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Abstract: Slopes with carbonaceous mudstone (CM) are widely distributed in the southwest of
China and have experienced numerous geological disasters in special climate, especially in rainfall
conditions. Therefore, novel materials to stabilize CM slopes have attracted increasing interests.
However, developing ultra-stable and cost-effective additives for CM slopes is still a great challenge.
Herein, a hydrophobic polymeric material (polyvinylidene fluoride, PVDF) is investigated as an
additive to enhance the mechanical strength and long-time stability of CM slopes. The PVDF
is uniformly dispersed in CM matrix via interfacial interaction. The contact angle of the PVDF-
modified carbonaceous mudstone (PVDF-MCM) can reach as high as 103.95◦, indicating an excellent
hydrophobicity. The unconfined compressive strength (UCS) and tensile strength (TS) of PVDF-MCM
have been intensively enhanced to 4.07 MPa and 1.96 MPa, respectively, compared with ~0 MPa
of pristine CM. Moreover, the UCS and TS of PVDF-MCM remain at 3.24 MPa and 1.03 MPa even
after curing for 28 days in high humidity conditions. Our findings show that the PVDF can improve
the hydrophobicity of CM significantly, which leads to super mechanical stability of PVDF-MCM.
The excellent performance makes PVDF a promising additive for the development of ultra-stable,
long-lifetime and cost-effective carbonaceous mudstone slopes.

Keywords: carbonaceous mudstone; hydrophobic material; mechanical properties

1. Introduction

Uneven shrinkage, water-weakening effects, temperature effects, and mechanical
changes are the main factors contributing to the damage of microstructures of rock blocks [1].
Water plays a key role in mudstone disintegration [2]. The interaction between water and
mudstone causes significant changes in physical and mechanical properties of the rock
mass. Mechanical properties including the compressive strength of mudstone decrease
with the extension of immersion time and gradually stabilize [3]. Carbonaceous mudstone
(CM) is widely distributed in the southwest of China, where the annual precipitation in
this region is typically 1200–2000 mm (e.g., in the year 2015) or even more [4]. CM shows
disintegration when undergoing wetting–drying cycles and temperature change. After
disintegration, its strength sharply drops with large wetting deformation and secondary
disintegration continues. As a result, layered disintegration happens in CM from the out-
side towards the inside. Consequently, the disintegration results in massive waste of solid
CMs. Due to the above, CM slopes easily show instability and collapse [5,6]. During the
“Twelfth Five-Year Plan” period, 64,521 geological disasters (including collapses, landslides,
mudslides, ground collapse, ground fissures, ground subsidence, etc.) occurred in China,
resulting in 2008 deaths and missing people, 1317 injuries, and direct economic losses of
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27.34 billion RMB [7]. Therefore, research on the stability of mudstone slopes is critical and
imperative.

Common methods for enhancing the stability of slopes include slope protection,
anchors, anti-slide piles and comprehensive reinforcement methods [8–11], but none of
them are based on improving the engineering performance of slope itself. Although
traditional calcium-based rock and soil amendments (e.g., cement, lime, and fly ash) can
effectively improve the strength and durability of slope, they may produce cracks and
reduce the service life of slope [12–14]. Especially for the easy-to-disintegrate CM slope
under the wetting–drying cycles, traditional calcium-based materials cannot effectively
solve the layered disintegration phenomenon. For this reason, non-calcium-based materials
including polymers and emulsions have been used as soil stabilizers to increase strengths,
reduce soil liquefaction and permeability, and improve water and weathering resistances.
For example, superabsorbent polymers have been used to improve the moisture sensitivity
and the shear strength of subgrade soil [15]. Emulsions have been receiving increasing
attention due to their good stability, low cost, and easy workability. Some emulsions such
as methylene diphenyl diisocyanate, xanthan gum, styrene–acrylic emulsion, amphiphilic
O/W emulsions, water-based polyurethane, and bitumen emulsions are successfully used
as additives to optimize the mechanical strength and other engineering properties of rock or
sand slopes [16–22]. However, the above materials are mainly used to modify soils, where
their applications on disintegrated CM are rarely reported. Polyvinylidene fluoride (PVDF)
is a typical hydrophobic material, which is commonly used in water treatment, membrane
distillation, gas separation, lithium-ion battery separators, composite membrane, and other
fields, owing to its high thermal stability, good chemical properties, and strong film forming
properties [23,24].

In this work, the PVDF is proposed to modify carbonaceous mudstone. The uncon-
fined compressive strength (UCS) and tensile strength (TS) (including durability) of the
PVDF modified carbonaceous mudstone (PVDF-MCM) are investigated, with the character-
izations of scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction
(XRD), and Fourier transform infrared spectroscopy (FTIR) tests. The relationship between
the contact angle and strength of modified CM and the PVDF contents are evaluated
qualitatively and quantitatively. Further, the interaction between PVDF and CM is dis-
cussed from the perspectives of microstructure and chemical analysis, where the interaction
mechanism is proposed.

2. Experimental Details
2.1. Materials

CM was taken from the K18 + 500 site of the Liuzhai–Hechi Expressway in Guangxi.
Previous tests showed that after disintegration under a certain vertical load and wet–dry
cycles, the proportion of CM particles is smaller than 2 mm [5]. So, CM particles were
dried at 106 ◦C for 48 h, then cooled to room temperature and passed through a 2 mm
sieve. The particle-size distribution of CM is shown in Figure 1. The mineral composition
of CM included quartz, kaolinite, mica, siderite, pyrite, etc., with mass fractions of 40.28,
24.86, 18.79, 8.52, 4.65, and 2.9 wt%, respectively. The maximum dry density, optimal
moisture content, liquid limit, and plastic limit of the main physical parameters of CM
were 2.08 g/cm3, 10.78, 33.10, and 25.20 wt%, respectively.
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Figure 1. Size distribution of carbonaceous mudstone (CM) particles.

PVDF has the molecular formula of -(CH2-CF2)n-, where strong hydrogen bond exists
in the closely arranged molecular chains. The SEM image in Figure 2a shows that PVDF
particle size is about 200 nm and uniformly distributed. Figure 2b shows the FTIR spectrum
of pure PVDF, 873, 1067, 1181, and 1402 cm−1 peaks are assigned to the vibrational features
of C–C skeleton, C–F, stretching of –CF3 and deformation of –CH2, respectively [25,26].

Figure 2. SEM image (a) and FTIR spectrum (b) of polyvinylidene fluoride (PVDF).

2.2. Methods for Preparing Samples

PVDF was fully dissolved with organic solvent to form a PVDF solution. A certain
amount of dried CM was weighed and uniformly mixed with the prepared PVDF solution
to obtain a mixture. The PVDF content was defined as the mass ratio of PVDF to CM,
and its values were 4, 8, 10, and 12 wt%; PVDF content of 0 wt% was also considered
for comparison purposes (denoted as M-4, M-8, M-10, M-12, and M-0, respectively). In
this study, the compaction degree, dry density, and the organic solvent content of each
sample were 96%, 2.01 g/cm3, and 20%, respectively. The sample preparation process and
reinforcement ideas are shown in Figure 3.
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Figure 3. Schematic diagram of hydrophobic material (i.e., PVDF)-modified CM.

2.3. Analytical Methods
2.3.1. Contact Angle Tests

Contact angles of PVDF-MCM with different PVDF contents were measured by the
mercury intrusion method. A certain amount of mixture was weighed, and the sample
was prepared by static pressure method, which had a diameter of 61.8 mm and a height
of 20 mm. The tests were conducted on the Mercury Porosimeter (SDC-350 contact angle
measuring instrument). An initial droplet volume of 1 µL and a photo frequency of
150 frames per second were applied in the tests. The contact angle tests were repeated
three times for each sample, and the average values were taken for subsequent analyses.

2.3.2. Mechanical Tests

Unconfined compressive strength (UCS) test is one of the engineering properties of
embankment fillers. UCS test is performed to study the effect of PVDF on the compres-
sive strength of modified CM (MCM). The UCS samples were prepared following these
procedures: (i) A certain mass of mixture was poured into a steel mold in three layers,
and each layer was compacted using the static compaction method to ensure the integrity
of the sample, and at the same time, the layers were lapped. (ii) After compaction, both
ends of the sample were flattened, then the mold was removed to form a sample with a
diameter of 50 mm and a height of 100 mm. (iii) Because the melting point of PVDF is
about 160 ◦C [26,27], the samples were dried for 6 h at 140 ◦C and for 2 h at 160 ◦C, then
cooled down to the room temperature to achieve the best molding effect. (iv) The samples
were placed in a standard room (the temperature is 20 ± 2 ◦C and the relative humidity is
≥95%) for curing. The curing periods were 0, 3, 7, 14, 28 days for durability test. UCS test
was conducted in accordance with the Chinese standard “Test methods of soils for highway
engineering” [28]. The test instrument was an electronic universal testing machine, and the
tests were conducted at an axial strain rate of 1%/min.

TS can directly reflect the mutual attraction between soil particles and the cohesion of
agglomerate materials [29]. The production of tensile sample is to press a certain amount of
mixture at one time, and then get it through the same drying steps as UCS and measure it by
the direct test method. According to Nahlawi et al. [30], Li et al. [31], and Huang et al. [32],
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the tensile testing device was improved, and an “8” type loading fixture was designed. The
tensile testing device and sample sizes are shown in Figure 4. The TS durability test is the
same as the UCS curing conditions and periods.

Figure 4. Device (a) and sample dimension (b) for tensile testing.

2.3.3. Microscopic and Compositional Tests

XRD, FTIR, SEM, and XRF tests were carried out on PVDF-MCM samples of M-0 and
M-10, both of which were at a curing age of 0 d. In SEM tests, typical test blocks with
fracture surface about 1 cm2 of unconfined compressive samples were taken [33].

3. Results and Discussion
3.1. Contact Angle

The time-dependent contact angle is analyzed in Figure 5. Figure 5a presents the
optical images of M-0 after dropping 2 mL pure water on the surface for 0, 5, and 10 min,
where the water droplets quickly penetrate deep into the sample within 10 min. Figure 5b
further shows when the PVDF content is 0 wt%, the droplet almost penetrates into the
sample at 1500 ms; while, when PVDF content is 10 wt%, the contact angle of droplet
is stable at 103.95◦ at 5 min. Figure 5c shows images of M-10 after dropping 2 mL pure
water on the surface for 0, 30, and 60 min, where the modified sample still retain its
hydrophobicity after 60 min.

The contact angles of the modified CM with different PVDF contents in the initial
state and stable state are shown in Figure 5d. It can be seen that with the increase of
PVDF content, the initial contact angles increase gradually, reaching 98.23◦ when the PVDF
content is 4 wt%. The stable contact angle of M-4 is almost unchanged compared to M-0.
However, the stable contact angle increases rapidly with the increase of PVDF content,
reaching 103.95◦ when the PVDF content is 10 wt%, where the corresponding initial contact
angle is 123.85◦. When the contact angle is larger than 90◦, it means that the modified CM
changes from hydrophilic to hydrophobic material [34]. The time-dependent contact angle
is further analyzed.

Polymeric coating techniques are widely applied for tuning the surface properties,
e.g., styrene-acrylic emulsion-modified weak rock presents a contact angle of 80◦ [19]. Our
result shows that the PVDF modification on CM has successfully made the composite CM
into hydrophobic material with good retention of hydrophobicity.
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Figure 5. Wettability of PVDF-modified carbonaceous mudstone (PVDF-MCM). Water droplet (a,c) and contact angle (b)
evolution on M-0 (a) and M-10 (c); (d) Contact angles of the modified CM with different PVDF contents.

3.2. Mechanical Strength

The measured mechanical strength is shown in Figure 6. Figure 6a shows the UCS
results of PVDF-MCM. UCS increases with the increase of PVDF content, reaching a
maximum of 4.07 MPa when the PVDF content is 8 wt%, and then shows a decrease of
5% to 3.88 MPa when the PVDF content is 10 wt%. This shows that PVDF has an adverse
effect on UCS of CM when its content exceeds 8 wt%. Figure 6b shows the TS results of
PVDF-MCM. The M-0 samples break and lose their integrity once they are slightly touched,
and the TS is considered to be 0 MPa. With the increase of the PVDF content, the TS
increases significantly. When the PVDF content is 10 wt%, the TS is 1.47 MPa, and when
the PVDF content is 12 wt%, the TS is 1.96 MPa. When the PVDF content does not exceed
12%, PVDF has a positive effect on the TS of the CM.
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Figure 6. Mechanical properties of PVDF-MCM. Unconfined compressive strength (UCS) (a) and tensile strength (TS) (b) of
PVDF-MCM with different contents; Influence of curing period on UCS (c) and TS (d) for M-10; Optimum UCS (e) and TS
(f) for several reinforcement materials.

The relation between the durability and contact angle of M-10 is presented in Figure 6c,d.
Figure 6c shows that in the early and middle stages of curing (i.e., 0, 3, 7 d), the UCS value
is reduced by about 5% in turn, and in the later stage of curing (i.e., 14 and 28 d), the UCS
is stable at 3.24 MPa, with 84% of the initial value retained. Figure 6d shows that in the
early and middle stages of curing (i.e., 0, 3, and 7 d), TS is reduced by about 10% in turn,
in the later stage of curing (i.e., 14 and 28 d), TS is stabilized at 1.03 MPa, with 70% of the
initial value retained. These indicate that the high humidity at the pre-mid stage of curing
have certain adverse effects on the UCS and TS of PVDF-MCM. Nevertheless, the UCS
is stabilized after 14 d and is still 21.6 times higher than M-0, and the TS is infinite times
higher than M-0.
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The optimal UCS values of several modified soils are listed in Figure 6e [35–40],
where the UCS of PVDF-MCM in our work is very prominent. On the other hand, the TS
values of many modified soils does not exceed 0.5 MPa under the corresponding optimal
conditions [32,41–45]; However, in our work, the TS of PVDF-MCM can reach ~2 MPa
(Figure 6f) [46]. The results show that the PVDF-MCM has good mechanical properties,
and the influence of humidity on the strength of PVDF-MCM can be efficiently alleviated.

3.3. Microstructure and Composition

Figure 7 shows the microstructure of M-0 (a and b) and M-10 (c and d) before cur-
ing [47]. It can be seen from Figure 7a,b that the CM particles have obvious boundaries and
smooth and flat surfaces, but with a large number of large pores. Comparing Figure 7a,b
with Figure 7c,d, it is clear that the particles are interlaced and overlapped, and their
boundaries become blurred. PVDF-MCM particles have binder on the surface and between
the particles, the pores of the CM are filled, and the whole structure is denser [48]. The pore
size distribution (PSD) curve in Figure 8a obtained by the mercury intrusion porosimetry
(MIP) [47] shows the pore diameter of samples are concentrated in the range of 1–3 µm.
With the increase of PVDF content, CM particles bond more closely, which makes the pore
diameter corresponding to the peak value of PSD curve show a gradually decreasing trend.
The XRF results of M-0 and M-10 shown in Table 1 further confirm the binder composition,
where the content of F in the modified CM increased significantly with 10 wt% PVDF
as designed.

Figure 7. The microstructure of M-0 (a,b) and M-10 (c,d) before curing.
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Figure 8. Pore size distribution (PSD) (a) of M-0, M-4 and M-10; XRD (b) and FTIR (c) of PVDF, M-0
and M-10.

Table 1. XRF of M-0 and M-10.

Samples O Si Al Fe K F Ca S Mg Others

M-0 43.40 22.48 13.98 4.17 3.31 0.00 1.76 0.79 0.64 9.47
M-10 40.30 21.39 13.21 4.55 3.08 2.94 1.76 0.78 0.62 11.37

XRD analysis was carried out on PVDF, M-0, and M-10 to determine the phase of
PVDF-MCM. The results are shown in Figure 8b. The diffraction angles 2θ of 18.42◦, 20.00◦,
26.66◦, and 38.64◦, are assigned to the characteristic α phase of PVDF [49]. The mineral
compositions of M-0 are mainly quartz, pyrite, kaolinite, siderite, mica, calcite, hemihydrate
gypsum. For M-10, it consists of the above mineral phases and the introduced PVDF phase.
Hence, there is no formation of new minerals observed during the processing, where the
quartz content is the maximum difference but within 1%. Typical diffraction peaks of
mica and kaolinite are clearly revealed in M-10, comparing to M-0, the diffraction peaks
of 8.92◦, 12.43◦, 17.87◦, 24.97◦, 27.93◦, 45.54◦ show broadening, indicating the reduction
in crystalline size of CM after processing. In M-10 there are also red-shifts of 0.06◦, 0.04◦,
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0.08◦, 0.06◦ for 8.92◦, 17.87◦, 27.93◦, 45.54◦ peaks in mica phase and 0.06◦, 0.06◦ for 12.43◦,
24.97◦ in kaolinite phase suggest the increase of the interplanar spacings in CM particles,
which is attributed to the change of interplanar spacings due to the introduction of PVDF in
CM [49]. In order to further explore the interaction between PVDF and CM, the molecular
structure and chemical properties of PVDF-MCM are then analyzed.

Figure 8c presents the FTIR results of pure PVDF, M-0, and M-10. It can be seen that
M-0 and M-10 mainly contain a 3695 cm−1 internal surface hydroxyl vibration peak, which
is located between the Al–O octahedron and Si–O tetrahedron, at 3621 cm−1 is an internal
hydroxyl vibration peak and the Si–O vibration peak corresponding to 997 cm−1 [50,51].
Furthermore, three emerging absorption peaks in the spectrum of M-10, i.e., 1402 cm−1,
1181 cm−1, and 873 cm−1, correspond to the CH2, CF3, and C–C characteristic functional
groups of PVDF. The consistent vibrational bands of M-10 with those of the pristine PVDF
(Figure 2b) confirm the successful incorporation of the PVDF in CM. Interestingly, the
broad vibrational feature at 3300–3500 cm−1 in M-0, due to the intercalated water in CM,
is obviously reduced in M-10. This is consistent with the above finding on the change of
interlayer distances between layer structures in both mica and kaolinite phases. Hence,
by introducing PVDF into the CM system, the interlayer interaction in CM host is altered,
which leads to the change of interlayer spacing.

4. Reinforcement Mechanism

PVDF solution is mixed with CM to form a hydrophobic structural film, and the loose
CM is combined into a whole to effectively prevent the softening effect of water. The
reinforcement mechanism of PVDF modifiers is as follows [19,52–54]:

(i) Waterproof: After the evaporation of organic solvent, PVDF solidifies to form hy-
drophobic macromolecular polymer layer. It can be entangled with CM to form a
network structure layer, which effectively prevents water from infiltrating into the
material [55].

(ii) Binding: Fluorinated chain segment shields the polarity of polar groups, which makes
the surface of PVDF hydrophobic. At the same time, the surface energy of the PVDF
membrane is low, which leads to the poor wettability of the membrane. PVDF has
good cementation and can fill the pores of CM, which effectively increases the bond
strength of CM particles and solidifies the particles into a new whole [56,57].

(iii) Polymerization: PVDF and CM have good adhesion after mixing, because PVDF can
be polymerized to form a polymeric layer. The oxygen-containing functional groups
on the surface of CM particles may form chemical bonds with PVDF, which may
enhance the mechanical strength of CM matrix (Figure 9). After modification, it has
high strength and good hydrophobic properties.

Figure 9. Schematic diagram of reforcement mechanism for PVDF-MCM.
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5. Conclusions

In this work, a hydrophobic material, PVDF, was innovatively used to modify the
mechanical strength and other properties of CM which was prone to continuous disintegra-
tion in water. The SEM images and FTIR results showed that PVDF dispersed uniformly in
CM matrix, which might lead to a good strength of PVDF-MCM composites. The UCS and
TS of PVDF-MCM were enhanced to 4.07 MPa and 1.96 MPa, respectively, both of which
were much higher than those of pristine CM matrix. The experimental result of contact
angle was much higher than 90◦, implying an excellent hydrophobicity of PVDF-MCM
composites. Importantly, the UCS and TS of PVDF-MCM are still high even in high hu-
midity conditions. All results showed that PVDF-MCM had good hydrophobicity and
mechanical properties. The modification mechanism was also analyzed and summarized.
The PVDF-MCM mechanism revealed in this paper can provide some references for the
application of new and non-traditional modifiers such as polymers, and the mechanism
needs further verification by more experimental studies. The good performance and low
cost of PVDF make it a promising candidate for stable CM slope application.
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