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Abstract: Devices and medicines used in the medical field must be sterile. Gamma (γ)-irradiation is
commonly used for sterilization because its high rate of penetration ensures uniform sterilization.
To confirm that hydrogel macrosphere carriers inherit excellent liquid absorption with no cytotoxicity
after γ-irradiation sterilization, investigating whether the physiochemical properties of hydrogel
macrospheres differ before and after sterilization is essential. The present study evaluated the
influence of the recommended 25-kGy γ-irradiation dose on the physicochemical characteristics
and in vitro release of bovine serum albumin and vancomycin (an antibiotic medication) from
alginate/gelatin with a w/w ratio of 1/4 crosslinking gel macrospheres. Gel macrosphere properties
before and after sterilization were compared according to optical and scanning electron microscopy,
infrared spectroscopy analysis, the amino residual crosslinking index, water absorption, degradation,
sterility assurance, in vitro drug release, antibacterial ability, and cytotoxicity. The crosslinking
index was almost unchanged; however, the γ-irradiation caused in situ hydrogel debonding and
recrosslinking, which led to a decrease in the water absorption and increase in the degradation
rate of the macrospheres after immersion. The release of gel macrospheres carrying vancomycin
did not significantly affect antibacterial ability or biocompatibility after γ-irradiation. Accordingly,
we conclude that γ-irradiation is suitable for macrospherical formulation.

Keywords: hydrogels; crosslinking; degradable; gamma (γ)-irradiation; sterilization; sterility assur-
ance; antibacterial ability

1. Introduction

Hydrogel scaffolds with three-dimensional (3D) structures are generally used to pro-
vide physical and structural support to cells because the composition of the hydrogel is
similar to an extracellular matrix. Hydrogels consisting of microspheres (in micrometers) or
macrospheres (in millimeters) possess highly interconnected pores, which are key to maxi-
mizing blood absorption to enhance cell growth [1–4]. Therefore, hydrogel microspheres
or macrospheres can potentially alter the function or performance of an implant in terms
of drug delivery, regenerative therapies in assisting native regeneration, and restorative
therapy toward repairing tissue or organs. Accordingly, biodegradable or absorbable hy-
drogel microspheres or macrospheres are the most widely used shapes in wound dressings,
tissue engineering, regenerative medicine, and drug delivery [5–7].
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Hydrogel scaffolds are mainly fabricated using physical and chemical crosslinking
methods [8,9]. Hydrogel scaffolds fabricated through physical crosslinking are mainly
formed due to the interaction of environmental conditions with hydrogen bonds and
proteins. The physical crosslinking process involves freeze-thawing [10,11], stereo complex
formation [12–14], ionic interaction [15–17], and hydrogen bonding [18]. The chemical
crosslinking process involves Schiff base formation [19], grafting [20,21], radical poly-
merization [22–24], the condensation reaction [25,26], and high-energy irradiation [27,28].
A chemically crosslinked hydrogel is mainly formed through free radical polymerization,
chemical reaction, energy irradiation, and catalytic enzyme crosslinking [29–31].

In biomedicine, the applied forms of hydrogel microspheres or macrospheres are solid,
semisolid, and liquid hydrogels. Solid hydrogels have a network structure of ions and
covalent crosslinks, and inorganic metals or microparticles or nanoparticles can be added to
hydrogel to increase its antibacterial ability and enhance its mechanical properties [32–35].
Due to their excellent adhesion properties, semisolid hydrogels are advantageous for
prolonging drug delivery and improving drug availability [36–38]. Liquid hydrogels
easily incorporate drugs, proteins, and cells and are suitable for wound dressing. Besides,
liquid hydrogels can be used to administer medication as a controlled release dose through
injection [39–42].

Medical equipment, devices, and drugs are most commonly sterilized using gamma
(γ)-irradiation. The main advantage of γ-irradiation is its high level of penetration and
isothermal characteristics, which can appropriately manage heat-sensitive materials in-
clude inorganic metal oxides, polymer blends, or liquid crystals. In addition, γ-irradiation
ensures uniform sterilization; thus, the risk of microbial contamination can be avoided
after products are packaged. Historically, the United States permitted a relatively high
sterility assurance level (SAL) of 10−3 for items such as surgical drapes and gowns. How-
ever, in recognition of certain Pharmacopeia requirements, as of 1998, the Conformitè
Europëenne (CE) marking requires a SAL of at least 10−6. Due to the number of microor-
ganisms and the drug resistance of materials, the most common γ-irradiation dose is
25 kGy [43–47].

Sterilization can be achieved by a combination of heat, chemicals, irradiation, high pres-
sure, and filtration like steam under pressure, dry heat, ultraviolet, radiation, gas vapor
sterilants, chlorine dioxide gas, etc. However, for products that cannot be sterilized in the
final containers, aseptic processing is necessary. Besides, natural polymers undergoing
radioactive sterilization may cause energy transfer, which leads to covalent bond breakage
and the generation of free radicals that can change the physicochemical properties and
activities of materials, thereby producing toxic substances. Therefore, confirming whether
toxic products are generated after newly developed medical products are sterilized using
γ-irradiation is essential. According to our preliminary test, the basic chemical structure
of hydrogels was changed greatly and showed less stability at radiation doses of 30 and
50 kGy than 25 kGy due to amide degradation by γ-irradiation.

The current study aimed to determine whether the use of 25 kGy of γ-irradiation
to sterilize a relatively large amount of hydrogel macrospheres on a millimeter-scale
prevents or reduces cytotoxicity or changes in physical properties in the context of hydrogel
macrospheres impregnated with protein or drugs.

2. Materials and Methods
2.1. Raw Materials

The raw materials used in this study were gelatin (80–100 Blooms [USP-NF, BP, Ph.
Eur.] pure, pharmaceutical grade, PANREAC, EU), alginic acid sodium salt from brown
algae (low viscosity, Sigma-Aldrich®, St Louis, MO, USA), N-(3-dimethylaminopropyl)-N’-
ethylcarbodiimide hydrochloride (EDC, molecular weight 191.70 g/mole, Sigma-Aldrich®,
St Louis, MO, USA), vancomycin (GENTLE PHARMA CO., LTD, Yunlin County, Taiwan),
and sucrose (KATAYAMA CHEMICAL CO., LTD, Osaka, Japan).
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2.2. Preparation of Gel Macrospheres

Porous spheres were fabricated through solvent casting and particulate leaching.
The preparation procedures were based on previously described methods [48,49]. A col-
loidal suspension was prepared after heating to 50 ◦C and mixing sodium alginate with
gelatin in a w/w ratio of 1:4 and suspending the mixture in 10 mL of deionized distilled
(DD) water. The colloidal suspension was also mixed with saccharose particles in a par-
ticle:colloid ratio of 4 g:1 mL, which formed more than 70% of the interconnected pores
within the gel macrospheres after particle leaching. After the colloid was evenly mixed,
an autoinjector was used to control the discharge rate and produced fixed-volume macro-
spheres. The fixed-volume particles containing colloidal were added dropwise into the
solution with cross-linkers of 1% EDC and 0.5% anhydrous calcium chloride at 4 ◦C. Subse-
quently, the gel macrospheres were removed and reimmersed in 1% EDC solution for 24 h
to complete the crosslinking reaction. The crosslinked gel macrospheres were soaked in DD
water for 3 h at 25 ◦C and were washed three times for leaching the particles. The macro-
spheres were then dried in a vacuum. Air pressure was reduced to approximately 26 µbar
through lyophilization for 3 d.

2.3. Bovine Serum Albumin and Vancomycin Loading as Well as Release Measures

The porous macrospheres were immersed separately in 0.1% bovine serum albumin
(BSA) and 25 mg/mL vancomycin solution to conduct protein and antibiotic loading
at 4 ◦C for 24 h. The solution was frozen at −20 ◦C for 3 h and dried in a vacuum
through lyophilization for 24 h to fabricate gel macrospheres with BSA and vancomycin.
The designated group of macrospheres with vancomycin after irradiation was HyS-Van25.

The release rates of the macrospheres with BSA and vancomycin were investigated
using DD water. BSA- and vancomycin-loaded macrospheres weighing 0.01 g were sus-
pended in Eppendorf tubes with 1 mL of immersion solution. The release rates of BSA
and vancomycin were determined after 5 and 22 days, respectively, in a water bath at
37 ◦C. Triplicate tests were used at each time point (n = 3). The immersion solutions were
withdrawn at each time point. The amount of BSA released from the porous spheres was
evaluated using a bicinchoninic acid (BCA) protein assay kit (Prod#23225; Thermo Fisher
Scientific, Rockford, IL, USA) by measuring the optical density (OD) at a wavelength of
570 nm in an enzyme-linked immunosorbent assay (ELISA) macroplate reader (EZ Read
400, Biochrom, Cambridge, UK). To determine the content of vancomycin released by
the spherical drug carrier, the OD of the amino acid in vancomycin was measured at a
wavelength of 562 nm to compare the relative quantitative regression curves.

2.4. Sterilization by γ-Irradiation

The hydrogel macrospheres were sterilized using γ-radiation. The commonly used
unit of absorbed radiation dose is the gray (Gy), which is equivalent to 1 joule of energy
absorbed per kilogram of material. Hydrogel macrospheres (HyS-w/o γ) with protein
BSA or antibiotic vancomycin and blank macrospheres were placed in 3-mL glass vials
labeled and packed. The samples were irradiated using 60Co-γ as the radiation source at
China Biotech Corporation, Taichung, Taiwan. According to United States Pharmacopeial
Convention (USP) recommendations, a sterilized dose of 25 kGy was used. After γ-ray
irradiation, the sterilized hydrogel microspheres of HyS-w/γ were subjected to a sterility
assurance test and appearance confirmation before the samples could be used for further
testing and analysis. The relevant tests are described subsequently.

2.5. Characterization of Gel Macrospheres after Sterilization
2.5.1. Morphological Observations

Dried and wetted porous macrospheres of HyS-w/γ and HyS-w/o γ were observed
using an optical microscope (OM; Primotech, ZEISS, Oberkochen, Germany). The wetted
macrospheres were first immersed in excess DD water and placed at 37 ◦C for 24 h.
The water-containing macrospheres were then removed, rinsed with saturated sponges,
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and placed on a glass slide for observation. The cross-sectional morphology was then
examined through scanning electron microscopy (SEM; S-3000 N, Hitachi, Tokyo, Japan)
and compared with the OM images to investigate the pore changes and morphological
characteristics of the macrospheres before and after sterilization.

2.5.2. Changes in the Crosslinking Index after Radiation

The residual number of amino groups observed was approximately related to the
crosslinking index of hydrogels. Accordingly, ninhydin (2,2-dihydroxy-1,3-indanedione)
reagent (Sigma-Aldrich) was used to investigate the residual amino groups of macrospheres
before and after sterilization. Ninhydin reagent can react with amines and amino acids
during colorimetric assays. Residual amino measurements were conducted according to
the manufacturer’s instructions, and the OD was measured at a wavelength of 570 nm.
The crosslinking index of the macrospheres before and after radiation was compared by
measuring the content of unreacted free amine groups in the sample and subsequent
calculation by using the following formula:

Fixation index (%) =
[(amine-reactive)fresh − (amine-reactive)fixed]

(amine-reactive)fresh
×100% (1)

(amine-reactive)fresh: the free amine group content before crosslinking
(amine-reactive)fixed: the free amine group content before and after sterilization

2.5.3. Differences in Water Absorption and Degradation Rate after Sterilization

A water absorption test was performed to determine the swelling ratio or water
content in the hydrogel macrospheres of HyS-w/γ and HyS-w/o γ. Each group of hydrogel
macrospheres (W0) was weighed and immersed in double-distilled (DD) water at 37 ◦C
for 5, 10, 15, and 30 min as well as 1, 2, 4, 6, 8, and 24 h. The samples were taken out and
rinsed, and the excess water was removed from the surfaces. The weights of the hydrated
specimens (Wwa) were immediately measured and compared with the weights of the dried
porous spheres (Wwa) (n = 3). The formula for measuring the water absorption of the
hydrogel macrosphere is as follows:

Water absorption = (Wwa − Wo)/Wo (2)

The degradation rate was measured by immersing the macrospheres in DD water
for 1 day, weighing the standard hydrate saturation of the macrospheres (Wh), and again
immersing the macrospheres in DD water at 37 ◦C for 1–13 d. After removing the test piece,
the excess water was removed from the surface. The residual weight (Wr) was measured
using a precision balance after water absorption. The following formula was used to
calculate the degradation rate of each group of macrospheres after different periods:

Degradation rate = (Wh − Wr)/Wh × 100% (3)

2.5.4. Sterility Assurance, Antibacterial Ability, and Cell Viability of Hydrogel
Macrospheres with Drugs
Sterility Assurance

The sterility of any product is defined by the viability of a microorganism on the
product after sterilization. Negative control (NC), positive control (PC), and experimental
groups are essential for selecting the appropriate sterility assurance of medical devices.
The NC group was sterile deionized water mixed with a liquid medium. The PC group
was bacteria-containing water mixed with a liquid medium, which became turbid after
1 day of cultivation. The culture environment was heated to 35 ◦C, and the culture was
cultivated without carbon dioxide to prevent the bacteria from growing excessively fast.
The experimental group was sterilized gel macrospheres soaked in a hydrogel: culture so-
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lution with a ratio of 0.1 g:2.5 mL. Finally, the supernatant and agar culture were examined
to observe whether agar colonies were formed after 1 day of cultivation.

In Vitro Cytotoxicity Following ISO 10993-5:2009

For the biological evaluation of the macrospheres, cytotoxicity tests were conducted
following ISO 10993-5:2009. The newborn mouse fibroblast cell line of L929 was used in the
aforementioned tests. The used cells were cultured with an alpha-modified Eagle’s medium
(α-MEM, Gibco®, Life technologies Co., NY, USA) containing house serum (Biolegend Co.,
South Logan, UT, USA) in an incubator containing 5% CO2 at 37 ◦C. The medium was
replaced once every 2 days. When the cell cultures grew to 80% capacity, they were
subcultured. The PC was 15% dimethyl sulfoxide (DMSO), with each 1 mL of cell culture
medium containing 150 µL of DMSO filtered through a 0.22-µm filter membrane. The NC
was high-density polyethylene (HDPE) with a weight-to-medium volume ratio (g/mL) of
1:10. The medium was placed in a water bath at 37 ◦C for 24 h, and the extract of HDPE
was set as the NC. The control group used the normal cell culture medium to cultivate the
L929 cell line.

For each group, six replicate tests were measured (n = 6). The extraction solution
was prepared by placing the irradiated macrospheres in the cell culture medium with
a weight-to-medium volume ratio (g/mL) of 1:10 and heating it to 37 ◦C. After 24 h of
incubation, the resultant supernatant liquid was the extract of the experimental group.
The cell concentration of 1 × 104 cells/well was transferred into a 96-well microliter plate
and cultured overnight in an incubator; the original medium was aspirated, and the
sample extract (100 µL/well) was added to cultivate the cells. After culturing for 24 h,
the aspirated cell culture medium was used for the experimental group. A general cell
culture medium (100 µL/well) was then added and mixed with a cell proliferation assay
kit (XTT; 50 µL/well). The mixture was then placed in a 5% CO2 incubator at 37 ◦C for
4 h. Subsequently, the OD490 was measured using an ELISA reader (the XTT assay OD is
proportional to the cell activity), and the cell morphology was observed.

Bacterial Endotoxin Testing

First, the test sample extract was prepared by adding 1 mL of pyrogen-free water to
each 0.04-g batch of macrospheres and conducting ultrasonic-assisted shaking for 1 min.
The extract was then placed at room temperature for 1 h before shaking again for 1 min.
Then, a serial amount of pyrogen-free water was used for dilution. The NC group was pre-
pared with 100 µL of pyrogen-free water, and the PC group was prepared using 50 µL of the
4λ endotoxin standard and 50 µL of pyrogen-free water. The positive product control group
comprised 50 µL of undiluted test sample extract and 50 µL of the 4λ endotoxin standard.

Second, the sample group was prepared by diluting 50 µL of undiluted extract into
2×, 4×, 8×, and 16× dilutions by using pyrogen-free water. A volume of 100 µL of limulus
amoebocyte lysate endotoxin reagent was prepared for cleaning the validation and sample
groups with a reagent concentration of 0.25 endotoxin units (EU)/mL. The cleaning was
conducted at 37 ◦C for 1 h. The standard tube agglutination test was performed; however,
no agglutination was observed in the NC group.

Antibacterial Activity

An agar diffusion test was performed to measure the degree of antibacterial activity.
The medium was tryptic soy agar, and the strains were Staphylococcus aureus (S. aureus)
and Escherichia coli (E. coli). The antibiotic-loaded sterilized macrospheres were attached
to the agar culture plate coated with bacteria, and the inhibition zone sizes were observed
after incubating at 37 ◦C for 24 h. The quantitative inhibition sample was tested with the
broth dilution method. The sample was immersed in 1 mL of bacterial suspension with a
cell density at an OD595 value of 0.2 and incubated at 37 ◦C for 1, 4, 8, and 24 h. The control
sterilized control, and experimental groups were measured after removing the bacterial
liquid at each time point and measuring the OD595 value with an ELISA reader.
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2.6. Statistical Analysis

IBM SPSS was used to determine characteristics such as average pore diameter, devia-
tion rate, and degree of crosslinking and overlap. The experimental data were statistically
analyzed, and the experimental data of the two groups were compared using the t-test.
Moreover, Tukey’s test was used to analyze the comparison of the groups.

3. Results and Discussion
3.1. Changes in the Physiochemical Properties of Hydrogel Macrospheres after Sterilization

The external optical and internal microstructure images of the hydrogel macrospheres
are displayed in Figure ??. The size of the prepared particle macrospheres was approxi-
mately 2 mm, and no noticeable effects on the appearance and size of the macrospheres
were observed after sterilization with γ-ray irradiation (Figure ??a). Observations of the
internal pores of the macrospheres before and after water absorption (Figure ??b) indicated
that obvious pores appeared regardless of whether the spheres had been sterilized.
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Figure 1. Freeze-dried hydrogel macrospheres after (HyS-w/γ) and before (HyS-w/o γ) sterilization
of internal macrosphere microstructures of (a) photographs, (b) OM images, and (c) SEM images.

This observation confirms that after sterilization, the hydrogel macrospheres retained
their original pore structures (Figure ??b,c). Notably, the largest measured frequency
of the internal pore diameter distribution in the hydrogel macrospheres shifted to the
right, which indicated that the pores increased in size after sterilization (Figure 2a,b),
and the significant difference was observed after statistical analysis (p < 0.05). The porosity
changes in the macrospheres before and after sterilization were further analyzed using the
SPSS software, which indicated that although the porosity of the macrospheres decreased
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marginally after sterilization (Figure 2c), no significant difference was observed after further
statistical analysis (p > 0.05). The preliminary conclusion is that the hydrogel macrospheres
maintained a uniform pore structure before and after sterilization with γ-ray irradiation.
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Figure 2. Comparisons of the (a) pore size distribution, (b) average pore size (n = 60; *: p < 0.05),
and (c) porosity of hydrogel macrospheres before (HyS-w/o γ) and after (HyS-w/γ) sterilization
(n = 60; #: p > 0.05).

The Fourier-transform infrared (FTIR) spectroscopy analysis results of the hydrogel
macrospheres before and after sterilization are presented in Figure 3a. The characteristic
peaks are as follows: the bands at 1080 and 1030 cm−1 for the COC group correspond to
sodium alginate [50]; the vibrations at 1259 and 1240 cm−1 indicate amide III; the band
regions at 1370–1440 and 1510–1580 cm−1 indicate amide II [51]; and the bands at 1655,
1629, and 1600 cm−1 indicate amide I of gelatin [52]. Notably, a new functional imine
group (HC=N) was discovered in the band of 1610–1621 cm−1 for the sterilized HyS-
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w/γ macrospheres. [53,54] A study indicated that the amide group may decompose and
transform into a new imine or nitrile group after irradiation [55]. Accordingly, the possible
mechanisms of amide decomposition into more active imine or nitrile groups are displayed
in Figure 3b. The amides between hydrogels decomposed immediately after irradiation
and these active sites provided new sites for intermolecular recrosslinking to form a 3D
interlocking structure. This process may have induced the internal pore size fluctuation
and the following analysis results.
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Figure 3. (a) Full and specific absorption bands obtained through the FTIR spectrum analysis of
macrospheres before (HyS-w/o γ) and after (HyS-w/γ) sterilization. (b) Schematic of the mechanisms
of amide bond decomposition into active imine or nitrile groups after irradiation, which can generate
new intermolecular crosslinking sites in hydrogels.

The fixation index of the internal crosslinking degree of the hydrogel was directly
proportional to the amount of residual free amine (Figure 4a). When the hydrogel reacted
with EDC, the free amine of gelatin and carbonyl in hyaluronic acid reacted when EDC
was added to produce a stable amide bond. The fixed index of crosslinking hydrogels was
evaluated according to the opposite quantity of the residual amine group. Accordingly,



Polymers 2021, 13, 938 9 of 18

the irradiation did not significantly affect the crosslinking degree between the hydrogels;
however, γ-ray irradiation caused amide bond breakage, which exposed certain active
amino groups. However, in situ crosslinking occurred again immediately; thus, the mea-
sured differences in the crosslinking degree between the groups before and after irradiation
(HyS-w/o γ and HyS-w/γ) were limited.
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Figure 4. Physiochemical analysis of hydrogel macrospheres before (HyS-w/o γ) and after (HyS-
w/γ) sterilization corresponds to amine fixation index (n = 6, #: p > 0.05) (a), water absorption ratio
(n = 10) (b), and degradation rate (n = 10) (c).

The water absorption test results were noticeably different (Figure 4b). The degree of
water absorption observed in the HyS-w/γ group plateaued from 10 min to 2 h. Subse-
quently, the degree of water adsorption marginally increased, and finally, macrospheres
appeared after 24 h of immersion. The absorption rate reached approximately 30 mL/g.
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However, the degree of water absorption in the HyS-w/o γ group continued to increase
until 24 h elapsed, ultimately reaching approximately 40 mL/g. The water absorption rate
of the macrospheres between the HyS-w/o γ and HyS-w/γ groups significantly differed
after 15 min of immersion. We speculate that the difference observed between the HyS-w/o
γ and HyS-w/γ groups might have occurred because certain hydrophilic bonds crosslinked
with the active imine, which resulted in the strengthening of the intermolecular force and
the significant reduction of the water absorption rate of HyS-w/γ after irradiation.

The in vitro degradations of hydrogels indicate that the HyS-w/o γ group degraded
faster than the sterilized HyS-w/γ group within 10 days of immersion (Figure 4c); however,
both groups of immersed macrospheres were completely disintegrated after 13 days.
This phenomenon confirms the hypothesis that most of the internally active groups exposed
on the pore surfaces bonded with one other at an accelerated rate due to irradiation,
which exacerbated the reduction in water absorption and contributed to the delay in
hydrogel degradation.

Sterilization can be achieved by a combination of heat, chemicals, irradiation, high pres-
sure, and filtration like steam under pressure, dry heat, ultraviolet, radiation, gas vapor
sterilants, chlorine dioxide gas, etc. [43–47]. In this study, hydrogels with high viscosity
were used in the design and manufacturing of the final product on the scale of macro-
sphere. The sterilization method of filtration is suitable for thermolabile solutions that
can pass through sterile bacteria-retaining filters. However, hydrogels with high viscosity
cannot pass through sterile bacteria-retaining filters. The sterilization method of heat,
e.g., steam under pressure and dry heat destroys the amino, amide, or hydroxy groups in
hydrogel macrospheres, and are not considerably thermal stable for our study. Therefore,
the sterilization method of heat is still unsuitable [47].

The sterilization method of chemical or gas sterilization is done with ethylene oxide
or other highly volatile substances. Due to the porous macrospheres created by hydrogels
that have high water or gas adsorption efficiency and stability, there is the possible issue
of toxic residues remaining intact within the hydrogels in the macrospheres. Hence,
gas sterilization is also not suitable here. The reviewed literature suggest that for the
sterilization of hydrogels (excluding irradiation sterilization), gas sterilization or aseptic
process are suitable and more credible compared to other methods [47]. Aseptic processing
is conducted only for products that cannot be sterilized in final containers. Accordingly,
raw materials and products of aseptic processing that have been sterilized by one of
the above sterilization processes are transferred to pre-sterilized containers and sealed;
both operations need to be carried out under controlled aseptic conditions. However,
the whole process will cost more and the risk is higher than with irradiation sterilization.
Therefore, the aseptic material filling process is suggested only if the final commercial
products cannot be sterilized in the final containers. The sterilization method of irradiation,
especially γ-irradiation, has a high level of penetration, is isothermal, and offers good
assurance of product sterility, no chemical residue, and immediate availability of the
product after sterilization. Thus, it is suitable for hydrogel macrospheres. The effect of
γ-ray doses (25, 30, 50 kGy) on hydrogels is the reason why this research focused on 25 kGy
(provided in Appendix A (Figure A1)).

3.2. Sterility Assurance as Well as Protein and Antibiotic-Releasing Abilities

The endotoxin test was based on a simple gel-clot method for detecting and semi-
quantifying endotoxins according to lysate clotting. If the sample endotoxin contained
more than 0.25 EU/mL, the reagent gel clotted. According to the ANSI/AAMI ST72
standard, the endotoxin content of each medical device package should be less than
20 EU/mL, so that it meets the requirements of pyrogen-free labware and the reagent
preparation environment. The endotoxin test consisted of three control groups and five
experimental groups of undiluted and diluted extracts under different magnifications
to determine whether they would gel-clot. The EU concentration per mL was then re-
versed and converted for the hydrogels. The test results revealed that the undiluted, 2-,
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4-, and 8-fold diluted reagent groups gel-clotted; however, the 16-fold diluted reagents
did not gel-clot (Figure 5), which indicated that the endotoxin content of the macrospheres
was between 2 and 4 EU/mL after adjusting on the standard curve; thus, this sample was
endotoxin/pyrogen-free. For sterility validation, the quantitative measurement results of
L929 cell viability displayed in Figure A2a reveal that the cell survival rate of HyS-w/γ
was 83%, indicating that the hydrogel macrospheres were not cytotoxic after sterilization
according to EN ISO 10993-5 Clause 4.1. The additional qualitative results of the L929
cells displayed in Figure A2b further validate that the HyS-w/γ process did not affect cell
phenotype and growth after 24 h of cell culture.
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To confirm whether the irradiation would stimulate a reaction between the hydrogels
and the carrying additives, we measured the release ability of the hydrogel macrospheres
impregnated with protein and antibiotics before and after sterilization. The curves in
Figure 6a indicate the BSA releases of HyS-w/γ and HyS-w/o γ at different time points
after immersion. Both groups demonstrated no considerable variations in BSA releases
after 1-h tests. The release rate of HyS-w/γ marginally increased after 1 h, and the average
BSA release in the microspheres was approximately 2.14 g/L. The BSA releases tended to
plateau after 4 h of macrosphere immersion, and the BSA release amount was 2.47 g/L
after 5 d, which indicated that the HyS-w/γ macrospheres maintained its release capability
after γ-ray irradiation.

We also examined the hydrogels impregnated with vancomycin and the accumulated
release amounts of immersed macrospheres after sterilization (HyS-Van25) in DD water
after 22 days of immersion (Figure 6b). The cumulative releases reached 19% within
24 h following HyS-Van25 immersion, which continuously released for up to 20 days.
Different release slopes represent different release mechanisms. The release curve can be
divided into two slope values at 11 days, which correspond to the complete degradation
depicted in Figure 4c. The small slope value indicates that the vancomycin release in the
first stage of HyS-Van25 immersion was dominated by diffusion, and the large slope value
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represents the vancomycin transport process in the second stage. Diffusion and structure
erosion accompanied these mechanisms, thus causing another wave of rapid release.
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3.3. Antibacterial and Biocompatible Abilities of HyS-Van25 after Irradiation

Figure 7a illustrates that after hydrogel sterility testing, compared with the contami-
nated PC group, the HyS-w/γ culture plate and the NC group were both completely sterile,
which validated the hydrogel macrosphere sterilization procedures. The results of the
qualitative and quantitative antibacterial testing of HyS-Van25 on E. coli and S. aureus are
presented in Figure 7b,c, respectively. The qualitative results reveal evident antibacterial
properties against both E. coli and S. aureus. According to the manufacturer’s instructions,
vancomycin has excellent antibacterial ability against gram-positive bacteria, which results
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in better responses of HyS-Van25 against gram-positive E. coli than against gram-negative
S. aureus (Figure 7c). The quantitative results of the antibacterial effects of HyS-Van25
against E. coli and S. aureus indicate that HyS-Van25 samples cultured with S. aureus for 4 h
exhibit superior antibacterial efficiency to the same samples cultured with E. coli for 8 h.
After 24 h of bacterial culture, the OD of HyS-Van25 was higher than that of the control
group, which may have occurred because hydrogel degradation (Figure 4c) caused the
solution to become turbid. Therefore, the instrument obtained a false reading. The results
of the quantitative and qualitative cytotoxicity evaluations of HyS-Van25 extract cultured
with the L929 cell line after 24 h are presented in Figure 8. The results revealed that even
after 25-kGy γ-ray sterilization (HyS-Van25), hydrogel macrospheres were not cytotoxic
(Figure 8a) and did not noticeably affect the phenotype and growth of cells (Figure 8b).
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Figure 7. (a) Qualitative analysis of the sterility assurance of hydrogel macrospheres after sterilization (HyS-w/γ). (b) Qual-
itative results of the disk diffusion antibacterial effect of hydrogel macrospheres impregnated with vancomycin (HyS-Van25,
n = 3) against E. coli and S. aureus after 24 h of interaction. Right figures indicate the inhibitory zones formed by the presence
of macrospheres with a diameter of 6 mm. (c) Quantitative antibacterial results of hydrogel macrospheres impregnated with
vancomycin after irradiation (HyS-Van25, n = 3) against E. coli and S. aureus after 24 h of interaction under broth dilution.

As for the ATR spectrum, when the samples are not sterilized by γ-ray and sterilized
by 25-kGy irradiation, there is not much difference in the spectra (Appendix A, Figure A1).
It only changes at 1610 cm−1, which significantly affects the water absorption ratio of
hydrogel macrospheres (Figure 4b). However, after 30- and 50-kGy irradiation sterilization,
a certain functional group displayed an absorption band near 1259 cm−1, which may affect
its physical and chemical properties. Even on irradiation sterilization, each hydrogel system
with and without protein or antibiotic releasing ability requires case-by-case testing to select
the most suitable doses and an effective method to allow for the main properties to remain
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unaltered. The impact of irradiation sterilization on the physicochemical properties of the
alginate/gelatin with a w/w ratio of 1/4 crosslinking gel macrospheres was understudied,
and therefore further research of varying hydrogel system is needed.
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4. Conclusions

The produced hydrogel macrospheres possessed an interconnected pore structure,
and after γ-ray sterilization, the degree of crosslinking of the hydrogel macrospheres
marginally reduced due to the partially decrosslinked amide in the hydrogels. This amide
caused the water absorption of HyS-w/γ to decrease marginally and led to an initial degra-
dation rate higher than that of HyS-w/o γ. However, both macrosphere groups completely
degraded after 13 days of immersion. After sterilization, the hydrogel macrospheres’ abil-
ity to release BSA and vancomycin did not significantly change, which indicated that no
chemical reaction occurred after 25-kGy γ-irradiation. Moreover, after loading vancomycin,
the antibiotic was successfully released without cytotoxicity. The qualitative results in-
dicated that favorable antibacterial ability remained for E. coli and S. aureus; however,
the quantitative antibacterial effect on S. aureus was significant only when the culturing
time was less than 8 h. The sterilization of the hydrogel macrospheres did not have any
obvious influence on the structure of the macrospheres. However, sterilization exhibited
several minor effects. According to the FTIR analysis results, a new active imine group
was generated due to the breakage of the original intermolecular covalent amide bond.
The experimental results indicated that macrospheres are an excellent drug or protein
carrier and that the common 25-kGy dose of γ-ray irradiation used to sterilize medical
devices can be used to validate hydrogel macrospheres and extended applications that can
be combined with bone grafts in the future.
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Appendix A

For comparison, the γ-ray dose effect on hydrogels and preliminarily determined
influence of the recommended 25-kGy γ-irradiation dose in this study, the results using
varying doses of 25, 30, and 50-kGy γ-irradiation doses in a one-step gamma-ray steril-
ization process through ATR spectra are shown in Figure A1. An absorption spectra in
the frequency range of the amide I band for α-helix (~1655 cm−1), β-sheet (~1630 cm−1),
and random coil (~1645 cm−1) structures were changed into a new functional imine group
(HC=N) band (1610~1621 cm−1) in all radiation dose groups. Besides, the new peaks
from the nitrite group of amide III were observed at 1259 cm−1 due to the decomposition
and transformation into a new imine or nitrile group of hydrogel after 30 and 50- kGy
γ-irradiation doses.

For comparison, the L929 cell survival rate of the control group with a pure medium
was set as 100%. The cell viability results in Figure A2a indicate that according to the ISO
10993-5 standard, the cell survival rate of the PC group with 15% DMSO was lower than
10%, which suggests that the L929 cells were toxic. The cell survival rate of HyS-w/γ was
83%, which indicates that the hydrogel macrospheres were not cytotoxic after sterilization
according to EN ISO 10993-5 Clause 4.1. The qualitative results of the L929 cells displayed
in Figure A2b indicate that the control group and HDPE group had normal cell-type
morphologies; thus, the sterilization process was validated. In the PC group, the cells were
spherical, which indicated a state of apoptosis in the L929 cells. The cell morphology of the
HyS-w/γ group was similar to that of the control group without apoptosis, which indicates
that the sample did not cause cell apoptosis or death.
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