAXD) and Fourier
transformation infrared spectroscopy (FTIR), Yan et al. [24–26] studied crystal transition
of a series of AABB-type polyamides, such as PA811, PA1011, PA1220, and PA1012, and
determined the TB of each polyamide. It was observed that a sequence of FTIR bands could
be corresponding to different crystal forms. Moreover, many existing studies have shown
crystal transition under the stretching field. Mo et al. [27] observed crystal transition in
PA1212 under stretching by WAXD and confirmed that the stretching field plays a vital role
in driving the transition from the α-form to γ-form crystal. Wang et al. [28] established the
correlation between the microstructure and mechanical response of PA1012 by studying
the microstructure evolution under uniaxial tensile deformation.

In recent years, the crystalline structure and crystal transition behavior of conven-
tional polyamides have been widely studied [29–31], but the microstructure of transparent
polyamides has not been sufficiently studied in the current literature. Referring to our
previous research on PA1012, poly(4,4′-aminocyclohexyl methylene dodecanedicarboxy-
lamide) (PAPACM12) with the same dicarboxylic acid structure (dodecanedioic acid) was
selected for study in this paper. The crystallization behavior and form transition during
the heating, isothermal, and stretching process were systematically studied by in situ
wide-angle X-ray diffraction (WAXD) and modulated differential scanning calorimetry
(MDSC). The study of microstructure and microstructure evolution under external fields
of transparent polyamides contributes to the provision of a theoretical foundation for the
development and application of such polyamides.

2. Materials and Methods
2.1. Materials

PAPACM12 was purchased from Evonik. The repeating unit of PAPACM12 according
to its official technical datasheet is displayed in Figure 1. The thermal properties of
PAPACM12 are shown in Table 1.
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Figure 1. The repeating unit of poly(4,4′-aminocyclohexyl methylene dodecanedicarboxylamide)
(PAPACM12).

Table 1. The thermal properties of PAPACM12.

Polyamide
The Fastest Mass Loss

Temperature a

Tpeak/◦C

Glass Transition
Temperature b

Tg/◦C

Cold Crystallization
Temperature b

Tcc/◦C

Melting Temperature b

Tm/◦C

PAPACM12 482.1 136.4 174.2 244.7
a Tpeak is determined by thermal gravimetric analysis (TGA, PE Pyris 1) (Figure S1a, Supplementary Information). b Tg, Tcc, and Tm are
determined by differential scanning calorimetry (DSC, TA Q2000) (Figure S1b, Supplementary Information).

2.2. Preparation of Samples

The sample was dried in a vacuum oven at 100 ◦C for 12 h, melted, and then pressed
under 60 bar and 255 ◦C for 3 min in a mold with a thickness of 0.3 mm to prepare
for tensile tests by cutting it into dumbbell-shaped strips. Films with the dimensions of
25 × 3 × 0.3 mm were prepared for in situ X-ray diffraction measurements.

2.3. In Situ X-ray Diffraction Measurements

In situ X-ray diffraction measurements were performed at the Shanghai Synchrotron
Radiation Facility (SSRF) with a radiation wavelength of 0.124 nm. A MAR CCD detector in
the beamline BL14B1 with a resolution of 2048 × 2048 pixels was used to collect diffraction
patterns. The distances of 187.2 and 1893.5 mm were used in the sample to detect space for
wide-angle X-ray diffraction (WAXD) and small angle X-ray scatting (SAXS), respectively.
All of the X-ray images were corrected for background scattering. Fit2D software was used
to convert the two-dimensional (2D) X-ray patterns into one-dimensional (1D) curves.

Two procedures were used in X-ray diffractions measurements. The procedure under
the stretching field: The stretching field was chosen to detect in situ microstructure evo-
lution. Using the stretching speed of 20 µm/s in the Linkam TST350 (Houston, TX, USA)
stretch stage, each exposure time was 20 s for both WAXD and SAXS measurements. The
procedure under the temperature field: the film (thickness of about 1 mm) was wrapped
with aluminum foil and isothermal for 5 min at 300 ◦C to eliminate thermal history; then,
the film was cooled down to room temperature. The WAXD data were collected during the
second heating process from room temperature to 300 ◦C in steps of 2 ◦C.

2.4. Tensile Testing

The samples with a dumbbell shape (25 × 3 × 0.3 mm) were tested by Instron 3365
(Norwood, MA, USA), under 23 ◦C and 30% relative humidity with a crosshead speed
of 50 mm/min to obtain the tensile properties. All measurements were repeated at least
7 times.

2.5. Thermal Properties of Tensile Samples

The thermal properties were obtained by DSC and MDSC tests. Four types of samples
were selected for testing. They were the pellets without being processed; the center position
of the dumbbell-shaped strips without tensile strength; the center position of the samples
that were stretched to the strain of 120%; and the center position of the samples that were
stretched to the strain of 250% and were marked as original, undrawn, strain at 120%,
and strain at 250%, respectively. The DSC program was isothermal for 5 min at 300 ◦C to
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eliminate the thermal history, then slowly cooled to 50 ◦C at a rate of 3 ◦C/min, and finally
increased to 300 ◦C at a rate of 3 ◦C/min. The program of MDSC tests was the same as that
of the DSC tests, except the rate was 10 ◦C/min, the modulation amplitude was ±1.79 ◦C,
and the period was 60 s.

3. Results and Discussion
3.1. Cold Crystallization in Heating Process

The cold crystallization and melting processes of PAPACM12 were studied in our
previous work [11]. The results of DSC show that cold crystallization occurs in the heating
process and continues until the melting process begins. Moreover, the area of cold crys-
tallization peak decreases as the heating rate decreases, and when the heating rate is less
than 1 ◦C/min, the cold crystallization peak becomes less obvious. During the cooling
process, the crystallization behavior of PAPACM12 is not obvious, and no crystallization
peak appears.

The in situ WAXD could visually observe and record the changes in the aggregation
structure of PAPACM12 during the heating process and determine the temperature range in
which the change occurred. First, the cold crystallization temperature (Tcc) was determined
by DSC. According to the second heating curve of the DSC, the Tcc was 163.5 ◦C. The same
cooling and heating procedure as that in the DSC test was carried out with the in situ
WAXD. The 1D-integrated WAXD curves of PAPACM12 during the cooling process are
shown in Figure S2 (Supplementary Information). After eliminated the thermal history at
300 ◦C, there was only a broad diffraction peak during the cooling process, and the peak
position shifted to a large angle with the temperature decreases. In accordance with the
previous research on PA1012 [32–34], the 2θ of diffraction peak generated by the amorphous
state was slightly less than that of the γ-form crystal. We observed that with the decrease in
temperature, the diffraction peak at about 18◦ moved towards a higher degree, and a new
diffraction peak at ca. 9◦ appeared, which may be related to the formation of the γ-form
crystal. In order to accurately track the cold crystallization behavior of PAPACM12 in the
heating process, the sample undergoing the same heat treatment as that in the DSC test
was characterized by in situ WAXD. The 2D WAXD patterns (Figure S3, Supplementary
Information) and the corresponding 1D-integrated curves (Figure 2) showed a diffuse ring
at a low temperature without diffraction peaks, which resulted from the amorphous state in
PAPACM12 in these states. When the temperature reached 160 ◦C, the diffuse ring turned
into clear diffraction rings, which means that the ordered structure was formed by cold
crystallization. However, there is no crystalline structure information about transparent
polyamides reported to date. Based on the combination of our previous studies on the
crystalline structure of the long-chain polyamide (LCPA) and literature on conventional
polyamides [35–38], the crystal form of PAPACM12 formed by cold crystallization could
be determined to be the α-form crystal of the AABB-type polyamide. Taking the 1D curve
at 164 ◦C as the reference, the 2θs of the diffraction peaks are at 13.9◦ and 15.3◦, and the
corresponding d-spaces are 0.51 and 0.46 nm, respectively, which is consistent with the
conventional AABB-type polyamide. They are classified as the (100) and (010/110) lattices,
respectively. For the conventional AABB-type polyamide, the d-space of the (100) lattice
represents the distance between adjacent molecular chains within the hydrogen-bonded
sheet and is 0.44 nm, and the d-space of the (010/110) lattice is 0.37 nm, which denotes
the distance between adjacent hydrogen bond surfaces. The d-spaces of the corresponding
diffraction peaks of PAPACM12 are 0.07 and 0.09 nm larger than those of the conventional
AABB-type polyamide, respectively. This is because the repeating unit structure of PA-
PACM12 contains large alicyclic rings. Even if the rings adapt to the configuration of the
boat or chair, the d-space should be slightly larger than that of the AABB-type polyamide
with only aliphatic chains. In addition, the other two diffraction peaks (3.2◦ and 6.5◦)
also significantly changed with the increase in temperature, as shown in Figure 2. Table 2
shown the corresponding lattice assignment and d-space. The corresponding lattices are
assigned to (001) and (002), respectively, and are both perpendicular to the c-axis. The corre-
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sponding d-space between the (001) and (002) lattices doubled in size. As the temperature
approached Tm, the diffraction peaks associated with the α-form crystal disappeared; that
is, the crystalline structure formed by cold crystallization melted, and the macromolecular
chains returned to the random state. However, during the heating process of PAPACM12,
no crystal transition similar to conventional the AABB-type polyamide was observed, and
only a similar α-form crystal was obtained.
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Figure 2. 1D-integrated wide-angle X-ray diffraction (WAXD) curves of PAPACM12 in the heat-
ing process.

Table 2. The position of diffraction peak and corresponding d-space in 1D WAXD curves under 164 ◦C.

2θ (◦) d-Space/nm Assigned Lattice Plane

3.2 2.18 (001)
6.5 1.09 (002)

13.9 0.51 (100)
15.3 0.46 (010)/(110)

3.2. Isothermal Crystallization

The crystallization rate of PAPACM12 is so slow that the crystallization behavior
cannot be effectively observed during the conventional nonisothermal cooling process.
When PAPACM12 experienced strong directional processing, such as injection molding and
melt spinning, there was a very small exothermic peak in DSC testing near 190 ◦C; therefore,
the Tc of PAPACM12 is 190 ◦C. The isothermal crystallization behavior of PAPACM12 was
also studied with in situ WAXD. The 1D-integrated WAXD curves are shown in Figure 3.
PAPACM12 was isothermal at 300 ◦C for 5 min to eliminate the thermal history and then
cooled to 190 ◦C. Consequently, there was only one wide diffraction peak on the 1D curve,
which means that there was mainly an amorphous structure in the PAPACM12. With
the increase in isothermal time, new diffraction peaks appeared, which is similar to the
cold crystallization behavior mentioned above. The corresponding lattice assignments
and d-spaces of each diffraction peak are listed in Table 3. Similar to cold crystallization,
a weak shoulder diffraction appeared near 11.5◦, which has not yet been assigned to the
corresponding lattices.
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Figure 3. 1D-integrated WAXD profiles of PAPACM12 during isothermal crystallization process
under 190 ◦C.

Table 3. The position of the diffraction peak and corresponding d-space in 1D WAXD curves at
190 ◦C for 60 min.

2θ (◦) d-Space/nm Assigned Lattice

6.5 1.09 (002)
13.7 0.52 (100)
15.2 0.47 (010)/(110)

Above all, during the heating process and the isothermal process, the α-form crystal
was dominant, but crystal transition was not observed.

3.3. Crystal Form Transition Induced by Strain

The microstructure evolution of the PAPACM12 system under heating/cooling treat-
ment was also studied. However, it is well known that materials may be applied not only
in the temperature field but also in the stretching field. In general, extension contributes to
the orientation of macromolecular chains, but it is worth investigating whether the crystal
transition occurs in PAPACM12 as in conventional AABB-type polyamides. Therefore, the
microstructure evolution of PAPACM12 in the stretching field were characterized by in
situ WAXD.

Figure 4 shown the engineering stress–strain curve of PAPACM12. According to the
stress–strain relationship, the curve should be roughly divided into three parts, namely,
the elastic stage (Region I); the necking (Region II), where the strain ranges from 25% to
175%; and the strain-hardening stage (Region III), with the strain in the range of from 200%
to fracture strain. The untreated pellets and the samples under different strains (indicated
by green dots in Figure 4) were selected for the MDSC test.
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In MDSC tests, the reversible signal conveys information related to the change in heat
capacity, such as crystal melting, glass transition, and solidification. The nonreversible ther-
mal flow is induced by thermodynamics, such as crystallization, decomposition, volatiliza-
tion, molecular relaxation, and chemical reaction. The MDSC test results for the four
representative samples are shown in Figures 5 and 6. Figure 5a,b show the curves of the
reversible signal and the nonreversible signal during the first heating scans. It can be
observed from Figure 5a that the Tg of the dumbbell strip gradually increased with the
stretching strain but was always lower than that of the original pellet. The melting enthalpy
showed the same result; that is, it increased with the increase in strain, which was due to
strain-induced crystallization [38]. In addition, the melting peak changed from a single
peak to double melting peaks. For the sample with a strain of 120%, the melting peak at
the high temperature accounted for a greater proportion, while the melting peak at the
low temperature dominated in the sample with a strain of 250%. This indicates that the
crystalline structure was fractured into smaller crystalline grain in large-strain deformation.
As shown in Figure 5b, the cold crystallization temperature decreased with the increase in
strain. The cold crystallization temperature of the original pellet was about 175 ◦C, while
the dumbbell strips generated by injection molding dropped to 145 ◦C. This may be due to
the macromolecular chains with a certain degree of orientation behavior during injection
molding. In addition, the degree of orientation increased with the increase in strain, which
led to the further decrease in the cold crystallization temperature. Figure 6 shows the curves
of the reversible signal and the nonreversible signal during cooling scans and the second
heating scans. After annealed under 300 ◦C for 5 min to eliminate thermal history, the four
samples all returned to the same state with the consistent thermodynamic properties.
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2D WAXD patterns of PAPACM12 under stretching are shown in Figure 7. It can be
seen that the original diffraction pattern contains a number of diffraction circulars. With
the increase in strain, the diffraction pattern changed from circular to elliptical rings and
finally evolved into two large arcs. This process is similar to the microstructure evolution
of the conventional AABB polyamide during stretching. The Fit2D software was used to
integrate 2D WAXD patterns of PAPACM12 in the meridional direction, and the range of
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the integrated angle was 45~135◦. The corresponding 1D-integrated WAXD curves are
exhibited in Figure 8, which shows that PAPACM12 in the initial state has two strong
diffraction peaks, which proves that there is a certain ordered structure in the sample
for injection molding. The d-spaces of the two diffraction peaks are 0.50 and 0.46 nm,
respectively. According to the previous discussion, they are denoted as (100) and (010/110)
lattices of the α-form crystal. With the increase in strain, the (100) lattice and (010/110)
lattice gradually converge and eventually merge into a wider single diffraction peak, which
could prove the formation of the γ-form crystal. The above crystal transition was observed
in the 2D WAXD diffraction images in which the two diffraction rings gradually merge
into a single diffraction ring with the increase in strain, and the crystal transition observed
in the PAPACM12 system is consistent with the previous research on the AABB-type
polyamide [27,28].
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4. Conclusions

In this study, the crystalline structure and form transition of transparent polyamides
during heating, isothermal, and stretching processes were sufficiently studied by in situ
WAXD and MDSC. Under the heating process, cold crystallization was observed, and the
diffraction peaks were similar to those of the α-form crystal of the conventional AABB-type
polyamides. In addition, no crystal transition occurred during the entire heating process.
During the isothermal process, PAPACM12 exhibited the same crystalline behavior as that
during the heating process, which means that the formation of the α-form crystal forms
favorably under different thermal conditions. Moreover, the crystalline transition from the
α-form to the γ-form was observed under external deformation. This study determined the
crystalline behavior and form transition of transparent polyamides and contributed to the
provision of a theoretical foundation for the development and application of polyamides
with high properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13071028/s1, Figure S1: (a) The thermal gravity analysis (TGA) curves of PAPACM12,
inset: the derivative thermal analysis (DTA) curves, (b) cooling scans, and secondary heating scans of
PAPACM12, Figure S2: 1D-integrated WAXD profiles in the meridional direction of PAPACM12 upon
cooling. Note: WAXD tests were carried out on a Xeuss 2.0 HR SAXS/WAXS system (Xenocs SA,
France) with Ni-filtered Cu Kα radiation (λ = 0.154 nm), Figure S3: 2D WAXD images of PAPACM12
during the heating process with temperatures marked.
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