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Abstract: To reduce the possibility of bacterial infection and implant-related complications, sur-
face modification on polyurethane (PU) film is an ideal solution to endow hydrophobic PU with
antibacterial and antifouling properties. In this work, a variety of polyhexamethylene guanidine/
hyaluronic acid (PHMG/HA) multilayer films were self-assembled layer-by-layer on PU films using
polyanions, carboxyl-activated HA, and polycations PHMG by controlling the concentration of these
polyelectrolytes as well as the number of layers self-assembled. Attenuated total reflection Fourier
transform infrared spectroscopy (ATR-FTIR) spectra, water contact angle (WCA), and A Atomic
force microscope (AFM) of PU and modified PU films were studied. Protein adsorption and bacterial
adhesion as well as the cytotoxicity against L929 of the film on selected PU-(PHMG/HA)5/5-5 were
estimated. The results showed that PU-(PHMG/HA)5/5-5 had the best hydrophilicity among all
the prepared films, possessing the lowest level of protein adsorption. Meanwhile, this film showed
efficient broad-spectrum antibacterial performance as well as significant resistance of bacterial ad-
hesion of more than a 99.9% drop for the selected bacteria. Moreover, almost no influence on cell
viability of L929 enhanced the biocompatibility of film. Therefore, the modified PU films with
admirable protein absorption resistance, antimicrobial performance, and biocompatibility would
have promising applications in biomedical aspect.

Keywords: modified PU film; protein adsorption; antibacterial; hyaluronic acid (HA); polyhexam-
ethylene guanidine (PHMG)

1. Introduction

Polyurethane (PU) ureteral stents are wildly used in urological clinics for their good
flexibility and elasticity, biocompatibility, and low cost compared to what or within which
range of materials [1,2]. However, the hydrophobic surface of PU reduces the antifouling
and antimicrobial properties, which results in the increasing amount of protein adsorption,
bacteria adhesion, and salt deposition in a urine environment [3,4]. Thus, encrustation,
infection, and implant-related post-complications such as ureteral stricture, perforation, and
mucosal injury [5,6] are observed during the implantation in vivo. Thus, the antimicrobial
property of the stent’s surface is vital for its service life in clinic. It is believed that an
ideal antibacterial surface possesses properties of repelling protein adsorption in order
to prevent initial bacteria attachment [7,8], repelling direct bacteria adhesion and killing
the attached bacteria during the period of implantation in human body. With the aim
of achieving these targets, various materials are applied to modify the PU surface to
improve its hydrophilicity or to confer its antibacterial properties. Yuan et al. [9] modified
chondroitin sulfate onto the PU surface to improve its hydrophilicity and reduce the protein
adsorption. Manohar et al. [4] covalently crosslinked papain onto PU to prevent bacterial
adhesion. Fischer et al. [10] attached a hydrogel coating loaded with Ag nanoparticles to
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a PU conduit to improve its antibacterial activity. However most material modifications
can only improve one aspect of performance of the surface. Therefore, modification with
an antibacterial agent and antifouling material on the surface is a good strategy to endow
the PU surface with both antifouling properties and bactericidal properties [11,12], which
would be a desirable antibacterial surface for clinical usage.

A surface with good hydrophilicity has been proven to effectively prevent non-specific
protein adsorption. Hyaluronic acid (HA) is one of the most hydrophilic molecules in
nature with non-toxic, non-immunogenic, non-inflammatory, and biodegradable proper-
ties [13–16]. HA is also a polyanion glycosaminoglycan that can repel most negatively-
charged proteins and bacteria with negatively-charged cell membranes by electrostatic
repulsive force. Conversely, it would be able to electrostatically attract cationic antimicro-
bial such as chitosan [17,18], quaternary ammonium salts [19,20], and cationic antimicrobial
peptides [21] to integrate antibacterial function. Hence, HA is suitable for the surface modi-
fication of materials to reach the ultimate purpose of reducing bacterial adhesion [11,22].
Polyhexamethylene guanidine (PHMG) is a highly water-soluble, colorless, and odorless
positively-charged antimicrobial [23]. Due to its broad spectrum activity against bacteria
and fungi [24,25] and its low toxicity to mammals [26], PHMG has been successfully ap-
plied in several products such as topical wound solutions, contact lens cleaning products,
and cosmetics [26–28]. Wei et al. [29] demonstrated that aqueous solutions of PHMG
with concentrations as low as 1.0 ppm showed more than a 90.0% antibacterial rate. Ding
et al. [30] bonded PHMG to resins to generate antibacterial acrylic coatings. The inhibitory
factors against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were over
99.99% at a PHMG content of 1.0 wt%. Therefore, the combination of HA and PHMG
provides the modified surface with the desirable multifunction of hydrophilicity and
antibacterial activity.

In this study, we created PHMG/HA multilayer films on PU by using layer-by-layer
self-assembly with HA and PHMG as polyanions and polycations to render the surface
of PU films with both antifouling and antibacterial properties. PHMG was chemically
bonded to the PU surface via the reaction between amide groups of PHMG and isocyanato
groups modified on PU films. Negatively-charged HA was assembled by electrostatic
adsorption with positively-charged PHMG modified on PU films. Simultaneously, HA
and PHMG were also covalently combined by the reaction of the partial activated carboxyl
group of HA and amide groups of PHMG. The different concentrations of HA and PHMG
as well as and the number of assembled layers were studied to attain PU-(PHMG/HA)n
films with different properties. The surface properties of modified and unmodified PU
films were characterized by attenuated total reflection Fourier transform infrared spec-
troscopy (ATR-FTIR), water contact angle (WCA), and atomic force microscopy (AFM).
The antifouling and antibacterial properties of the surface were detected by a bicinchoninic
acid (BCA) protein detection kit and bacterial assay. Finally, the cytotoxicity of L929 cells
was estimated for the improvement in the biocompatibility of the material.

2. Materials and Methods
2.1. Materials

PU (pellethane 2363-80AE) was provided by Lubrizol Corporation (Wickliffe, OH,
USA). Methylenediphenyl 4,4′-Diisocyanate (MDI) was bought from Aladdin Chemical
Co. Ltd. (Shanghai, China). N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO),
toluene, and triethylamine were purchased from Sinopharm Chemical Reagent Co. Ltd.
(Shanghai, China), and HA was obtained from Xianding Biotechnology Co. Ltd. (Shanghai,
China). 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl),
N-Hydroxysuccinimide (NHS), Lysozyme (LYS), bovine fibrinogen (BFG), human serum
albumin (HSA), and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
(MTT) were obtained from Yuanye Bio-Technology Co. Ltd. (Shanghai, China). Sodium
dodecyl sulfate (SDS) and the Micro BCA Protein Assay Kit were obtained from Sangon
Biotech (Shanghai, China) Co. Ltd. Fetal bovine serum (FBS) and Dulbecco’s modified
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Eagle medium (DMEM) medium were obtained from Gibco (Grand Island, NY, USA).
E. coli (DH5 alpha), S. aureus (ATCC 6538), and P. aeruginosa (ATCC 2785) and lysogenic
broth (LB) medium were provided by Professor Cui, East China University of Science and
Technology (ECUST, Shanghai, China). PHMG was provided by Professor Guan, ECUST.

2.2. The Fabrication of the PU-(PHMG/HA)n Films

Ten grams of commercial PU was dissolved in 100 mL DMF by magnetic stirring.
Then, the PU solution was vacuum dried at 60 ◦C for 72 h to obtain thin PU films, and
the films were cut into discs (6 mm in diameter and 1 mm in thickness). Afterward, PU
films were put into MDI solution for a 3 h reaction to obtain PU-NCO films. Finally, the
PU-PHMG film was prepared by the reaction of amino groups of PHMG with PU-NCO.

Carboxyl activated HA intermediate was prepared according to the literature [31].
A total of 0.24 g EDC·HCl and 0.15 g NHS were slowly added to 50 mL HA solution
(1%, m/v) in turn under the condition of pH 4.75 with stirring for a 2.5 h reaction. After
that, the reaction was terminated by increasing the pH value to 7.5. The reaction product
was further dialyzed to remove EDC and NHS at room temperature for two days. Finally,
carboxyl-activated HA was obtained and freeze-dried by a vacuum freeze dryer.

PU-(PHMG/HA)n films were prepared by sequential assembling HA and PHMG
onto the PU-PHMG film layer by layer. Figure 1 illustrates the fabrication process of
the PU-(PHMG/HA) films. The assembling time per polymer layer was 20 min [32]. In
between the PHMG and HA assembling steps, the assembled films were put into deionized
(DI) water to remove the unassembled molecules and dried at 60 ◦C. Different samples
were obtained by adjusting the polyelectrolyte concentration and the number of bilayers
self-assembled, and Table 1 lists the formulations for various samples.
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Table 1. The formulations of the PU-(PHMG/HA)n films synthesized.

Sample Code HA (mg/mL) PHMG (mg/mL) Number of Bilayers

PU-(PHMG/HA)5/2-2 2 2 5
PU-(PHMG/HA)5/5-2 5 2 5
PU-(PHMG/HA)5/5-5 5 5 5

PU-(PHMG/HA)5/5-10 5 10 5
PU-(PHMG/HA)10/5-5 5 5 10
PU-(PHMG/HA)1/5-5 5 5 1

2.3. Characterizations of the Films

The surface chemical structure of the film was identified by a FTIR Spectrometer
(Thermo Nicolet 6700, Madison, WI, USA) with an ATR device. The spectra were collected
at the following instrument parameters: scan range 400–4000 cm−1, resolution 4 cm−1,
and scan times 16 [33]. The WCA of the surface was measured by a contact angle meter
(Powereach JC 2000D, Shanghai, China). The surface morphology of the films was analyzed
by AFM (Veeco DI3100, Plainview, NY, USA). The surface roughness of the films was the
average roughness of three areas.

2.4. Protein Adsorption

BFG, HSA, and LYS were selected for protein adsorption experiments to investigate
the anti-protein adsorption properties of the films. The films were soaked in 1 mL protein
solution (1 mg/mL) and incubated at 37 ◦C for 1 h, and then washed with PBS buffer
solution (pH 7.4) and ultrapure water in order to remove the unabsorbed proteins on
the surface. A total of 0.5 mL SDS (1% w/v) solution was used to elute the adsorbed
proteins and incubated with films at 37 ◦C for 2 h. The amount of protein was calculated
by measuring the absorbance of the eluate at 562 nm with a UV–Vis spectrophotometer
(Thermo Fisher Evolution 220, Waltham, MA, USA) using the BCA assay.

2.5. Bacteria Adhesion

Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli and P. aeruginosa)
were selected to test the antibacterial activity of the films. A single pure colony was cultured
in LB medium at 37 ◦C for 18 h. The supernatant was removed by centrifugation and
the bacteria were diluted to 108 CFU/mL with PBS. The films were immersed in 1 mL
bacterial solution and incubated at 37 ◦C with shaking for 24 h. Nonadherent bacteria on
the film surface were removed by washing with PBS three times, and then the adherent
bacteria were eluted into 1 mL PBS by sonication for 10 min. The amount of bacteria was
measured by the flat colony counting method. Additionally, the adherent bacteria on film
were studied by confocal laser scanning microscopy (CLSM, NIKON A1R, Tokyo, Japan)
after fluorescein diacetate (FDA)/propidium iodide (PI) staining. PI stain selectively binds
to the dead bacteria and stains them fluorescent red, whereas the FDA stain selectively
binds to the live bacteria and stains them fluorescent green during CLSM imaging.

2.6. Cytotoxicity Test

Cytotoxicity of films was determined by the MTT assay [34,35]. The conditioned cell
culture medium was obtained by immersing films in 1 mL cell culture medium, which was
applied to assay the effect of the films on cultured cells. L929 cells were seeded into 96-well
plates (7000 cells per well) and cultured in an incubator with 5% CO2 at 37 ◦C for 24 h
before they were incubated with 200 µL conditioned cell culture medium for 24 h. A total
of 200 µL MTT reagent was added to each well for a further 4 h incubation at 37 ◦C. Then,
the formazan precipitate was extracted by 150 µL DMSO, and the absorbance (492 nm) was
recorded using a Multiskan MK3 ELISA reader (Thermo Fisher, Waltham, MA, USA).
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2.7. Statistical Analysis

Statistical analyses were performed by SPSS for Windows software, version 18 (SPSS,
Chicago, IL, USA). Data are presented as mean ± standard deviations (SD) of at least
three replicates. p value < 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Characterization of the Films

The ATR-FTIR spectra of films at different preparation stages are shown in Figure 2.
PU presented peaks originating from C=O and C–N at 1700 cm−1 and 1530 cm−1, respec-
tively (Figure 2a) [36]. A dominant absorption peak was observed at 2285 cm−1, which sug-
gested that the –NCO group was successfully grafted on the PU surface (Figure 2b) [37,38].
However, Figure 2c shows that the peak of –NCO disappeared, and two symmetric and
asymmetric –CH2 stretching vibrations attributed to PHMG were noted at 2854 cm−1 and
2924 cm−1 [39], respectively, which confirmed that –NCO totally reacted with the –NH2
of PHMG. Nevertheless, the spectra of PU-(PHMG/HA) (Figure 2d) showed no obvious
change compared with that of PU-PHMG, suggesting that the first layer of HA might
have little influence on the improvement of the surface properties. The wide peaks at
3324 cm−1 assigned to the –OH group in HA increased (Figure 2e,f), indicating that the
PHMG/HA bilayers were successfully assembled on the PU film [40]. Furthermore, the
relatively broad peak at 1150 cm−1 belonging to the ester group [41] in COOH– activated
HA was found in the spectra of PU-(PHMG/HA)5/5-5 and PU-(PHMG/HA)10/5-5, while
it did not appear in that of PU-PHMG and PU-(PHMG/HA)1/5-5. This phenomenon
indicated that HA partially covalently bonded on the surface as expected. The reason
might be due to the following: The activated –COOH provided by HA was not sufficient
and completely reacted with the –NH2 of PU-PHMG to –CO–NH during the preparation
of the first bilayer PHMG/HA. Additionally, the –CO–NH was not able to be distinguished
due to its original existence in any of the PU and modified PU films. With the increase in
bilayer number, more HA provided more reactive ester groups, which could meet the de-
mand in crosslinking of HA-PHMG. Nevertheless, the peak of the ester group was reduced
with the increased bilayer, according to the spectra comparison of PU-(PHMG/HA)5/5-5
and PU-(PHMG/HA)10/5-5. This might be attributed to molecular rearrangement during
the proceeding of assembly, which created more chances for the ester group to react with
–NH2. In addition, the peak of –CH2 weakened with the increased number of bilayers, but
still existed on the surface of all assembled films in Figure 2d–f. It was supposed that the
molecules of HA and PHMG were assembled in an entangled manner, which resulted in
incomplete coverage of the HA chains on the surface [42].

The variation of the WCA was likewise related to the introduction of functional
groups/molecules onto the surface. The WCA of the original PU was 90.1◦ due to its
hydrophobicity [43,44]. The successful grafting of hydrophobic isocyanate on PU resulted
in the WCA of PU-NCO increasing to 96.8◦ [37,45]. However, the succeeding PHMG onto
the surface led to a low WCA (82.3◦) of PU-PHMG because of the introduction of the
hydrophilic –NH2 group. After HA was covalently bonded and electrostatic self-assembled
onto PU-PHMG films, the surface became more hydrophilic. Subsequently, PHMG and HA
alternately assembled onto the surface, which contributed to the WCA of corresponding
films with a zig-zag effect (Figure 3). The HA (odd) layer achieved smaller WCA than
that of the PHMG layer (even), suggesting higher hydrophilicity of HA than PHMG and
proving that films with alternating deposition of polyelectrolyte were successfully obtained.
In addition, the concentration of polyelectrolyte had an obvious effect on the WCA of
the films. The increase or decrease in PHMG concentration both caused the WCA of the
surface with relatively high value based on the comparison of preparation groups PHMG
(10 mg/mL), PHMG (5 mg/mL), and PHMG (2 mg/mL) when HA was fixed at 5 mg/mL
(Figure 3). One explanation might be less PHMG, leading to less HA loaded. The other
might be the excessive PHMG providing more –CH2 exposed on the surface when they
entangled with HA. Therefore, it was found that the combination of HA (5 mg/mL)-PHMG
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(5 mg/mL) achieved the greatest reduction in the WCA of the modified films among
those prepared by other concentration combination of HA-PHMG. At this HA-PHMG
concentration pair, HA and PHMG were well matched and reached a dynamic balance
during the assembly process. Nevertheless, the WCA of PU-(PHMG/HA)n/5-5 had almost
no apparent reduction, indicating that excessive assembled layers might have little impact
on the function promotion of the surface.
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The surface topography of the film was determined by AFM. The surface of the
original PU was fairly flat and smooth with a root-mean-square (RMS) roughness of
36.4 ± 2.5 nm (Figure 4). However, the RMS of PU-PHMG surfaces increased significantly
to 177.7 ± 2.3 nm (p < 0.001) compared to the PU films. One layer of HA assembled on
PU-PHMG made little contribution to lower roughness of surface (173.9 ± 3.3 nm), which
was consistent to the result of the ATR-FTIR spectra. However, after alternating PHMG
and HA modification on PU films a few times, the surface roughness of PU-(PHMG/HA)n
(e.g., PU-(PHMG/HA)5/5-5) decreased in comparison with that of PU-PHMG, but was still
rougher than that of PU. Table 2 lists the surface roughness value for various samples. With
the increase of HA concentration, the roughness of the films showed no obvious change
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based on the comparison of PU-(PHMG/HA)5/2-2 and PU-(PHMG/HA)5/5-2. With the
increase in PHMG concentration, the roughness of the films decreased in comparison
with PU-(PHMG/HA)5/5-2, PU-(PHMG/HA)5/5-5, and PU-(PHMG/HA)5/5-10. This
influence might be related to the molecular weight of HA (>10 kDa) and PHMG (~600 Da).
PHMG with far lower molecular weight than HA had relative flexibility and more PHMG
was able to fill the void, which resulted in the lower roughness of the surface. Additionally,
the number of assembled layers positively influenced the roughness of the modified films
at the fixed preparation concentration based on the comparison of PU-(PHMG/HA)1/5-5,
PU-(PHMG/HA)5/5-5, and PU-(PHMG/HA)10/5-5, whereas the increase in the bilayer
number had a minor contribution to lower the roughness when the number of bilayers
was more than five. PU-(PHMG/HA)10/5-5 possessed the smoothest surface with a
RMS roughness value of 130.8 ± 2.6 nm, followed by PU-(PHMG/HA)5/5-10 and PU-
(PHMG/HA)5/5-5. The roughness of the above three films had no remarkable differences.
Therefore, PU-(PHMG/HA)5/5-5 was the optimum film when taking into account the
preparation costs.
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Table 2. The surface roughness value of the PU-(PHMG/HA)n films.

Sample Code PU-
(PHMG/HA)1/5-5

PU-
(PHMG/HA)5/2-2

PU-
(PHMG/HA)5/5-2

PU-
(PHMG/HA)5/5-5

PU-
(PHMG/HA)5/5-10

PU-
(PHMG/HA)10/5-5

RMS
Roughness
Value (nm)

173.9 ± 3.3 157.0 ± 1.9 156.5 ± 1.7 136.5 ± 3.4 131.9 ± 4.2 130.8 ± 2.6

3.2. Protein Adsorption

Adsorption of protein on the surface works as the initial step of biofouling when
implanted in vivo and further compromises the surface properties, promotes cell attach-
ment, and initiates the final foreign body response [46,47]. Thus, the resistance to protein
adsorption of PU films is first taken into consideration.

Due to the inherent hydrophobic and electrostatic interactions between the surface and
proteins, generally, the adsorption of proteins on the hydrophobic surface of PU films has
no obvious inhibitory effect on the adhesion of any kind of contaminant [48,49]. Therefore,
improving hydrophilicity is a valid approach to enhance the antifouling property of film to
some extent.

The adsorption amount of BFG, HSA, and LYS on different films is listed in Figure 5.
The PU-(PHMG/HA)5/5-5 surface exhibited the best resistance to protein adsorption, on
which the adsorption levels of BFG, HSA and LYS were 2.43, 0.49, 0.16 µg/cm2, respectively.
The adsorption amount followed the order of the molecular weight of proteins, that is
BFG > HSA > LYS, as the high molecular weight resulted in the high amount of protein ad-
sorbed on to patch at the same adsorption sites. The corresponding protein adsorption level
was reduced 67.85%, 85.33%, and 80.31% compared with that on PU film. This is attributed
to the higher hydrophilicity and lower surface roughness of PU-(PHMG/HA)5/5-5.
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Besides hydrophilicity and surface roughness, the nanotopography structure also
influenced the amount of protein adsorbed on these modified PU films. In Figure 5, BFG ad-
sorption level on PU-PHMG films was markedly lower than that on PU-(PHMG/HA)5/2-2,
PU-(PHMG/HA)5/5-2, and PU-(PHMG/HA)1/5-5, though the hydrophilicity and rough-
ness of PU-PHMG were higher than that of the three films. The possible reason might
be the brush structure of PHMG on PU films repulsing parts of the proteins. The surface
entropy of PU-PHMG increased when PHMG brushes were compressed by BFG, which
was disadvantageous to thermodynamic stability and led to repelling BFG adsorption
on the surface [50,51]. Similarly, the amount of HSA and LYS adsorbed on PU-PHMG
were comparatively low in comparison with that on PU-(PHMG/HA)10/5-5 and PU-
(PHMG/HA)5/5-10, respectively. Thus, the brush structure dominated the protein adsorp-
tion on PU-PHMG. Likewise, the anomalous observation was the relatively low level of
BFG adsorption on PU in contrast with that on films with high roughness and medium
hydrophilicity. This result might embody the importance of the protein sharp in adsorption.
Fibrinogen is known as a cylinder (diameter = 6 nm, length = 45 nm) [52], where the side-on
orientations were difficult to adsorb stably on PU with a roughness of 36.4 nm because
of stereohindrance. In addition, more assembled layers negatively affected the protein
repelling property (typical case illustrated in PU-(PHMG/HA)10/5-5), which provided
more internal space to capture smaller sized proteins such as HSA into the swelling inner
films through the microstructure [52]. Among the three model proteins, LYS possessed
the smallest size, and was a positively-charged (isoelectric point at 11.0) and ‘hard’ one.
The electrostatic repulsion between LYS and PHMG was noticeable, which reflected in
lower LYS adsorption quantity on the PU-(PHMG/HA)1/5-5 with high roughness and
medium hydrophilicity compared with other PU-(PHMG/HA)n films. After the formation
of the first bilayer of PHMG and HA, the two molecules might be coiled and the positive
charge of PHMG was not well covered by HA, as explained in th ATR-FTIR spectra, which
resulted in a surface with good LYS repelling performance. As seen in the results above, the
hydrophilicity, roughness, charges, and nanotopography structure of the surface as well
as the size, shape, and charges of the proteins were the important factors for the protein
adsorption property. Among these facts, surface hydrophilicity was a dominating one for
protein adsorption.
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3.3. Bacteria Adhesion

Bacterial infection is the main complication after stent implantation, and the adhesion
and colonization of bacteria on the stent play an essential part in scaling. Therefore, an-
tibacterial functionalization becomes the key target for surface modification. Three typical
uropathogens were selected to evaluate the broad-spectrum antimicrobial properties of PU,
PU-PHMG, and PU-(PHMG/HA)5/5-5 (best resistance to protein adsorption). The results
are shown in Table 3. The amount of bacteria adhered to naked PU was 29.2 × 105 CFU/cm2

for E. coli, 14.0× 105 CFU/cm2 for P. aeruginosa, and 24.3 × 105 CFU/cm2 for S. aureus. Com-
pared with PU, PU-PHMG showed excellent antibacterial effect against the three strains, and
the adherence levels of the corresponding bacteria were as low as 0.0345 × 105, 0.0153 × 105,
and 0.160 × 105 CFU/cm2 with inhibitory rates of 99.88%, 99.89%, and 99.34%, respectively.
The effective antibacterial activity of PU-PHMG was attributed to the bactericidal capacity
of PHMG. The interaction between PHMG and the anionic components of bacterial cell
wall compromises membrane integrity, further causing cell membrane rupture and leads to
microbial death [53,54]. The inhibition rates of PU-(PHMG/HA)5/5-5 on E. coli, P. aeruginosa,
and S. aureus were 99.99%, 99.96%, and 99.99%, respectively, indicating that the film had
outstanding antibacterial activity. The inhibition rate was slightly higher than that of PU-
PHMG, indicating that the improvement of surface hydrophilicity and roughness also affect
the antibacterial effect.

Table 3. Antibacterial test of films against E. coli, P. aeruginosa, and S. aureus.

Samples
E. coli P. aeruginosa S. aureus

Colonies (×105,
CFU/cm2) Inhibition (%) Colonies (×105,

CFU/cm2) Inhibition (%) Colonies (×105,
CFU/cm2) Inhibition (%)

PU 29.2 ± 8.77 / 14.0 ± 0.283 / 24.3 ± 0.778 /
PU-PHMG 0.0345 ± 0.00127 99.88 0.0153 ± 0.00148 99.89 0.160 ± 0.0247 99.34

PU-
(PHMG/HA)5/5-5 0 99.99 0.00514 ± 0.000247 99.96 0 99.99

Aside from its antimicrobial activities, biofouling resistance is another crucial element
affecting the long-term property of the films. Generally, bacteria will both adhere to the
film to form colonies and participate in the formation of subsequent biofilms, covering up
the function of antibacterial substances, and subsequently causing inevitable biological
contamination. After incubation with bacteria for one day, the antifouling ability of the
films was assessed by imaging bacterial adhesion on the surface. Figure 6 illustrates
the bacterial adhesion on PU, PU-PHMG, and PU-(PHMG/HA)5/5-5, respectively. As
observed, most of the live bacteria and few dead bacteria accumulated on the PU surface
(Figure 6a) because of its hydrophobic property. PU-PHMG, in contrast, adhered to
most of the dead bacteria (Figure 6b), showing that it had efficient antibacterial property
but nearly no antifouling performance due to electrostatic adsorption and hydrophobic
interaction [55]. Therefore, PU-PHMG merely maintained the antibacterial properties at
the initial stage, but was gradually covered by dead bacteria and lost its function during
long-term incubation with bacteria. To our delight, bacteria were barely observed on the
surface of PU-(PHMG/HA)5/5-5 (Figure 6c), indicating no biofilm had formed. The high
bactericidal efficiency was attributed to two aspects. On one hand, PHMG can kill bacteria
temporarily adhered to the surface. On the other hand, the size of almost all of the bacteria
was larger than 500 nm, which made the bacteria unable to be entrapped in the rough
area. Therefore, the killed bacteria, gently adsorbed on the surface, can be easily stripped
by simple hydraulic turbulence [46] due to the hydrophilicity of HA. The result of the
antifouling property of three test films indicated that the antifouling property of the surface
was important for an antibacterial effect. PU-(PHMG/HA)5/5-5 with good hydrophilicity
containing PHMG and HA exhibited excellent antibacterial and antifouling properties,
suggesting that it had an ideal antibacterial surface for future biomedical usage.
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Figure 6. Confocal laser scanning microscopy (CLSM) images of E. coli adherent onto (a) PU, (b) PU-PHMG, and
(c) PU-(PHMG/HA)5/5-5 film. The live bacteria appear as green fluorescence and dead bacteria appear as red fluorescence.
Scale bars are 50 µm.

3.4. Cytotoxicity Test

Biocompatibility is an essential requirement in bio-materials for their potential biomed-
ical application [56]. Cytotoxicity testing can generally be performed in two ways—contact
(direct) and extraction (indirect) [35]. The extraction method was applied due to the anti-
adhesion property of the film surface, which was difficult for cells to adhere on. The
conditioned cell culture medium mimicked the effect of the film on the physiological
environment. The results of the cytotoxicity of L929 cultured in leaching solution of films
are shown in Figure 7. PU and PU-PHMG films had high cell viability (over 88%) and the
PU-(PHMG/HA)5/5-5 film had no cytotoxicity against L929 cell compared to the control,
which indicated that the final surface modification was favorable to cell viability.
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4. Conclusions

In this study, we focused on surface modification with hydrophilic material and an
antibacterial agent to simultaneously improve the antifouling and antibacterial properties of
the PU film. We successfully created PHMG/HA multilayer films on PU by using layer-by-
layer self-assembly with COOH-activated HA and PHMG as polyanions and polycations.
An optimal film named as PU-(PHMG/HA)5/5-5 with the lowest WCA and medium
roughness was obtained, which possessed excellent protein repelling performance. The
adsorption levels of BFG, HSA, and LYS reduced 67.85%, 85.33% and 80.31%, respectively,
compared with that on the PU film. In addition, the high bacteriostatic rate of over 99.9%
against the three tested bacteria and excellent antibacterial adhesion property showed
that PU-(PHMG/HA)5/5-5 possessed high antimicrobial and anti-biofouling performance.
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Furthermore, the film had nearly no cytotoxicity against L929 cells, which made it possible
for biomedical applications in the future.
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