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Abstract: Despite extensive in-depth research into high calcium fly ash geopolymer concretes and a
number of proposed methods to calculate the mix proportions, no universally applicable method
to determine the mix proportions has been developed. This paper uses an artificial neural network
(ANN) machine learning toolbox in a MATLAB programming environment together with a Bayesian
regularization algorithm, the Levenberg-Marquardt algorithm and a scaled conjugate gradient
algorithm to attain a specified target compressive strength at 28 days. The relationship between the
four key parameters, namely water/solid ratio, alkaline activator/binder ratio, Na2SiO3/NaOH
ratio and NaOH molarity, and the compressive strength of geopolymer concrete is determined.
The geopolymer concrete mix proportions based on the ANN algorithm model and contour plots
developed were experimentally validated. Thus, the proposed method can be used to determine mix
designs for high calcium fly ash geopolymer concrete in the range 25–45 MPa at 28 days. In addition,
the design equations developed using the statistical regression model provide an insight to predict
tensile strength and elastic modulus for a given compressive strength.

Keywords: high calcium fly ash; geopolymer concrete; artificial neural network; mix design; com-
pressive strength; regression analysis

1. Introduction

Concrete is the most widely utilised construction material in the world. It is essential in
the urbanisation of society in order to improve human living standards [1]. The expansion
of urbanization and the worldwide population increase has led to a significant enhancement
of the current global cement production of 12% in 2019, which is predicted to double by
2050 [2]. China is dominating the global cement market and produced 2.4 billion tonnes
in 2018, which accounted for half of the global cement demand, followed by India at 290
million tonnes [3]. The manufacture of one ton of cement can generate 0.6 to 1.0 ton of CO2
depending on the manufacturing method employed [4–6], and is responsible for the 5−9%
of global CO2 emission [7–10].

Many researchers have been exploring alternative sustainable cementitious binders
that can reduce the dependence on Portland cement (PC) in construction [11–13]. Fly
ash geopolymer concrete is a promising alternative that can reduce CO2 emissions by
25–45% by utilizing waste coal combustion products [14]. High calcium fly ash is a popular
material for the production of alkali-activated concrete due to worldwide availability and
containing sufficient quantities of reactive aluminate, silicate and calcium oxide [15,16].
European countries, such as Greece, Poland, and Spain generate the majority of the high
calcium fly ash, derived from lignite coal production [17]. Greece produces 12 million
tonnes of high calcium fly ash annually while in Asia (Thailand) generates about 3 million
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tonnes [16]. However, more than 60% of this fly ash is being discarded in landfill, posing
serious environmental concerns [18].

Nuaklong et al. [19] investigated the compressive strength and fire-resistance of high
calcium fly ash alkali-activated concrete blended with rice husk ash. The results showed
that the 28-day compressive strengths of geopolymer ranged from 36.0 to 38.1 MPa due
to an improved microstructure and denser matrix. However, the inclusion of SiO2 rich
rice husk ash had an adverse effect on the postfire residual strength. Wongsa et al. [20]
examined the fire resistance behaviours of high calcium fly ash alkali-activated concrete
incorporating natural zeolite and mullite. Test results showed that the use of these additives
alone and together improved the fire resistance of concrete, which was attributed to the
presence of Ye’elimite and Wallastonite formed at high temperatures. Wong et al. [21]
illustrated that high calcium fly ash-brick powder alkali-activated composite can yield up
to 44.2 MPa at 28 days. However, the results indicated that brick powder replacement
beyond 10% resulted in the creation of an inhomogeneous microstructure in concrete.

Research has shown that a range of mix design parameters influence the compressive
strength of fly ash geopolymer concrete. Ling et al. [22] studied the impact of four design pa-
rameters, namely the SiO2/Na2O ratio, the alkali activator concentration, the liquid/fly ash
ratio and curing temperature, on the setting time and compressive strength development
of high calcium fly ash geopolymer. Test results confirmed that as the SiO2/Na2O ratio
increased, the setting time was accelerated but the compressive strength was reduced. As
activator concentration increased, the setting time for geopolymer mixes with SiO2/Na2O
of 1.0 and 1.5 were prolonged but were shortened when SiO2/Na2O equalled 2.0, while
the compressive strength of these geopolymer mixes increased. The data also showed that
an elevated curing temperature increased the compressive strength. Zhang and Feng [23]
reported that water content, NaOH molarity and curing temperature influenced the com-
pressive strength development of high calcium fly ash geopolymers. Abdullah et al. [24]
noted that NaOH molarity, Na2SiO3/NaOH ratio, fly ash/alkaline activator ratio and
curing temperature affected the compressive strength of fly ash geopolymers. The test
results revealed that a 12 M NaOH solution and mass ratios of fly ash/alkaline activa-
tor and Na2SiO3/NaOH of 2.0 and 2.5, respectively, yielded the highest compressive
strength. Literature [25,26] has reported that a fly ash/alkaline activator ratio of 3.3−4.0
is required to achieve higher compressive strengths. Sathonawaphak et al. [27] stated
that geopolymers produced with fly ash/alkaline activator ratios in the range of 1.4–2.3
displayed compressive strengths, ranging from 42 to 52 MPa. Their study noted that the
optimum Na2SiO3/NaOH ratio was 1.5. Rattanasak et al. [28] concluded that the use of
a Na2SiO3/NaOH ratio of 1.0 produced a product with a compressive strength as high
as 70 MPa. However, Hardjito [29] showed that the use of a Na2SiO3/NaOH ratio of 2.5
gave the highest compressive strength, whereas a ratio of 0.4 resulted in lower compressive
strength. In addition, researchers have reported that compressive strength increases as
the molarity of the NaOH increases from 8 to 16 M [30]. However, Palomo et al. [25]
reported that a 12 molar NaOH concentration gave higher strength than 18 M in fly ash
geopolymer concrete.

Despite the past research on performance and mix design parameters of high calcium
fly ash in geopolymers, there is no widely accepted procedure to determine the propor-
tions to be mixed in concrete. Optimization by artificial intelligence tools with different
algorithms [31,32] has been used for the mix design of PC concrete. The artificial neural
networks (ANN) technique was used for alkali-activated concrete and found that com-
pressive strength can be predicted with minimal error in comparison to the experimental
results [33–35]. ANN is a statistical data modelling tool that can be trained using the
available data as inputs by changing the weights with the aim to model a complex relation-
ship between the inputs and the target outcome [36,37]. Lahoti et al. [34] investigated the
effect of four influential ratios (Si/Al molar, water/solid, Al/Na molar H2O/Na2O molar)
using ANN to predict the compressive strength of alkali-activated metakaolin concrete. In
another study [35], ANN models with different numbers of neurons in hidden layers were
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investigated and predicted the compressive range of strength of alkali-activated concretes
based on curing time, CaO content, NaOH concentration, and H2O/Na2O molar ratio.
Researchers have been attempting to optimise the layers by using different functions for
the hidden and output layers [38]. Ling et al. [33] showed a strong correlation between the
ANN model predictions and the experimental results for compressive strength and setting
time of high calcium fly ash geopolymer concrete.

In this study, ANN was used with three algorithms and different numbers of neurons
in the hidden layer for the prediction of compressive strength of high calcium fly ash
geopolymer concrete based on the data obtained from the literature. Having assessed
the available mix design parameters, the water/solid ratio, alkaline activator/fly ash
ratio, Na2SiO3/NaOH ratio and NaOH molarity were identified as the most influential
parameters for compressive strength prediction. Although the curing temperature was
reviewed and analysed for the database, the strength development over time did not
identify it as an influential parameter. Based on the parameters identified, a novel standard
process to find the mix proportions for a high calcium fly ash geopolymer concrete was
developed, and the effectiveness of achieving a specified compressive strength was tested
and validated through laboratory experiments.

2. Significance of Research

Although fly ash geopolymer concrete has been used in structural members and
commercialised as a construction material, the mix design process is still unclear because of
the many variables involved. Almost all the proposed methods employ different techniques
specific for the particular situation and cannot be used as a standard method. The missing
link identified is that there is no unique mix design guideline for high calcium fly ash
geopolymer concrete. This research addresses the identified gap and proposes a standard
mix design procedure using a machine learning technique. The validation of the technique
demonstrates that the novel method developed can be used with confidence to calculate
mix proportions for compressive strength in the range of 25–45 MPa.

3. Geopolymer Concrete Database

A database was established using the published research/literature up to 2019 (inclu-
sive) on high calcium fly ash geopolymer concrete scrutinising it for compressive strength
at 28 days. The database included only 100% high calcium fly ash concrete mixes and did
not consider mortar or phase mixes, and excluded the blended high calcium fly ash com-
posites. This selection criteria was adopted to develop a mix design procedure that could
predict the standard 28-day compressive strength for high calcium fly ash geopolymer
concrete more accurately. The present database consists of compressive strength values
obtained from 166 concrete mix designs, Table 1.
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Table 1. Mix design database for high calcium fly ash geopolymer concrete.

Fly Ash (kg) Aggregate (kg) Activator (kg) Added
Water (kg)

Solid % in Na2SiO3 NaOH
Molarity

Heat Curing
[Ambient Curing] Comp. Strength

(MPa)
Flexural

Strength (MPa)
Elastic Modulus

(GPa) Ref.

Coarse Fine NaOH Na2SiO3 SiO2 Na2O Time ◦C

414 1091 588 104 104 0 32.9 15.3 10 M 24 h 60 46.67 – 31.00 [16]
414 1091 588 104 104 0 32.9 15.3 15 M 24 h 60 54.40 – 37.80
414 1091 588 104 104 0 32.9 15.3 20 M 24 h 60 43.42 – 38.00
414 1091 588 69 138 0 32.9 15.3 10 M 24 h 60 40.09 – 24.20
414 1091 588 69 138 0 32.9 15.3 15 M 24 h 60 48.18 – 31.00
414 1091 588 69 138 0 32.9 15.3 20 M 24 h 60 49.50 – 31.80
414 1091 588 104 104 0 32.9 15.3 10 M 24 h [23] 39.67 – 30.40
414 1091 588 104 104 0 32.9 15.3 15 M 24 h [23] 45.34 – 34.80
414 1091 588 104 104 0 32.9 15.3 20 M 24 h [23] 37.64 – 38.40
414 1091 588 69 138 0 32.9 15.3 10 M 24 h [23] 33.80 – 23.40
414 1091 588 69 138 0 32.9 15.3 15 M 24 h [23] 39.02 – 26.80
414 1091 588 69 138 0 32.9 15.3 20 M 24 h [23] 46.69 – 35.40

523 1124 459 118 118 0 28.7 11.7 10 M 24 h [23] 36.5 5.5 22 [39]
500 1166 475 113 113 0 28.7 11.7 10 M 24 h [23] 33.0 5.3 26
478 1211 490 108 108 0 28.7 11.7 10 M 24 h [23] 26.0 4.8 24
470 1161 474 118 118 0 28.7 11.7 10 M 24 h [23] 32.5 6.1 24
450 1201 489 113 113 0 28.7 11.7 10 M 24 h [23] 32.0 5.8 24
430 1245 504 108 108 0 28.7 11.7 10 M 24 h [23] 27.5 5.6 23.9
428 1191 487 118 118 0 28.7 11.7 10 M 24 h [23] 32.0 5.9 21.5
409 1231 501 113 113 0 28.7 11.7 10 M 24 h [23] 29.9 5.1 24.5
391 1273 515 108 108 0 28.7 11.7 10 M 24 h [23] 27.5 5 24.5
392 1216 497 118 118 0 28.7 11.7 10 M 24 h [23] 25.0 4.8 24.7
375 1255 511 113 113 0 28.7 11.7 10 M 24 h [23] 21.0 4.9 27.5
359 1296 525 108 108 0 28.7 11.7 10 M 24 h [23] 20.0 4.1 22.5
523 1126 460 118 118 0 28.7 11.7 15 M 24 h [23] 35.5 6.4 27
500 1168 475 113 113 0 28.7 11.7 15 M 24 h [23] 32.5 6.3 27
478 1212 491 108 108 0 28.7 11.7 15 M 24 h [23] 31.0 5.8 20
470 1163 475 118 118 0 28.7 11.7 15 M 24 h [23] 36.0 6.3 26
450 1203 490 113 113 0 28.7 11.7 15 M 24 h [23] 34.5 6 27.5
430 1246 505 108 108 0 28.7 11.7 15 M 24 h [23] 33.0 5.8 26
428 1193 487 118 118 0 28.7 11.7 15 M 24 h [23] 32.5 6.2 27
409 1232 502 113 113 0 28.7 11.7 15 M 24 h [23] 33.0 5.9 29
391 1274 516 108 108 0 28.7 11.7 15 M 24 h [23] 32.5 5.3 25.1
392 1218 498 118 118 0 28.7 11.7 15 M 24 h [23] 18.5 5.9 19
375 1257 512 113 113 0 28.7 11.7 15 M 24 h [23] 19.0 5.2 19.5
359 1298 525 108 108 0 28.7 11.7 15 M 24 h [23] 16.0 5.1 29
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Table 1. Cont.

Fly Ash (kg) Aggregate (kg) Activator (kg) Added
Water (kg)

Solid % in Na2SiO3 NaOH
Molarity

Heat Curing
[Ambient Curing] Comp. Strength

(MPa)
Flexural

Strength (MPa)
Elastic Modulus

(GPa) Ref.

Coarse Fine NaOH Na2SiO3 SiO2 Na2O Time ◦C

390 1092 585 67 167 0 30.0 9.0 8 M 28 days [25] 23.4 – – [40]
390 1092 585 67 167 0 30.0 9.0 10 M 28 days [25] 25.0 – –
390 1092 585 67 167 0 30.0 9.0 12 M 28 days [25] 28.2 – –
390 1092 585 67 167 0 30.0 9.0 14 M 28 days [25] 31.8 – –
390 1092 585 67 167 0 30.0 9.0 16 M 28 days [25] 32.2 – –
390 1092 585 67 167 0 30.0 9.0 18 M 28 days [25] 30.3 – –

300 1684 681 51.4 129 0 29.4 14.7 14 M 24 h 60 25.8 4.81 – [41]
300 1684 681 51.4 129 0 29.4 14.7 14 M 24 h 60 23.2 4.56 –
300 1684 681 51.4 129 0 29.4 14.7 14 M 24 h 60 21.5 4.63 –
300 1684 681 51.4 129 0 29.4 14.7 14 M 24 h 60 26.8 4.69 –
300 1684 681 51.4 129 0 29.4 14.7 14 M 24 h 60 20.5 4.72 –
300 1684 681 51.4 129 0 29.4 14.7 14 M 24 h 60 22.0 4.85 –
600 1087 572 89.1 223 0 29.4 14.7 14 M 24 h 60 26.5 4.68 –
600 1087 572 89.1 223 0 29.4 14.7 14 M 24 h 60 29.0 4.65 –
600 1087 572 89.1 223 0 29.4 14.7 8 M 24 h 60 27.0 – –
600 1087 572 89.1 223 0 29.4 14.7 8 M 24 h 60 25.0 – –
600 1087 572 89.1 223 0 29.4 14.7 8 M 24 h 60 22.5 – –
600 1087 572 89.1 223 0 29.4 14.7 8 M 24 h 60 28.5 – –
600 1087 572 89.1 223 0 29.4 14.7 8 M 24 h 60 22.0 – –
600 1087 572 89.1 223 0 29.4 14.7 8 M 24 h 60 30.0 – –

494 858 691 198 198 0 30.0 15.0 14 M 72 h 60 59.5 4.48 33.63 [42]
494 858 691 198 198 0 30.0 15.0 14 M 72 h 60 52.3 4.72 34.37
494 858 691 198 198 0 30.0 15.0 14 M 72 h 60 55.9 4.3 37.10
494 858 691 198 198 0 30.0 15.0 14 M 72 h 60 80.4 5.27 42.87
494 858 691 198 198 0 30.0 15.0 14 M 72 h 60 61.4 6.23 31.44
494 858 691 198 198 0 30.0 15.0 14 M 72 h 60 39.2 4.19 19.06
494 858 691 198 198 0 30.0 15.0 14 M 72 h 60 53.7 4.43 28.91
494 858 691 198 198 0 30.0 15.0 14 M 72 h 60 36.5 3.58 26.97
494 858 691 198 198 0 30.0 15.0 14 M 72 h 60 57.2 5.27 29.44
494 858 691 198 198 0 30.0 15.0 14 M 72 h 60 42.8 5.18 22.56
494 858 691 198 198 0 30.0 15.0 14 M 72 h 60 62.2 4.83 29.89

450 1150 500 108 162 0 30.3 12.3 12 M 48 h 60 35.2 5 – [43]
450 1036 500 108 162 0 30.3 12.3 12 M 48 h 60 32.9 3.6 –
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Table 1. Cont.

Fly Ash (kg) Aggregate (kg) Activator (kg) Added
Water (kg)

Solid % in Na2SiO3 NaOH
Molarity

Heat Curing
[Ambient Curing] Comp. Strength

(MPa)
Flexural

Strength (MPa)
Elastic Modulus

(GPa) Ref.

Coarse Fine NaOH Na2SiO3 SiO2 Na2O Time ◦C

550 838 600 95 239 0 30.0 12.0 8 M 24 h 60 33.2 – – [44]
550 838 600 95 239 0 30.0 12.0 8 M 28 day [29] 35.6 – –
550 838 600 95 239 0 30.0 12.0 10 M 24 h 60 35.4 – –
550 838 600 95 239 0 30.0 12.0 10 M 28 day [29] 36.7 – –
550 838 600 95 239 0 30.0 12.0 12 M 24 h 60 42.4 – –
550 838 600 95 239 0 30.0 12.0 12 M 28 day [29] 39.7 – –
550 838 600 95 239 0 30.0 12.0 14 M 24 h 60 40.1 – –
550 838 600 95 239 0 30.0 12.0 14 M 28 day [29] 38.7 – –
550 838 600 95 239 0 30.0 12.0 8 M 24 h 60 34.7 – –
550 838 600 95 239 0 30.0 12.0 8 M 28 day [29] 36.2 – –
550 838 600 95 239 0 30.0 12.0 10 M 24 h 60 34.3 – –
550 838 600 95 239 0 30.0 12.0 10 M 28 day [29] 37.1 – –
550 838 600 95 239 0 30.0 12.0 12 M 24 h 60 41.3 – –
550 838 600 95 239 0 30.0 12.0 12 M 28 day [29] 38.9 – –
550 838 600 95 239 0 30.0 12.0 14 M 24 h 60 42.3 – –
550 838 600 95 239 0 30.0 12.0 14 M 28 day [29] 38.5 – –
550 838 600 95 239 0 30.0 12.0 8 M 24 h 60 36.3 – –
550 838 600 95 239 0 30.0 12.0 8 M 28 day [29] 35.3 – –
550 838 600 95 239 0 30.0 12.0 10 M 24 h 60 36.1 – –
550 838 600 95 239 0 30.0 12.0 10 M 28 day [29] 36.3 – –
550 838 600 95 239 0 30.0 12.0 12 M 24 h 60 42.2 – –
550 838 600 95 239 0 30.0 12.0 12 M 28 day [29] 45.3 – –
550 838 600 95 239 0 30.0 12.0 14 M 24 h 60 40.2 – –
550 838 600 95 239 0 30.0 12.0 14 M 28 day [29] 39.6 – –
550 838 600 95 239 0 30.0 12.0 8 M 24 h 60 34.4 – –
550 838 600 95 239 0 30.0 12.0 8 M 28 day [29] 36.3 – –
550 838 600 95 239 0 30.0 12.0 10 M 24 h 60 35.4 – –
550 838 600 95 239 0 30.0 12.0 10 M 28 day [29] 38.3 – –
550 838 600 95 239 0 30.0 12.0 12 M 24 h 60 43.4 – –
550 838 600 95 239 0 30.0 12.0 12 M 28 day [29] 44.3 – –
550 838 600 95 239 0 30.0 12.0 14 M 24 h 60 39.4 – –
550 838 600 95 239 0 30.0 12.0 14 M 28 day [29] 38.3 – –
550 838 600 95 239 0 30.0 12.0 8 M 24 h 60 33.1 – –
550 838 600 95 239 0 30.0 12.0 8 M 28 day [29] 33.5 – –
550 838 600 95 239 0 30.0 12.0 10 M 24 h 60 35.1 – –
550 838 600 95 239 0 30.0 12.0 10 M 28 day [29] 35.5 – –
550 838 600 95 239 0 30.0 12.0 12 M 24 h 60 42.2 – –
550 838 600 95 239 0 30.0 12.0 12 M 28 day [29] 41.5 – –
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Table 1. Cont.

Fly Ash (kg) Aggregate (kg) Activator (kg) Added
Water (kg)

Solid % in Na2SiO3 NaOH
Molarity

Heat Curing
[Ambient Curing] Comp. Strength

(MPa)
Flexural

Strength (MPa)
Elastic Modulus

(GPa) Ref.

Coarse Fine NaOH Na2SiO3 SiO2 Na2O Time ◦C

550 838 600 95 239 0 30.0 12.0 14 M 24 h 60 40.2 – –
550 838 600 95 239 0 30.0 12.0 14 M 28 day [29] 37.5 – –
550 838 600 95 239 0 30.0 12.0 8 M 24 h 60 34.2 – –
550 838 600 95 239 0 30.0 12.0 8 M 28 day [29] 35.5 – –
550 838 600 95 239 0 30.0 12.0 10 M 24 h 60 36.2 – –
550 838 600 95 239 0 30.0 12.0 10 M 28 day [29] 37.5 – –
550 838 600 95 239 0 30.0 12.0 12 M 24 h 60 41.4 – –
550 838 600 95 239 0 30.0 12.0 12 M 28 day [29] 40.5 – –
550 838 600 95 239 0 30.0 12.0 14 M 24 h 60 40.8 – –
550 838 600 95 239 0 30.0 12.0 14 M 28 day [29] 38.4 – –

310 1204 649 48.6 121.5 0 34.7 16.2 10 M 24 h 80 44.4 – – [45]

350 1250 650 41 103 0 29.8 14.7 8 M 7 day [28] 19.0 – – [46]
350 1250 650 41 103 0 29.8 14.7 8 M 7 day [28] 26.0 – –
350 1250 650 41 103 0 29.8 14.7 8 M 7 day [28] 23.5 – –
350 1250 650 41 103 0 29.8 14.7 8 M 7 day [28] 22.5 – –
350 1250 650 41 103 0 29.8 14.7 8 M 7 day [28] 17.8 – –
350 1250 650 41 103 0 29.8 14.7 8 M 7 day [28] 21.5 – –
350 1250 650 41 103 0 29.8 14.7 8 M 7 day [28] 19.0 – –
350 1250 650 41 103 0 29.8 14.7 8 M 7 day [28] 13.0 – –
350 1250 650 41 103 0 29.8 14.7 8 M 7 day [28] 12.0 – –
350 1250 650 41 103 0 29.8 14.7 8 M 24 h 60 32.5 – –
350 1250 650 41 103 0 29.8 14.7 8 M 24 h 60 33.5 – –
350 1250 650 41 103 0 29.8 14.7 8 M 24 h 60 31.0 – –
350 1250 650 41 103 0 29.8 14.7 8 M 24 h 60 24.7 – –
350 1250 650 41 103 0 29.8 14.7 8 M 24 h 60 22.0 – –
350 1250 650 41 103 0 29.8 14.7 8 M 24 h 60 25.0 – –
350 1250 650 41 103 0 29.8 14.7 8 M 24 h 60 23.5 – –
350 1250 650 41 103 0 29.8 14.7 8 M 24 h 60 16.0 – –
350 1250 650 41 103 0 29.8 14.7 8 M 24 h 60 15.0 – –

383 1379 567 54.5 137.00 0 32.4 13.5 12 M 7 day [30] 20.0 – – [44]
527 1159 522 53.3 133.33 0 32.4 13.5 12 M 7 day [30] 19.0 – –
530 1070 505 51.6 128.59 0 32.4 13.5 12 M 7 day [30] 16.0 – –
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Table 1. Cont.

Fly Ash (kg) Aggregate (kg) Activator (kg) Added
Water (kg)

Solid % in Na2SiO3 NaOH
Molarity

Heat Curing
[Ambient Curing] Comp. Strength

(MPa)
Flexural

Strength (MPa)
Elastic Modulus

(GPa) Ref.

Coarse Fine NaOH Na2SiO3 SiO2 Na2O Time ◦C

450 1200 600 80 120 0 32.4 13.5 10 M 7 day [25] 18.5 – – [47]
450 1200 600 80 120 0 32.4 13.5 12 M 7 day [25] 27.0 – –
450 1200 600 80 120 0 32.4 13.5 14 M 7 day [25] 29.3 – –
410 1143 521.8 110 120 2.3 32.4 13.5 10 M 7 day [25] 16.2 – –
410 1143 521.8 110 120 2.3 32.4 13.5 12 M 7 day [25] 25.0 – –
410 1143 521.8 110 120 2.3 32.4 13.5 14 M 7 day [25] 22.5 – –

350 1200 645 41 103 35 29.8 14.7 8 M 3 day [35] 19.0 – – [48]
350 1200 645 41 103 35 29.8 14.7 8 M 24 h 65 49.0 – –
350 1200 645 41 103 35 29.8 14.7 8 M 3 day 55 48.0 – –

500 1000 750 125 125 0 30.0 15.0 14 M 72 h 80 51.0 – – [49]
500 1000 750 125 125 0 30.0 15.0 14 M 72 h 80 53.0 – –
500 1000 750 125 125 0 30.0 15.0 14 M 72 h 80 50.0 – –
500 1000 750 125 125 0 30.0 15.0 14 M 72 h 80 50.0 – –
500 1000 750 125 125 0 30.0 15.0 14 M 72 h 80 52.0 – –
500 1000 750 125 125 0 30.0 15.0 14 M 72 h 80 44.0 – –
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The kurtosis values in Table 2 indicate that all the variables did not have very narrow
distributions with most of the data points in the centre. When the kurtosis value was less
than (−1), it showed a too flat distribution (i.e., Na2SiO3/NaOH ratio for this study) [50].
Skewness for all parameters ranged from (−0.557) to 0.521, indicating symmetrical data
points with respect to the extent to which the variables’ distribution was symmetrical.

Table 2. Statistics for input and target parameters.

Variable Minimum Maximum Average SD Skewness Kurtosis

Water/solid 0.123 0.330 0.263 0.045 −0.557 −0.243
Activator/fly ash 0.340 0.802 0.549 0.105 0.433 0.388
Na2SiO3/NaOH 0.500 2.516 1.878 0.754 −0.488 −1.569
NaOH molarity 8 20 11.8 3.12 0.521 −0.118

Compressive strength (MPa) 12 80.4 32.8 12.4 0.218 0.779

Artificial Neural Network Model

ANN has three main layers, namely input layer, hidden layer and output layer
with weights [33]. The inputs are the influential parameters collected in the database
(Table 1) while “weights” give an indication of the relationship of inputs and the outputs.
Equations (1) and (2) [29] are used to calculate weighted sums of inputs and outputs,
respectively.

(net)j =
n

∑
i=1

wijxi + b (1)

(out)j = f (net)j =
1

1 + e−α(net)j
(2)

where (net)j is the weighted sum of the jth neuron for the input received from the preceding
layer with n neurons, wij is the weight between the jth neuron in the preceding layer, xi is
the output of the ith neuron in the preceding layer, b is a fixed value as internal addition, α
is a constant used to control the slope of the semilinear region.

The ANN toolbox in MATLAB was used with three different algorithms, namely the
Bayesian regularization algorithm, Levenberg-Marquardt algorithm and scaled conjugate
gradient algorithm to predict the compressive strength of high calcium fly ash geopolymer
concrete. The developed database was divided into two subsets as training subset and
testing subset. It was noted that 63−80% of data was used for a training subset while
the remainder was used for the testing subset [51–53]. This study randomly selected 70%
of data points from the database (Table 1) for the training subset and the remainder was
allocated for the testing subset. During the predata processing stage, input and output
variables were generalised with respect to minimum and maximum values in order to get
a range between 0 and 1.

Figure 1 shows the ANN model construction: the 4 input variables as 4 influential
parameters; the 5, 8 and 10 neurons were selected for the hidden layer; and the compressive
strength was selected as the only target output. Having developed the ANN model and
trained it using the training data set, next step was to evaluate the model using the testing
data set. The coefficient of correlation (R) and mean square error (MSE), Equations (3)
and (4) [50] were used as performance parameters in this study. In these equations, “Y”
represents the compressive strength at 28 days, the “a” and “p” denote the actual and the
predicted, a bar above the letter shows the mean value, and sample size if given by n.

R =
∑n

i=1
(
Yai − Ya

)(
Ypi − Yp

)√
∑n

i=1
(
Yai − Ya

)2
√

∑n
i=1
(
Ypi − Yp

)2
(3)
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MSE =

√
∑n

i=1
(
Yai − Ypi

)2

n
(4)

Figure 1. Schematic diagram of artificial neural network (ANN) model.

Figure 2 shows the comparison of the model performance with a number of hidden
neurons for different algorithms. Results showed that 8 hidden neurons along with the
Bayesian regularization algorithm yielded the best correlation in the given dataset. This
gave the highest R value for training, highest R value for all and second lowest value
closest to zero for mean squared error.

The model performance with 8 hidden neurons along with the Bayesian Regularization
algorithm is shown in Figure 3. When data points sit on the dotted straight line, it confirms
the exact correlation between the predicted and compressive strength from experimental
results, which is the desired outcome. It was observed that the training dataset had the best
correlation with the normalised actual compressive strength when compared to the test
and all plots. In addition, all three scatter plots yielded R values greater than 0.8, which
meant a close relationship existed between the key mix design parameters and the 28-day
compressive strength. The ANN model with the selected neurons and the algorithm had a
MSE value of 0.0056897, closest to zero, confirming there was almost no error present in
this predictive model.
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Figure 2. Model performance vs. number of hidden neurons for each algorithm.
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Figure 3. Performance of the artificial neural network (ANN) model based on (a) the training dataset; (b) test dataset; (c) all
datasets; and (d) mean squared error for 8 hidden neurons and the Bayesian Regularization training algorithm.

4. Geopolymer Concrete Design
4.1. Contour Plots

The contour plots shown in Figure 4 demonstrate the intercorrelation of the selected
four input variables (water/solid ratio, activator/fly ash ratio, Na2SiO3/NaOH ratio and
NaOH molarity) with the target output of compressive strength. Hence, these contour
maps can be used to design mix proportions for a target 28-day compressive strength for
high calcium fly ash geopolymer concrete.
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Figure 4. Effect of input parameters on the compressive strength (Note: for instance, the selected input parameters of 45 MPa
mix is illustrated). Input parameters: (a) activator/fly ash ratio and NaOH molarity; (b) water/solid ratio and NaOH
molarity; (c) water/solid ratio and activator/fly ash ratio; (d) NaOH molarity and Na2SiO3/NaOH ratio; (e) water/solid
ratio and Na2SiO3/NaOH ratio; (f) activator/fly ash ratio and Na2SiO3/NaOH ratio.

Water/solid ratio—Figure 4b,e depicts that there was an increasing trend for compres-
sive strength with increased water/solid ratio. On the other hand, Figure 4c shows that
even with a lower water/solid ratio a higher compressive strength could be achieved using
a higher activator/fly ash ratio.

Activator/fly ash ratio—Figure 4f depicts that compressive strength had an increasing
trend with an increased activator/fly ash ratio. It was possible to obtain a 20−35 MPa
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concrete using an activator/fly ash ratio between 0.3 to 0.6, Figure 4a. For an activator/fly
ash ratio of 0.7 to 0.9 together with any NaOH molarity, 35–50 MPa compressive strength
could be achieved.

Na2SiO3/NaOH ratio—Figure 4f shows that when the Na2SiO3/NaOH ratio was
decreased, the compressive strength was increasing faster due to the increment in the
activator/fly ash ratio. Further, by increasing the Na2SiO3/NaOH ratio with decreasing
NaOH molarity, higher compressive strength could be achieved, Figure 4d.

NaOH molarity—Figure 4a illustrates that for an activator/fly ash ratio less than 0.7,
compressive strength could only achieve a maximum 40 MPa irrespective of the NaOH
molarity. Hence, in order to achieve higher strength, the activator/fly ash ratio needs to be
in the range 0.7 to 0.9 in combination with adjustment of the NaOH molarity. Figure 4b
shows a similar approach, as water/solid ratio had to be increased in combination with
NaOH molarity in order to achieve higher compressive strengths.

4.2. Mix Design Calculation

For model validation, four high calcium fly ash geopolymer concrete mixes were
designed with the targeted compressive strengths of 25, 30, 40 and 45 MPa at 28 days. A de-
tailed calculation procedure for 45 MPa concrete mix is illustrated below. The calculated mix
design variables obtained from the contour plots of Figure 4 were water/solid ratio = 0.4,
activator/fly ash ratio = 0.85, Na2SiO3/NaOH ratio = 3.7 and NaOH molarity = 10 M. The
460 kg fly ash was used which is the median of database, Table 1.

(a) Alkaline activator content:

Activator
Fly ash

= 0.85 ;
Na2SiO3 + NaOH

Fly ash
=

Na2SiO3

NaOH
= 3.7 (5)

After solving: Na2SiO3 = 307.8 kg; NaOH = 83.2 kg.

(b) Added water content:

Water
Solid

=
Na2SiO3water + NaOHwater + Added Water

Fly ash + Na2SiO3solid + NaOHsolid
= 0.4 (6)

After solving: Added water (w) = 2.82 kg (Table 3).

Table 3. Data tabulation: calculating added water content.

Na2SiO3 NaOH Extra Water Binder Total

Solid 120.1 25.8 0 460 605.9
Water 187.7 57.4 w 0 245.1 + w

(c) Aggregate content:

VFly ash + VNa2SiO3 + VNaOH + VAdded Water + VSand + VAggregate = 1 (7)

MFly ash

ρFly ash
+

MNa2SiO3

ρNa2SiO3

+
MNaOH
ρNaOH

+
MAdded Water
ρAdded Water

+
MSand
ρSand

+
MAggregate

ρAggregate
= 1 (8)

VAggregate

VSand + VAggregate
= 0.65 (9)

After solving: MSand = 467 kg and MAggregate = 919.3 kg.

Similarly, Figure 4 was used to obtain the mix proportions for 25 MPa, 30 MPa and
40 MPa concretes and these were tabulated in Table 4.
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Table 4. Mix proportions of high calcium fly ash geopolymer concrete.

Mix
Notation

Target
Strength

Mix Design Variables

Water/Solid Activator/Fly Ash Na2SiO3/NaOH NaOH Molarity

M25 25 MPa 0.25 0.42 1.5 10 M
M30 30 MPa 0.28 0.50 2.0 10 M
M40 40 MPa 0.35 0.70 3.5 10 M
M45 45 MPa 0.42 0.85 4.0 8 M

Mix
Notation

Target
Strength

Mix Proportions (kg/m3)

Fly Ash Sand Aggregates Na2SiO3 NaOH Added Water

M25 25 MPa 460 500.8 985.8 115.9 77.3 93.7
M30 30 MPa 460 495.7 975.8 153.3 76.7 75.5
M40 40 MPa 460 480.3 945.5 250.5 71.5 33.1
M45 45 MPa 460 467 919.3 307.8 83.2 2.82

4.3. Experimental Procedure

The high calcium fly ash obtained from an Indonesian coal power station was used
for this study. The chemical composition of the fly ash, Table 5, was determined using
Bruker Axs S4 Pioneer X-ray fluorescence equipment. The particle size distribution was
determined using a Malvern Mastersizer analyser and the crystalline composition with
a Bruker Axs D8 ADVANCE Wide Angle X-ray diffraction (XRD) instrument. The XRD
analysis was performed at 40 kV, Cu Kα = 1.54178 Å wavelength, and a scanning range of
2 theta in 5–95◦. Sample holders were filled using the front-loading procedure. The data
obtained from XRD were interpreted using Bruker-DIFFRAC.EVA software and Rietveld
analysis [54,55]. The surface area was determined using the Brunauer-Emmett-Teller
method by N2 absorption. The crystalline and amorphous content, specific surface area,
and particle size distribution are shown in Table 6.

Table 5. Chemical composition of high calcium fly ash.

Source Material
Component (wt.%)

SiO2 Al2O3 Fe2O3 CaO P2O5 TiO2 MgO K2O SO3 MnO Na2O LOI a

Fly ash 38.7 20.8 5.3 26.6 0.15 0.45 1.5 2.6 2.1 0.5 1.2 0.1
a Loss on ignition (unburnt carbon content).

Table 6. Physical and mineralogical properties of high calcium fly ash.

Properties Investigated Fly Ash

Specific gravity 2.15

BET Surface area, (m2/kg) 2619

Fineness (%)
at 10 microns 45.2
at 20 microns 64.1
at 45 microns 85.9

Amorphous content (%) 67.1

Crystalline content (%) 32.8

Commercially available sodium hydroxide solution (8–10 M) and sodium silicate
solution (Na2O = 14.7% and SiO2 = 29.4% by mass, specific gravity = 1.53) were used as
alkaline activator in the geopolymer production. The fine aggregate and coarse aggregate
were prepared with respect to the Australian Standards, AS 1141.5 [56]. River sand in
an uncrushed form (specific gravity = 2.5 and fineness modulus = 2.8) was used as fine
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aggregate, and 10 mm grain size crushed granite aggregate (specific gravity = 2.65 and
water absorption = 0.74%) was used as coarse aggregate in concrete. Demineralised water
was used throughout in the mixing.

A 60 L concrete mixer was used to prepare all concrete specimens. Firstly, fly ash, sand
and coarse aggregates were mixed for 4 min followed by the addition of alkaline activator
and water with further mixing for 8 min. This provided a well-combined, nonsegregated
concrete mix. The concrete was poured into standard cylindrical moulds (100 mm diameter
× 200 mm height), then compacted using a vibration table for 1 min to remove air bubbles.
All prepared concrete cylinders were kept in the laboratory under ambient conditions (23 ◦C
temperature and 70% relative humidity) for 24 h. Afterwards, all concrete specimens were
heat cured at 60 ◦C temperature for one day. After demoulding, all specimens were clearly
labelled and stored in laboratory conditions (23 ◦C temperature and 70% relative humidity)
until the 28 day testing. Compressive strength testing was undertaken in accordance with
the ASTM C109/C109M standard using a Technotest concrete testing machine [57]. A total
of 4 specimens were tested at each interval at a loading rate of 0.34 MPa/S until failure.

5. Experimental Results and Model Validation

The experimental results, noted in Table 7, demonstrated that the four high calcium
fly ash geopolymer concrete mixes achieved close to their relevant target compressive
strengths at 28 days. The M25 and M30 concrete mixes slightly exceeded the target strength
while both the M40 and M45 concrete mixes displayed a slightly lower value than the
expected compressive strength. Although all the mixes showed increased compressive
strength from 7 to 28 days, the percentage increment was slightly different. The M25
and M30 geopolymer mixes obtained the highest strength development (~70%) while the
other two concrete mixes gained ~60% strength during this period. Overall, experimental
observations were in good agreement with the predicted and actual compressive strength
for high calcium fly ash geopolymer concrete indicating the reliability of the mix design
procedure described in this paper.

Table 7. Measured compressive strength (MPa).

Concrete Type 7-Day 28-Day

M25 19.0 ± 0.6 27.2 ± 0.8
M30 23.1 ± 0.9 33.1 ± 1.2
M40 22.9 ± 0.7 38.1 ± 0.5
M45 32.7 ± 0.9 44.1 ± 0.8

Relationship between Mechanical Properties

The high calcium geopolymer concrete experimental data available in Table 1 was
used in a regression analysis to explore the trends and correlations between elastic modulus
and tensile strength with compressive strength. Residual and refined R2 values for selected
regression models were used together with the least square method to obtain the linear
regression lines to match the experimental data. Each best fit line is linked with the
confidence and prediction interval bands. The prediction interval is concentrated on the
specific data point while prediction lines are the focus of the confidence interval. There
is a 95% chance that the actual regression line will be in the confidence interval band
calculated using Equation (5) [58]. Hence, there is a 95% chance that the actual value (Y)
corresponding to a particular value (X0,) is located within this interval, Equation (6) [58].

Ypred. ± t0.05

√
∑ (Y − Ypred.)

2

n − 2
.

√
1
n
+

(
X − X

)2

SSx
(10)

Ypred. ± t0.05

1 +

√
∑ (Y − Ypred.)

2

n − 2

 .

√
1 +

1
n
+

(
X − X

)2

SSx
(11)



Polymers 2021, 13, 900 17 of 21

The Ypred. is the predicted Y values, t0.05 is the t critical value for 95% interval, n is the
sample size, X is the true value while X is the mean of sample and SSx is the sum of the
squares of standard error of X values. The proposed regression model for the relationship
between compressive and flexural strength is shown in Figure 5. Relevant equations are
available in the Standards [59,60] for Portland cement concrete to evaluate the flexural
strength which are used in deflection calculations. However, these equations do not lie
in the 95% prediction interval bands of the regression model for experimental results.
The AS 3600 [59] and ACI 318 [60] equations for flexural strength are on the lower side
of the confidence interval of the proposed regression model, illustrating that the design
equations of both standards underestimate the flexural strength for high calcium fly ash
geopolymer concrete. Hence, the use of the current standard/code for PC concrete will
achieve a conservative design for flexural members made with high calcium fly ash based
geopolymer concrete.

Figure 5. Correlation between compressive strength vs. flexural strength.

A linear regression line with prediction and confidence interval bands to demonstrate
the relationship between compressive strength and elastic modulus is shown in Figure
6. As the R2 value of the regression model was 0.97, this indicates that a more accurate
modulus of elasticity could be achieved if the density was also considered in the equation.
AS 3600 [59] and ACI 318 [60] also provide a similar design equation with the inclusion of
density. Contrary to the flexural strength, the AS 3600 equation for elastic modulus lies
above the upper confidence interval of proposed regression model. This implies that the
available equations for PC concrete overestimate the elastic modulus of high calcium fly
ash geopolymer concrete which leads to an underestimation of serviceability performance.
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Figure 6. Correlation between compressive strength vs. elastic modulus.

6. Summary and Conclusions

1. The algorithm for the predictive model for high calcium fly ash geopolymer concrete
mix design was developed using artificial neural networks in order to determine the
relationship between the four key parameters identified, namely water/solid ratio,
alkaline activator/binder ratio, Na2SiO3/NaOH ratio and NaOH molarity, and the
28-day compressive strength of geopolymer concrete.

2. A new standard mix design procedure was developed for high calcium fly ash
geopolymer concrete using contour plots generated in the MATLAB programming
environment, and demonstrated through detailed calculation to ascertain the mix
proportions for 45 MPa target compressive strength at 28 days.

3. Good correlation between the experimental results and the compressive strengths
calculated from contour plots validated the developed novel mix design method for
high calcium fly ash geopolymer concrete. Thus, the proposed method is suitable
for calculating mix proportions with confidence for a target compressive strength at
28 days in the range of 25–45 MPa.

4. A statistical regression model was developed using the database to provide new
design equations to predict tensile strength and elastic modulus of high calcium fly
ash geopolymer concrete based on the 28-day compressive strengths obtained.

5. The design equations available in AS 3600 and ACI 318 standards for Portland cement
concrete provide a conservative design for tensile strength in high calcium fly ash
geopolymer concrete. However, AS 3600 design equation overestimates the elastic
modulus for geopolymer concrete.

6. The present study suggests preliminary amendments to the available design standards
for Portland cement concrete to design high calcium fly ash geopolymer concrete
structural elements with better serviceability performance. However, further investi-
gations are required prior to implementing them in the standards/codes.
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