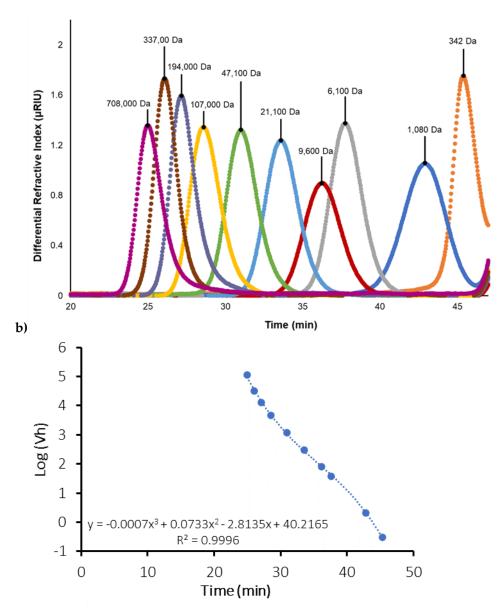
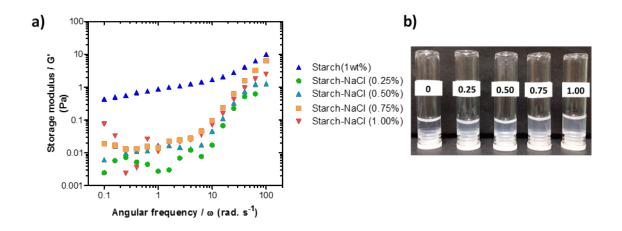
Electronic supplementary information (ESI)

Monovalent salt and pH-induced gelation of oxidised cellulose nanofibrils and starch networks: combining rheology and small-angle X-ray scattering

Kazi M. Zakir Hossain^a, Vincenzo Calabrese^a, Marcelo A. da Silva^a, Saffron J. Bryant^a, Julien Schmitt^{a†}, Jennifer H. Ahn-Jarvis^b, Frederick J. Warren^b, Yaroslav Z. Khimyak^c, Janet L. Scott^{ad}, and Karen J. Edler^{ad*}


^aDepartment of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK

^bFood Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK, NR4 7UQ


^cSchool of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK

^dCentre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK

⁺current address: LSFC - Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR 3080 CNRS / Saint-Gobain CREE, Saint-Gobain Research Provence, 550 avenue Alphonse Jauffret, Cavaillon, France *Corresponding author: K.Edler@bath.ac.uk

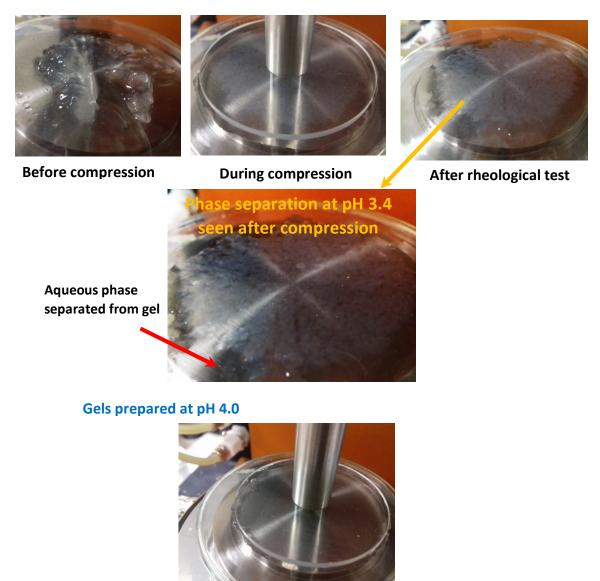
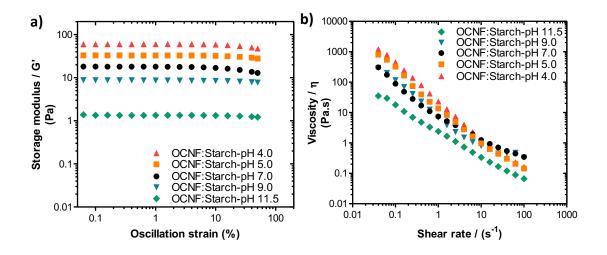


Figure S1: a) Elution profiles of pullulan standards and **b)** standard curve obtained from the elution profile of pullulan standards.


Figure S2: a) Frequency sweep curves and b) photographs of the starch (1 wt%)/NaCl (0, 0.25, 0.5, 0.75 or 1 wt%) hydrogels.

Gels prepared at pH 3.4

After rheological test (stable gel)

Figure S3: Photographs show the phase separation of OCNF (1 wt%) hydrogels after rheological test produced at pH 3.4 (top) and no phase separation for the gels produced at pH 4.0 (bottom). Here, a 80 mm glass plate was used to visualise the gels physical properties during rheological tests.

Figure S4: a) amplitude sweeps, and b) shear flow curves of OCNF:Starch (1:1 wt%) hydrogels made at various pH conditions (4, 5, 7, 9, 11.5).

Table S1: The parameters obtained by fitting of SAXS data via rigid and flexible elliptical cylinder models. The length of the OCNF was fixed at 1600 Å based on the average length obtained via the TEM image analysis,²⁶ except for the OCNF(1%)-NaCl(1%) gel, where a longer length (4000 Å) was used to fit the experimental data. This apparent increase in length might be associated with the salt-induced (at higher concentration, 1%) longitudinally assembled fibres.

SLD (scattering length density) for cellulose: 13.5 x10⁻⁶ Å⁻²

SLD solvent: 9.5 x10⁻⁶ Å⁻²

	Model	Radius- minor (Å)	Axis ratio	Kuhn length (Å)	Length (Å)
OCNF(1%)	Rigid elliptical cylinder	11±2	4.8	-	1600
OCNF(1%)-0.25% NaCl	Rigid elliptical cylinder	11.5±2	5.2	-	1600
OCNF(1%)-0.50% NaCl	Flexible elliptical cylinder	11.8±2	5.0	600	1600
OCNF(1%)-1.00% NaCl	Flexible elliptical cylinder	12.5±2	5.0	400	4000
OCNF(1%)-pH 4.0	Rigid elliptical cylinder	11.5±2	4.8	-	1600
OCNF(1%)-pH 5.0	Rigid elliptical cylinder	11.5±2	4.8	-	1600
OCNF(1%)-pH 9.0	Rigid elliptical cylinder	11.5±2	4.5	-	1600
OCNF(1%)-pH 11.5	Rigid elliptical cylinder	12.5±2	4.5	-	1600