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Abstract: Increasing machine learning methods are being applied to infrared non-destructive assess-
ment for internal defects assessment of composite materials. However, most of them extract only
linear features, which is not in accord with the nonlinear characteristics of infrared data. Moreover,
limited infrared images tend to restrict the data analysis capabilities of machine learning methods.
In this work, a novel generative kernel principal component thermography (GKPCT) method is
proposed for defect detection of carbon fiber reinforced polymer (CFRP) composites. Specifically, the
spectral normalization generative adversarial network is proposed to augment the thermograms for
model construction. Sequentially, the KPCT method is used by feature mapping of all thermogram
data using kernel principal component analysis, which allows for differentiation of defects and
background in the dimensionality-reduced data. Additionally, a defect-background separation metric
is designed to help the performance evaluation of data analysis methods. Experimental results on
CFRP demonstrate the feasibility and advantages of the proposed GKPCT method.

Keywords: infrared non-destructive assessment; polymer composite; deep learning; generative
adversarial network; thermographic data analysis; kernel principal component analysis

1. Introduction

Infrared thermography (IRT), an attractive non-destructive assessment technique,
is applied widely in the quality assessment of composite structures due to its fast response,
wide-range of measurement, and intuitive results [1–4]. However, especially in the task of
defect assessment, IRT is difficult to achieve the desired inspection results. The non-uniform
background and noise in thermal images often hinder the accuracy and efficiency of IRT
detection due to the influence of experimental setup and environment [5,6]. Therefore, it
has become common to adopt thermographic data analysis methods to improve the IRT
performance.

In recent years, machine learning methods have provided alternative solutions and
achieved promising results for industrial data/image analysis tasks [7–9]. For IRT defect
identification, several thermographic data analysis methods have been developed to en-
hance the visibility of defects in thermograms. These methods include principal component
thermography (PCT) [10] and its variants (such as sparse PCT [11], candid covariance-
free incremental PCT [12], generative PCT [13]), thermographic signal reconstruction [14],
penalized least squares [15], pulsed phase thermography [16], independent component
thermography [17], manifold learning methods [18–20], autoencoder methods [21,22],
other deep learning methods [23–25], etc. Most of the above-mentioned methods can be
considered as a kind of metric learning [26]. For example, PCT is an unsupervised linear
metric learning method with simplicity and scalability, which can be used to improve the
defect detection performance of IRT.
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However, the thermographic data recorded by IRT are often nonlinear due to uneven
heating and thermal anisotropy of composite materials [21]. Direct observation of this
property is that thermal images contain heavily inhomogeneous background and noise,
which masks defect information. Therefore, nonlinear models may be more suitable than
linear candidates in the task of defect identification. Nevertheless, there are only a few
nonlinear thermographic data analysis methods developed [18–20]. Another challenge
of thermographic data analysis is that the thermograms are typically limited because
of the shallow detection depth of the thermal imager, which indeed restricts the defect
detection capabilities of thermal imaging methods. While this difficulty is solved by using
a data expansion strategy in the generative PCT (GPCT) approach [13], there is still room
for improvement in the performance of defect identification because the nonlinearity of
thermal image data is not considered in it.

In this work, a generative kernel principal component thermography (GKPCT) method
for defect detection of carbon fiber reinforced polymers is proposed to enhance the visi-
bility of defects. The main contributions are summarized as the following three aspects.
First, a kernel principal component thermography (KPCT) method is developed to extract
nonlinear features from thermographic data. Second, a spectral normalized generative
adversarial network (SNGAN) [27] is integrated with KPCT to build a GKPCT modeling
and analysis framework. A data augmentation strategy is proposed to generate a number
of informative thermographic images to improve the feature mapping performance of the
KPCT model, thus improving the defect detection. Third, a local pixel standard deviation
(LPSD) evaluation index is proposed for comparing different thermal image analysis meth-
ods for defect detection. Two case studies demonstrate the feasibility and advantages of
the GKPCT approach.

The rest parts are so organized. In Section 2, the framework of GKPCT with its
algorithmic details is proposed. Section 3 introduces the experimental research of IRT
defect detection on two carbon fiber reinforced polymer (CFRP) specimens. In Section 4,
experimental results are reported. Finally, the conclusions are summarized in Section 5.

2. Methodology
2.1. KPCT–Nonlinear Thermographic Data Analysis Approach

Since thermographic data tend to be nonlinear, a linear thermography approach based
on dimensionality reduction can lose the high-dimensional structure of the data. Therefore,
a nonlinear model may be applicable and worth trying in the analysis of thermographic
data. In this work, the KPCT method is proposed for learning nonlinear features in
thermograms, so that linearly indistinguishable defects are separated from the background.
Its principle can be summarized as mapping the original thermographic data into a high-
dimensional feature space H by a nonlinear transformation Φ, followed by principal
component analysis (PCA) in H [28]. As a result, KPCT solves the problem of nonlinearity
and feature extraction of thermal image data, and the defect morphology is identified. As a
point of attraction for this work, it is worth illustrating that nonlinear mappings are learned
through kernel methods, which is different from the developed methods for manifold
and deep learning thermographic data analysis [18–25]. The following details can help to
understand the technical process of the KPCT method.

The KPCT approach begins with IRT experiments. After the experiment, an infrared
dataset is obtained, which can be expressed as a three-dimensional (3–D) matrix with
dimensions of nt × nx × ny. It means that nt frame thermal images with a size of nx × ny
are selected as the original data for modeling. To meet the needs of KPCT data analysis
later, this 3-D data is converted into a two-dimensional (2-D) matrix X with nt × (nx ×
ny) dimensions. Subsequently, a two-step data preprocessing procedure is executed on
the X. In detail, first, the rows of the matrix are subjected to a max-min normalization to
unify the scale to 0–1, after which the columns are centered to remove the inhomogeneous
background of the data.
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After the data is prepared, KPCT selects pixel temperature signals (column vectors xi
of matrix X) as samples and projects them to high-dimensional feature space H through
nonlinear mapping Φ. The covariance matrix in the H is:

SH =
1
m

m

∑
i=1

Φ(xi)Φ(xi)
T , (1)

where Φ(xi) is a sample in feature space H, m is the number of samples and m = nx × ny.
Because Φ(xi) is unknown, the eigenvalues and eigenvectors of SH cannot be obtained

directly through PCA. Herein, defining an m × m kernel matrix K = Φ(xi)
TΦ(xi), and the

eigenvalue decomposition of K can be expressed as:

Kw = λw, (2)

where λ is the eigenvalue matrix of K, w is the corresponding eigenvector matrix.

Equation (2) is multiplied by 1
m

m
∑

i=1
Φ(xi) on the left to perform identity transformation

to obtain:
1
m

m

∑
i=1

Φ(xi)[Φ(xi)
TΦ(xi)w] =

1
m

m

∑
i=1

Φ(xi)λw. (3)

The combined Equations (1) and (3) are equivalent to the following equation:

SH[Φ(x)w] = λ[Φ(x)w]. (4)

Observing the above equation shows that the loading matrix of SH is exactly Φ(x)w.
Although Φ(x) is unknown, the loading matrix is not the ultimate goal. The component
of the sample Φ(x) in the projection direction Φ(x)w is Φ(u)TΦ(u)w. Consequently, the
score matrix T of the KPCT of can be calculated as:

T = Kw. (5)

At this point, the key to solving the matrix T is to calculate the K matrix. After that,
the w matrix is calculated by the formula (2). In this work, the K matrix is calculated by
the Gaussian kernel function, and its mathematical expression is as follows:

Kij = exp(−
‖xi − xj‖2

τ
), (6)

where xi, xj for the i-th and j-th samples of the original data, respectively, and τ is the width
of the Gaussian kernel.

After the T = Rm×d matrix is obtained, an image reconstruction procedure is applied
to visualize the defects. Specifically, the column vector of the matrix T is reconstructed as a
2–D matrix of size nx × ny, and d principal components (PCs) thermal images are obtained
accordingly. However, checking each PC image is both time-consuming and laborious.
As a variant of the PCT method, as with PCT, a few PCs retain most of the information
about the original thermographic data [8]. Therefore, only the first few columns of T need
to be investigated to reconstruct the PC images. These PC images contain more pronounced
geometric properties of defects than the original thermograms, which shows the defect
information (including position, shape, and size) more clearly than the original thermal
images.

2.2. GKPCT-KPCT Approach Based on Image Augmentation

Recently, the GAN family has become increasingly popular and has demonstrated
attractive performance in data augmentation tasks [29,30]. SNGAN, an improved GAN
method using weight normalization (also known as spectrum normalization) technique
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was proposed to address the problem of unstable GAN training [27]. Like GAN, SNGAN
has basically the same structure: a generator G for learning the model distribution and a
discriminator D for distinguishing the model distribution from the target. Different from
GAN, in SNGAN’s discriminator network, the weight matrix of each layer is spectrally
normalized. The advantage of this is that SNGAN is stable and easy to implement during
training [27]. The details of the algorithm can be described as follows:

The weight matrix Wl is spectrally normalized for each layer of D so that it satisfies
the Lipschitz constraint σ(Wl) = 1:

¯
WSN =

Wl

σ(Wl)
. (7)

where Wl represents the weight matrix of layer l (l = 1, . . . , L), σ(Wl) denotes the spectral

norm of Wl ,
¯
WSN is the weight matrix after spectral normalization.

Here, SNGAN is introduced as an image augmentation strategy into the IRT data
analysis model to expand the number of thermal images, and a SNGAN-based GKPCT is
proposed to improve the defect detection performance of KPCT. The motivation for this
is that thermal image analysis models often perform poorly due to insufficient training
data. As shown in Figure 1, the entire GKPCT framework consists of two parts: the
SNGAN thermal image generation structure on the left and the KPCT thermal image
analysis structure on the right. With the initial infrared dataset, SNGAN architecture
is implemented to generate thermal image sequences. The convolutional layers of the
two networks both use the rectified linear unit (ReLU) activation function to prevent the
gradient from over-expanding. The biggest difference between them is that each layer
weight matrix of the D network is spectrally normalized. In addition, all convolution kernel
dimensions are set to 3 × 3, the optimizer selected is Adam, and the best learning rate is
set to 0.0002.
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A merged thermographic data with a size of (nt + ng) × (nx × ny) is used for subsequent KPCT 
analysis. Consequently, GKPCT eliminates most of the inhomogeneous background and 

Figure 1. The GKPCT modeling and analysis framework.

After the above SNGAN model was trained, ng-frame fake images with a similar
distribution to the original thermal image data were generated and expanded to the
training data. A merged thermographic data with a size of (nt + ng) × (nx × ny) is used for
subsequent KPCT analysis. Consequently, GKPCT eliminates most of the inhomogeneous
background and makes the geometric characteristics of the defect areas visible in the PC
images, thus improving the efficiency and accuracy of defect assessment by IRT techniques.
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3. Experiments
3.1. Manufacturing and Data Acquisition of CFRP Specimen 1

To test the effectiveness of the proposed GKPCT, IRT defect detection and data analysis
were performed on the CFRP specimen. Considering that the defect properties of the
natural CFRP are unknown, it is difficult for GKPCT to judge the performance of its defect
assessment. In this experiment, an artificial CFRP specimen containing multiple defects
was manufactured. It is made from 20 carbon fiber sheets and epoxy resin using the resin
transfer modeling [31] process, with an overall thickness of about 1 cm and dimensions of
about 18 cm × 18 cm. In more detail, the CFRP was fabricated by injecting thermosetting
resin into fiber preformed rods placed in a closed mold. Prior to resin injection, three Teflon
strips (of different shapes but all equal to about 3 cm2 in area) were inserted into the carbon
fiber sheet to form the preset defects.

As shown in Figure 2, the defect pattern inside the artificially fabricated CFRP speci-
men 1 can be observed. From the top view, the deepest diamond-shaped defect is in the
upper left corner where the Teflon strip is covered by three layers of carbon fiber sheets
(about 0.15 cm deep). The shallowest Teflon strip is covered by a layer of carbon fiber sheet
(about 0.05 cm deep), which is a trapezoidal defect located in the lower right corner. The
one remaining defect is circular (about 0.10 cm deep) in the middle position made of a
Teflon strip covered by two layers of carbon fiber sheets. It needs to be noted that these
defects are invisible after the epoxy is injected. The purpose of this work is to develop a
thermography data analysis method that can facilitate IRT defect detection performance,
leading to more accurate defect estimation.
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Figure 2. Illustration of defective regions in a CFRP specimen 1.

Pulsed thermography (PT), one of the fastest and simplest IRT techniques, was used
in this study [16,17]. The experimental setup of the PT system in our laboratory is shown in
Figure 3, which consists of a flashlight that can deliver 3200 W of energy for 3 ms duration,
an infrared camera (TAS-G100EXD, NEC, Minato-ku, Tokyo, Japan.) with a COMS sensor
and an uncooled focal plane array (UFPA) detector, and a computer for image storage and
analysis. Specifically, the process of PT detecting CFRP internal defects is:
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The CFRP specimen 1 is heated by a thermal pulse excited by a working flash, which
passes through the specimen after the thermal front contacts the surface. Typically, surface
temperatures in healthy areas will decrease evenly over time. However, subsurface dis-
continuities caused by defects can cause the surface to produce an abnormal temperature
response. This temperature pattern can be recorded during the specimen 1 cooling phase
by the infrared camera. The camera is sensitive to infrared light in the temperature range
of −40 to 1500 ◦C with a spectral range of 8–14 µm. Its sampling frequency and spatial
resolution of the camera are 30 frames per second and 320 × 240 pixels, respectively. At
the end of the experiment, 308 × 212 pixels were selected as the region of interest (ROI) for
each thermogram. As a result, 90 frames of thermal images were captured within 3 s for
subsequent analysis.

Figure 4 shows four of the thermograms obtained by implementing the PT technique
for testing CFRP specimen 1, which were sampled at different instances. It can be found that
the thermograms contain a large amount of uneven background and noise, which masks
the defect information. This result can be attributed to the limited detection capability of
the PT system itself. PT is easily affected by various factors, such as reflections from the
environment, changes in emissivity, uneven heating, and changes in the surface geometry
of the detection target. Although the effects of similar surface conditions can be controlled,
energy inhomogeneity is an inevitable problem in the experimental environment. It is for
this reason that more and more thermal image analysis methods are developed to promote
the performance of PT.
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3.2. Manufacturing and Data Acquisition of CFRP Specimen 2

The second CFRP specimen was manufactured in a similar way to the first one, which
contains six defects. Figure 5 shows the defect distribution in the region of interest of this
specimen. The six defects are square and range in size from 1.6 cm × 1.6 cm to 0.4 cm
× 0.4 cm. The three defects on the left, i.e., defects A1, B1, and C1, are located under one
layer of carbon fiber sheet, while the defects on the right, i.e., defects A2, B2, and C2, are
located under two layers of sheets. After the specimen was fabricated, the PT technique
was used for nondestructive testing. A total of 59 thermal images with a size of 90 × 100
were obtained in the experiment for the subsequent analysis. Figure 6 shows some of the
original thermal images recorded at different moments, from which it can be observed that
the defects are difficult to be identified due to the existence of inhomogeneous background
and noise.
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4. Results and Discussion

To evaluate the experimental results more objectively, a commonly-used signal-to-
noise ratio (SNR) index is introduced [10,17,32–34]. Its mathematical expression is as
follows:

SNR =
Mde f −Min

σin
, (8)

where Mde f is the mean of pixel values in the defective area, Min is the mean of pixel
values in the non-defective area, and σin is the standard deviation of pixel values in the
non-defective area. The higher the SNR value, the greater the ability of the method to
identify defects. Therefore, the SNR index allows comparing the performance of different
thermographic data analysis methods.

4.1. Thermal Image Data Analysis of Specimen 1

In this section, PCT, GPCT are used to compare with the proposed KPCT and GKPCT
methods. PCT, which uses PCA techniques to process and analyze thermal images [12].
As a representative data compression method, PCT has the advantages of high noise
reduction capabilities, no parameter limitations, and low computational cost in the field
of thermography. And GPCT is a deep learning thermographic data analysis method
developed on the basis of PCT to address the shortage of training data. The results of PCT
and GPCT on CFRP specimens with three defects are shown in Figures 5 and 6, respectively.
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The PCT results, as shown in Figure 7, the first six PC plots show three types of
information as inhomogeneous background, noise, and defects. PC1 shows a heavily
inhomogeneous background, while PC2 and PC3 highlight the geometric properties of the
defects at different depths. Compared to the original PT images, the PCT method better
reveals the number and rough location of the defects. However, as a linear analysis method,
PCT neither completely separates the background and defects in the thermographic data,
nor does it incorporate all the defects that are centralized in a single PC for easy manual
inspection.
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As with PCT, the first six PCs of GPCT were visualized as in Figure 8. Even though
GPCT overcame the challenge of insufficient training data for the PCT method, the expected
improvement in defect detection was not achieved. PCs 1–4 contained severe inhomo-
geneous backgrounds, which added to the difficulty of defect identification. Compared
with PCT, the defect detection ability of GPCT becomes worse, which may be attributed
to the poor nonlinear processing ability of the GPCT method that extracts the inhomoge-
neous background as the main information after the data augmentation, and the defect
information is not focused on. However, although the defect information is masked by the
inhomogeneous background, the boundaries of defects in the GPCT results (PC3 and PC4)
are still clearer than those in the PCT results (PC2) under careful observation.
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KPCT, application of the kernel PCA algorithm to thermography. The value of the
Gaussian kernel width was chosen to be 1.4 in the execution of the algorithm. By mapping
the nonlinearly indistinguishable thermographic data into a high-dimensional space, it can
be linearly separable. In doing so, the performance of KPCT is usually improved over
PCT (besides the identification of diamond-shaped defects), which has a stronger ability
to extract defect information. Figure 9 shows the first six PC images obtained by KPCT.
It can be observed from the figure that the PC4 image shows all the prefabricated defects,
while PC1 and PC3 focus on the severe uneven background. Compared to PCT, the defects
were concentrated in a single PC4 thermal image in the results of KPCT. However, the
KPCT still detects defects with poor visibility and the profile of the defects is not clear.
As shown in the PC3 image, the faintly visible defect is covered by a severely uneven
background. One of the main reasons for the unsatisfactory performance of KPCT is that
the proportion of information of uneven background and defect features is unbalanced
in the original thermal image. The nonlinear mapping capability of KPCT is used more
to extract the inhomogeneous background. Comparing Figures 7 and 9, the first six PCs
of KPCT contribute more inhomogeneous background information (KPCT has two PC
images, i.e., PCI and PC3, whereas PCT has only one PC1 image).
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In this work, the GKPCT method is applied to analyze the thermograms to enhance the
visibility of defects. The algorithm is calculated and implemented based on the TensorFlow
framework on a computer with 16 G memory, Intel® Core™ i7 CPU, and Windows 7
system. The value of the Gaussian kernel width τ was chosen to be 5.6 in the algorithm. As
the core of the GKPCT approach, there is a need to determine how many thermal images
generated by SNGAN are beneficial for overall model performance. To this end, this work
investigates the defect detection results of GKCPT when generating 20, 40, 60, 80, 100, 120,
140, 160 thermal images. It was found that the analysis results of the GKPCT method had
the largest SNR values when 80 thermal images were generated. Some thermal images
generated by SNGAN are shown in Figure 10. As with the original thermal image, the
generated thermal image contains noise and severe background inhomogeneity, which
makes it difficult to visually detect defective features in the image.

To further study the characteristics of SNGAN-generated data, t-distributed stochastic
neighborhood embedding (t-SNE) is used to visualize the distribution of original and
generated data [35]. t-SNE results for 2D visualization are shown in Figure 11, where the
order of original thermograms in the time series is marked with numbers. The SNGAN-
generated images in the figure are distributed around the middle of the original PT image
sequence. A reasonable explanation is that the first few frames of the PT test thermograms
contain a lot of noise and inhomogeneous background, while the last few frames have very
little temperature decay. Compared to the two phases, the thermograms in the middle
period contain more defect detection information and become the main information for
SNGAN training and learning. Eventually, SNGAN generates thermal images with the
same distribution of training data as the middle part.
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The results of the proposed GKPCT method are shown in Figure 12, where the PC4
image extracts the morphology of all defects with clear defect boundaries. The PC1
and PC2 images have extracted uneven background. Compared to GPCT and KPCT,
the inhomogeneous background information is reduced in the GKPCT results, which is
attributed to the fact that SNGAN expands the dataset to increase the training data of the
model and reduces the degree of information imbalance. Additionally, although this paper
is to validate the feasibility of GKPCT by man-made defects, some defects not intended for
man-made purposes can also be detected (cavity defects showed by PC3 in Figure 12). This
also indirectly indicates the ability of GKPCT to be generalized in practical applications.
These results show that GKPCT has a good ability to separate information and identify
defects, which is an effective thermographic data analysis method that can improve IRT’s
ability to evaluate internal defects in CFRP specimen.
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Table 1 compares the SNR values of the original thermal images and several methods,
and the largest SNR values obtained by each method are listed in the table. The SNR values
and defect visualization map performance of each method are basically the same: 1. PCT
detects the presence of defects compared to the original thermal image, and performs
well especially in the detection of diamond-shaped defects (which is superior to other
methods); 2. GPCT, a data-augmented PCT method, detects a large improvement in the
contour and clarity of defects in the resulting thermal image compared to PCT (in the
detection of circular defects good), but the SNR value is calculated to be small due to the
severe inhomogeneous background in the thermal image masking the defects; 3. KPCT,
a method proposed for the characteristics of the nonlinearity of thermal image data, the
defect information is effectively separated from the inhomogeneous background, noise
and other information. Additionally, the inspection results are concentrated in one thermal
image, which saves inspection time and effort. However, subject to the factor of insufficient
training data, the visibility of defects in the detection results of the KPCT method is still
low, which in scenarios requiring higher detection accuracy, the accurate detection of
defects can only depend on the knowledge and skills of the inspector and can easily lead
to ambiguity in the defect evaluation results; 4. GKPCT, a data-augmented and nonlinear
PCT method, has strong defect-recognition compared with several comparison methods
capability (sub-high SNR for diamond-shaped defects, similar to the detection results of
PCT methods). The method further improves the performance of the KPCT model in
the task of defect detection and identification with the data augmentation strategy, which
overcomes the challenge of insufficient training data and also solves the problem of difficult
information separation due to the nonlinearity of thermal image data, and enhances the
visibility of defects in the detection results.
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Table 1. SNR values of different methods for CFRP specimen 1.

SNR

Diamond Defect Circular Defect Trapezoidal Defect All Defects

Original
images 1.50 0.48 1.14 0.72

PCT [11] 1.97 2.04 3.35 1.67

GPCT [13] 1.74 2.56 2.25 1.35

KPCT 1.85 2.22 2.33 2.00

GKPCT 1.91 2.61 3.64 2.25

4.2. Performance Analysis of GKPCT Method on Specimen 1

The GKPCT method solves the problem of insufficient model training data and per-
forms well in the evaluation of nonlinear thermographic data defects. Generally, the
increase in training data enables the model to better learn and fit data features. However, it
is important to ensure that the additional training data contains valid information that can
help improve model performance. For the task of IRT defect detection, the accurate identi-
fication of defects lies in comparing the local temperature information in the thermogram.
In this work, a local pixel standard deviation (LPSD) index is introduced to measure the
local smoothness of the thermal image.

The LPSD design process is exemplified in Figure 13a with the following details. First,
the pixel values of the thermal images are Min-Max normalized to (0, 1). Each image is then
divided into several square regions with side length a, and the pixel standard deviation
(PSD) values in each region is calculated. Note that the value of a should not be set too large,
otherwise LPSD loses its usefulness as a measure of local quality. Finally, the average value
of all PSD is taken as the LSPD value of the image, which is a measure of the smoothness
of the image. Thus, the LPSD is calculated as:

LPSD =

n
∑

i=1
σlocal_i

n
, (9)

where n is the number of squares blocks with side length a obtained after partitioning and n
= floor (ny/a), here, floor is a downward integer function that returns the largest integer not
larger than the result, ny is the length of the thermogram. σlocal_i is the standard deviation
of the pixel values contained within the i-th square. A small LPSD value means that the
image is smoother in the local area, or it can be understood that the pixel values of the local
area are not discrete, and the concentrated pixel values are reflected in the thermogram as
almost the same temperature color. The local difference helps to identify the contour of the
defect.

As shown in Figure 13b, the LPSD values of the thermal images (i.e., 90 PT thermal
images and 80 SNGAN thermal images) used for the GKPCT modeling were calculated
and plotted in the figure, respectively. It can be seen that the LPSD values of the SNGAN-
generated thermal images are much smaller when a is set from 5 to 30, which means that the
SNGAN images have a locally higher smoothness compared to the original images. This
may be due to the low noise of the generated thermal image caused by the convolution op-
eration included in the SNGAN structure. To further investigate the promotion of SNGAN
image augmentation on GKPCT, the PSD values of defective regions (local locations) in the
PC4 images of KPCT and GKPCT were calculated separately. The comparison between the
two is shown in Figure 13c, where the pixel standard deviation value of GKPCT is lower
for both individual defects and the entire defect region. This indicates that the pixels in the
defect area are numerically closer and the color of the defect area becomes more visually
consistent. As a result, GKPCT has a better defect identification ability than KPCT, and the
size and boundaries of defects are clearer in its visualization results.
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4.3. Thermal Image Data Analysis of Specimen 2

Similar to the analysis procedure of specimen 1, first, the GKPCT method was per-
formed to analyze the PT results of CFRP specimen 2. In detail, SNGAN was used to
generate 60 fake thermograms which were combined with the original thermograms. In
doing this, the dataset was enlarged, which was then analyzed by implementing KPCT.
The results are shown in Figure 14. The processing results of PCT, GPCT, and KPCT are
depicted in the same figure for comparison. It is observed that the results of GKPCT
have the best visibility of the defects, especially the three defects in the right side which
locate deeper than those in the left. The quantitative evaluation results based on the SNR
index are listed in Table 2. GKPCT has the largest SNR values for defects A2, B2, and C2.
In the meantime, its overall performance is also the best. However, concerning defects A1,
B1, and C1, the SNR values associated with GKPCT are not the largest, although these
defects can be easily identified from the feature images provided by GKPCT as shown
in Figure 14. The reason why the SNR values are against the intuition is attributed to the
fact that SNR compares the defect area with the global background, whereas actually the
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human judgment of the defects only compares the defective regions with the neighboring
area. This is a major disadvantage of the SNR index.

The above discussions can be verified by equally dividing the image into left and
right parts and calculating the SNR values for each method based on the half image, as
illustrated in Figure 15. In other words, the SNR values associated with defects A1, B1, and
C1 are calculated based on the left half image alone, while the SNR values of A2, B2, and
C2 are calculated based on the right half image. The results are shown in Table 3, from
which it is obvious that GKPCT outperforms other methods.

Table 2. SNR values of different methods for CFRP specimen 2.

SNR

Defect A1 Defect B1 Defect C1 Defect A2 Defect B2 Defect C2 All Defects

Original
images 0.83 0.93 1.09 0.84 0.90 1.06 0.17

PCT [11] 1.67 1.52 1.33 1.25 1.27 1.14 0.67

GPCT [13] 2.01 1.82 1.57 1.32 1.45 1.22 1.16

KPCT 2.17 1.86 1.46 1.40 1.53 1.19 1.22

GKPCT 1.94 1.78 1.54 1.43 1.56 1.21 1.27

The value in bold indicates the maximum SNR value corresponding to the defect.
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Table 3. SNR values based on half images.

SNR

Defect A1 Defect B1 Defect C1 Defect A2 Defect B2 Defect C2 All Defects

PCT [11] 1.83 1.74 1.49 1.18 1.02 0.96 0.67

GPCT [13] 2.08 1.92 1.68 1.24 1.29 1.07 1.16

KPCT 2.25 1.99 1.57 1.35 1.47 1.13 1.22

GKPCT 2.54 2.18 1.71 1.46 1.60 1.28 1.27

The value in bold indicates the maximum SNR value corresponding to the defect.
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In contrast to the SNR index, the LPSD index proposed in this work focuses more on
the contrast between the defect region and its surrounding neighbors, which is in line with
the human intuition. The LPSD values of different methods are listed in Table 4, where the
results show the outer performance of the proposed GKPCT method.

Table 4. LPSD values of different methods for CFRP specimen 2.

LPSD

Defect A1 Defect B1 Defect C1 Defect A2 Defect B2 Defect C2 All Defects

PCT [11] 0.0112 0.0131 0.0111 0.0122 0.0123 0.0123 0.0114

KPCT 0.1390 0.1716 0.1422 0.1011 0.0949 0.0891 0.1772

GKPCT 0.1561 0.2081 0.1731 0.1279 0.1324 0.1035 0.1973

The value in bold indicates the maximum LPSD value corresponding to the defect.

5. Conclusions

In this work, a novel nonlinear thermographic data analysis method, namely GKPCT,
is proposed to improve the detection accuracy of subsurface defects in CFRP. The SNGAN-
generated images are mixed with real thermal images for better feature extraction based
on nonlinear dimensionality reduction, which results in enhanced defect detection perfor-
mance. The experimental results of two CFRP experiments show that the combination of
image augmentation and nonlinear analysis of thermal images helps to extract features
and improve the visibility of defects in the detection results. In the future, the efficacy of
the method on other types of composites will be further tested.
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