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Abstract: Despite their level of refinement, micro-mechanical, stretch-based and invariant-based
models, still fail to capture and describe all aspects of the mechanical properties of polymer networks
for which they were developed. This is for an important part caused by the way the microscopic
inhomogeneities are treated. The Elastic Network Model (ENM) approach of reintroducing the
spatial resolution by considering the network at the level of its topological constraints, is able
to predict the macroscopic properties of polymer networks up to the point of failure. We here
demonstrate the ability of ENM to highlight the effects of topology and structure on the mechanical
properties of polymer networks for which the heterogeneity is characterised by spatial and topological
order parameters. We quantify the macro- and microscopic effects on forces and stress caused by
introducing and increasing the heterogeneity of the network. We find that significant differences
in the mechanical responses arise between networks with a similar topology but different spatial
structure at the time of the reticulation, whereas the dispersion of the cross-link valency has a
negligible impact.

Keywords: elastic network model; heterogeneity; polymers

1. Introduction

Polymer melts and gels are disordered systems with highly heterogeneous properties
at the microscopic scale. These heterogeneities explain for example the large dispersion of
mechanical stresses at the point of breaking observed in batches of identical macroscopic
samples [1,2]. Understanding in more details the origin of the dispersion of the local
properties can therefore help to improve the reliability and the performance of polymer
materials (stress vs. strain, fracturing, . . . ). Some of the heterogeneities are temporary and
caused by random thermal motions, whereas others have a structural cause. In general,
they impact not only the average macroscopic properties, but also the dispersion therein.

The main goal of this article is to compare the impact of different sources of hetero-
geneity on the mechanical response at the microscopic and macroscopic scales. By using
a simple and generic model, we present a way to progressively introduce heterogeneity
in the structure and topology, and we study the corresponding impact on the mechanical
response. We hope that such a study can guide the design of new experimental networks
and can highlight the importance of the network generation process in simulations.

Many experimental studies have investigated parameters that affect the network struc-
ture: the cross-link density [3], cross-link valency [4], chain length [5] and topology [6,7]. In
most studies only the average value of the structural parameter is varied [8], but the impact
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of their dispersion is important as well [9]. A few experimental studies are specifically
dedicated to the impact of defects or imperfections in regular polymer lattices [10,11]. Some
others focus on the detection of the heterogeneity of the network in the samples [12,13].

Recent works have also investigated the impact of heterogeneity from a theoretical
point of view. These works mostly deal with topological heterogeneity due to the formation
of loops in random networks [14–17]. These studies aim at understanding the impact of
topology on the elastic mechanical response or on the gel point.

To some extent, the mechanical properties of polymer materials can be predicted by
using simulations. At the millimeter scale, the material can be described by continuum
approach and could be simulated using finite element methods, provided reliable con-
stitutive equations are known [18–21]. These constitutive equations are formulated in
terms of averaged parameters. Accounting for the impact of structural heterogeneities
is often implemented at the expense of an increase in the number of parameters. In or-
der to be able to extrapolate results and properties to outside the described regime, it
is desirable that the constitutive equations are obtained via a bottom-up approach from
models at the microscopic scale. Often, these models focus only on average properties and
like-wise assume that average input parameters are representative for the ensemble [22].
However, an approach with models based on averaged input parameters easily lacks the
ability to describe essential properties emerging from correlations between different local
properties [23].

In order to take the effect of local heterogeneities into account, the models at the
smaller scale have to sample one or more distributions of input properties. This can be
done at the atomic or coarse-grained scale using molecular dynamics simulations [24–26].
However, such simulations are limited to short times and small system sizes and are
therefore not representative of the whole range of input parameters [27]. Moreover, in these
simulations, as well as in experiments, the respective contributions of the heterogeneities
cannot be separated.

Fuse network models propose a way to treat the impact of local heterogeneities [28,29].
The corresponding simulations have the merit of their simplicity, like other studies of
interest [30], but cannot be regarded as realistic models of a polymer network.

In this article, we use an intermediate-scale model for an elastic polymer network that
is similar to EPNET [31]. We illustrate that this type of model allows us to simulate mechan-
ically realistic (experimentally informed or parameterized bottom-up) elastomers and gels,
while leaving enough flexibility for a parameterization of the sources of heterogeneities.

In Section 2, we introduce the different sources of heterogeneity that can be varied,
together with their experimental counterparts. This is followed by describing the numerical
model that we have employed and in Section 3 we present the various results that have
been obtained. We finish with a discussion of the main results and conclusions.

2. Materials and Methods

The system consists of a network of phantom chains inside a cubic simulation box.
The custom parameters of the system are the box size a, the number of reticulation nodes,
the total number of monomers (or Kuhn segments), their size (Kuhn length b) and the
total number of polymer chains. These parameters could be tuned to represent a specific
polymer with a given cross-link density and connectivity, although this is not required for
the purpose of this paper. The level of heterogeneity of the system can be adjusted as we
will see later.

After the system is prepared and equilibrated at a given temperature T, the box is
slowly stretched in a quasi-static manner in the z direction and shrunk in the x and y
directions so as to keep a constant volume. The deformation ratio is defined by λ = a(t)

a(0) .
At each step, the force F on each chain can be extracted and used to compute a local

and a global stress σ. We are mostly interested in the force distribution resulting from
the system heterogeneity, and in the excess normal stress in the stretch direction σz. The
macroscopic mechanical behavior is characterizes by the modulus, which is for us the
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ratio σz
λ , and by the finite extension λmax, which is the maximum deformation ratio of the

network, at which σz diverges.

2.1. Sources of Heterogeneity

The heterogeneity that is experimentally found in polymer networks can have several
different origins. This heterogeneity can stem from:

• Randomness of the chain composition in copolymers. Here we restrict ourselves
to homopolymers, so that all chains have the same chemical composition between
reticulation nodes.

• Polydispersity of the polymer chains between reticulation nodes, which we call
“segments”. Experimentally, it is possible to control the segment polydispersity, for
example by using telechelic polymer chains, resulting in a monodisperse sample. An
alternative approach is to reticulate long polymer chains at random positions, which
results in a geometric distribution of segment lengths [32–34]. In the simulations, the
segment length distribution can be varied at will. This source of heterogeneity will
be studied by using normal distributions of segment lengths with various standard
deviations.

• Connectivity distribution. This is the number of arms attached to reticulation nodes.
In experiments the connectivity can be controlled by using chemical cross-linkers
of different functionalities. In general, the functionality is uniform in the sample
unless a mixture of cross-linkers is used. In the case of physical cross-links, as in
some gels or thermoplastic elastomers, the functionality of the reticulation nodes
may be non-uniform. In our simulations, it is straightforward to choose the average
connectivity of the reticulation nodes and to mix nodes of different connectivity.

• Topology of the network. The graph structure associated to the reticulation nodes can
be random or regular as in a crystalline lattice. In regular structures every node is
equivalent, whereas in random structures some nodes may be more “central” than
others, even though the connectivity is uniform. Experimentally, the structure is often
random, but it is also possible to form crystalline arrangements of reticulation nodes
using block copolymers [35,36] or regular crosslinkers [10]. In this paper, we will
consider both regular and random network topologies.

• Uniformity of the density of reticulation nodes describes the spatial proximity of
the nodes. This source of heterogeneity is related to the network topology in a non-
trivial way. It is possible to partially control the spatial distribution of the cross-links
in experiments by adjusting the dispersion of the catalyst during the reticulation
reaction [37]. In our simulations the spatial distribution of the nodes can be controlled
in an indirect fashion. If we initially distribute the nodes with a given uniformity, they
will move during the equilibration stage to new positions relaxing the mechanical
constraints. They will, however, typically remain close to their original position.

In the following, the various sources of heterogeneity will be examined and, when
feasible, their respective contributions will be treated individually. Note that is not always
possible, for instance one cannot modify the network connectivity without changing
its topology or to change the topology without affecting the spatial distribution of the
reticulation nodes.

Beforehand, we introduce two reference systems with uniform segment lengths, and
regular network topology and spatial structure of nodes. For this purpose, we use the six
chain and eight chain models which are standard models of polymer networks [18,20,38].
These models are simple enough so that we can investigate the effect of different sources
of heterogeneity. Having two reference models allows to compare different connectivity,
structure and topology from the beginning. These two models are known to behave
differently under uniaxial and biaxial extension [22]. They are a good illustration of the
constitutive equations used in finite elements methods, due to their robustness and the
calculation cost advantages they provide. Nonetheless, they suffer from a non-uniform
distribution of segment orientations that leads to a failure in modeling complex modal
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solicitations. Their structures are schematically represented in Figure 1. Both the six and
the eight chain models are characterized by a number of monomers per chain n and a cross
link density ν. Their regular topology makes that each of their nodes is equivalent. In these
reference systems, the orientation of the segments is not uniformly distributed, so that the
mechanical response depends on the direction of stretching. In addition, depending on
their orientation, segments will experience different tension under strain, even though the
system is perfectly regular.

Figure 1. Unit cell of the six chain model (left) and eight chain model (right). The nodes represent
reticulation points and the bold lines correspond to the polymer segments. These systems are labelled
A.6 and A.8 in the following and correspond, respectively, to a simple cubic and to a body centered
cubic lattice. All nodes are equivalent and connected to all their nearest neighbors.

2.2. Description of the Numerical Model

We have developed a coarse-grained model of polymer networks at the scale of
topological constraints. This network consists of reticulation nodes (cross-links) that are
connected by virtual polymer segments in an orthorhombic box with periodic boundary
conditions. The nodes interact with their connected neighbors through entropic forces
along the end-to-end vectors of the polymer segments. The model does not distinguish
whether two segments belong to the same or to different polymer chains. Therefore
in the following we will use the terms chain and segment interchangeably. Chains are
characterized by the number of Kuhn segments from which they are build. These numbers
are drawn from a target distribution under the constraint of the imposed density of the
simulated system. It is also assumed that there are no pending chains and that each node
has a minimum of 3 connected neighbors.

The system is characterized by the Kuhn length b of the polymer and the temperature
T of the simulation. The nodes are subjected to random Langevin forces, which model the
thermal motion of the cross-links. The simulations are performed with a home-made code,
with a number of chains between 5184 and 16,384. We verified and confirmed that these
numbers of chains are large enough, so that the estimated errors in curves and in the other
results we present are negligible for moderate strain and do not affect the conclusions.

The network generation procedure is inspired by Hanson’s work [39] and is only
based on the definition of conditional probabilities [40,41]:

P(n, r) = P(n) P(r|n), (1)

where P(n) is the probability that a network chain contains n monomers (polydisper-
sity), and P(r|n) the conditional probability distribution function for a chain of length n
monomers to have an end-to-end vector r.

We start by placing the reticulation nodes in the simulation box either randomly
or at prescribed positions. The number of nodes is chosen to match the experimental
densities of cross-links (2× 1019 cm−3 up to 10× 1019 cm−3 depending on the polymer). A
connectivity, which is the number of connection slots, is assigned to each node. Slots are
initially connected randomly to any other free slot by a virtual polymer segment containing
the average number of (Kuhn) monomers irrespective of (1). Note that the number of
monomers in the simulation box is fixed by the target density of the total system and
that the mean of P(n) should coincide with the average number of monomers per chain.
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Then, in order to satisfy (1), a pair of chains (i, j) is selected at random. For every possible
reconnection of slots and exchange of monomers between the pair of chains, the probability
P is computed by assuming independent chains using

P ∝ P(ni, ri) P(nj, rj). (2)

One of these combinations is chosen accordingly and the process is iterated by continuing
the same procedure until a stationary state is obtained. Note that the connectivity of the
nodes, the number of chains and the total number of monomers are unaffected by these
exchanges, and hence that also the average number of monomer per chain remains constant.
This algorithm can easily be parallelized for efficiency and we refer to this process as the
equilibration of the topology. Alternatively, the nodes can be connected to their nearest
neighbors when the initial positions form a regular lattice. The algorithm flow chart is
available in the Figure S1.

The chains are supposed to conform to the Gaussian chain model, which is valid in
the large n limit [40]. The probability distribution function (pdf) that a chain of n Kuhn
segments has an end-to-end distance r is given by:

P(r|n) =
(

3
2π b2 n

)3/2
exp

(
− 3 r2

2 b2 n

)
, (3)

where b is the Kuhn length of the particular elastomer under consideration. The probability
is pruned to 0 for over-stretched chains (r > n b). For P(n), which represents the polydis-
persity of the chains, we restricted ourselves in this study to either uniform chain lengths
or normal distributions.

The dynamics of the network, that is the motion of the nodes, is simulated by using
Brownian dynamics, where the total force on each nodes is the sum of the chain forces
(acting along the end-to-end vector) and a noise term (random thermal displacement).

γ Vi = ∑
j, neighbors of i

Fj→i +
√

2 γ kBT Ri (4)

where γ is the friction coefficient, R a random Gaussian variate with zero-mean and unit
variance. kB is the Boltzmann constant and T is the absolute temperature. Since we run the
simulations in the quasistatic limit, the precise value of the friction coefficient has no impact,
as we have checked. The attractive force between connected nodes is assumed to be fully
entropic with a finite extension and which can be described by an inverse Langevin form
(L−1). In practice, we have implemented the approximation of Cohen [42] for simplicity
and which is a good approximation of L−1. Within this approach, the elastic force can be
expressed as:

Fj→i = −x
kBT

b
3− x2

1− x2 rj→i (5)

where x is the ratio r
rmax

, with r the end-to-end distance, and rmax = n b the extended chain
length. These forces are also used to compute the stress tensor in the simulation box using
the Irving-Kirkwood formula [43]. We note that this inverse Langevin approximation is not
the most accurate form (maximum relative error equal to 4.9%). This level of approximation
is sufficient for the paper goal. Better approximations exist and could have been used
instead [44].

In order to study the system under deformation, the dimensions of simulation box
can be modified by changing the length of the 3 axes in small constant increments, while
keeping the total volume constant. It was confirmed that the deformations are performed
in the quasi-static limit, by checking that no difference is observed for half the deformation
rate. In addition, without allowing chains to break, the maximum strain is determined by
the shortest percolating path in the strain direction
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λmax =
Nseg n b

a
(6)

where λmax is the maximum macroscopic deformation ratio, Nseg is the number of segments
constituting the shortest percolating path and a the initial dimension of the simulation
box along the stretch axis. With this definition, we can predict the λmax value for a system
knowing the “length” of the shortest path (Figure S2). In our simulations, the shortest
percolating path consists typically of about 12 chains and hence the maximum strain can
only take a few discrete values, which is a finite size effect. In the following we mostly
focus on small deformations (λ . 3), where the discreteness of λmax has negligible impact.

3. Results

To quantify the heterogeneity at different levels, we can make use of several indicators:
node centrality, local nodes density and force distribution. In graph theory, the node
centrality quantifies the importance of the nodes in the network (from a topological point
of view). There are many ways to define node centrality, some of which have been used
to study networks of force chains in granular packing [45]. We have chosen to use the
“subgraph centrality”, because it is general enough and applies also to particular networks
like double networks (non connected graph). This definition of centrality is based on the
number of closed walks of all lengths that start and end at the node of interest [46]. For the
implementation we have employed the Python library NetworkX to compute the sub-graph
node centrality [47].

In order to study the local node density and quantify how evenly nodes are distributed
in space, we use the number of neighbors, which is defined as all nodes within a cutoff
distance. In practice, a kernel density estimation based on the position of nodes was used
with a characteristic length equal to ρ−1/3, ρ being the number density of reticulation nodes
in the simulation box. The local density values in this study are calculated by means of
KernelDensity-function from the Python package Scikit-learn [48].

The forces in every chain are stored during Brownian dynamics simulation for post-
treatment. We analyze the distributions of the logarithm of squared forces, which is a
more convenient choice than the magnitude of the forces themselves. The distribution
of forces are computed at rest and at low strain values, to determine the effect of the
sources of heterogeneity before the finite extension takes over as the main contributor to
the macroscopic mechanical behavior.

We label the systems using a letter followed by a number representing the average
connectivity. The key differences between different systems A to E are schematically
represented and summarised in Figure 2, by means of a simple 6-node graph of spatially
regular/randomly distributed nodes, regular/irregular topology, and fixed/poly-disperse
chain length (different line thickness) or connectivity. For the connectivity 6 and 8, the
letter A refers to the reference system (six chain or eight chain models). Systems of type B
are similar to A, but include polydispersity in the chain lengths. The index C corresponds
to systems like A without polydispersity, but that have a random topology. This means
that the initial positions of the nodes are on the same regular lattice as in the reference
systems, but the chains are allowed to connect according to (1) to other nodes than just
their first neighbors. Systems of type D have, like those of type C, a random topology, but
now the initial position of the nodes are distributed uniformly inside the simulation box,
rather than on a regular lattice. The last classification E, adds a non-uniform connectivity
to systems of type D.

We note that numerically, it is possible to change progressively from A to C by
truncating the equilibration of the topology earlier, but the probability distribution of the
chain lengths would not yet follow (1). It is also possible to change progressively from C to
D, by increasing the magnitude of the random displacements given to the initial positions
of the nodes. There are two additional systems we consider. A different reference system
A.4 consists of two interleaved regular diamond lattices. The other is the system C.4 that



Polymers 2021, 13, 757 7 of 17

is similar to A.4, except that chains are connected randomly to any of their eight nearest
neighbors. For all systems, except the ones with regular lattices topology (A.4, A.6, A.8,
B.6, B.8 and C.4), the distribution of chain orientations after mechanical equilibration is
uniform. A summary of the different systems and their main characterisations is provided
in Table 1.

Table 1. Summary of the simulated system and results. The characteristics of the networks, as well as the different indicators
to characterize them, are given. The average values are listed including the non-zero standard deviations.

System A.6 B.6 C.6 D.6 E.6 A.4

topology six chain six chain random random random 4 chains
structure six chain six chain six chain random random eight chain

chain length 27 27± 5 27 27 27 12
connectivity 6 6 6 6 6± 2 4

centrality 11.85 11.85 8.31± 1.99 8.29± 2.74 8.32± 3.35 4.60
local node density 3.12± 1.44 3.14± 1.49 4.13± 1.98 7.73± 4.19 7.72± 4.05 3.45± 1.53

log(F2
λ=1) −1.8± 0.6 −1.8± 0.7 −2.0± 1.2 −2.5± 1.2 −2.6± 1.2 −0.9± 0.8

log(F2
λ=2) −1.7± 1.2 −1.7± 1.2 −1.8± 1.1 −2.3± 1.3 −2.3± 1.3 −0.3± 0.7

System A.8 B.8 C.8 D.8 E.8 C.4

topology eight chain eight chain random random random random
structure eight chain eight chain eight chain random random eight chain

chain length 22 22± 5 22 22 22 12
connectivity 8 8 8 8 8± 2 4

centrality 40.26 40.26 19.48± 5.72 18.98± 7.27 18.69± 8.22 4.00± 0.71
local node density 3.05± 1.46 3.18± 1.51 3.92± 1.86 6.91± 3.85 6.91± 3.96 5.38± 2.90

log(F2
λ=1) −1.7± 0.6 −1.6± 0.7 −1.8± 0.9 −2.3± 1.1 −2.3± 1.1 −1.5± 1.1

log(F2
λ=2) −1.2± 0.5 −1.1± 0.7 −1.5± 1.1 −2.0± 1.3 −1.9± 1.3 −1.2± 1.2

A B C D E
Figure 2. Schematic representation of the system labels. (A): regular lattice, (B): regular lattice with
polydispersity, (C): regular structure with random topology, (D): random structure and topology, (E):
random structure and non-uniform connectivity.

3.1. Polydispersity

First, we investigate the effect of polydispersity described by a normal distribution
of chain lengths (Figure S3), while keeping the regular structures of the six and eight
chains as reference. The standard deviation of the chain length is increased from 0 in the
reference models A.6 and A.8 to 5 in the polydisperse systems B.6 and B.8. As expected,
the centrality of all nodes remains the same, because the topology of the networks is not
modified, and also the local node density does not change on increasing the polydispersity.
This means that the presence of shorter and longer chains does not affect significantly the
spatial correlations of positions of cross-links at short range.

On the other hand, the introduction of polydispersity has a noticeable impact on the
finite extension and the stress modulus at high strain values (see Figure 3). This result
indicates that the introduction of shorter chains prevails over the introduction of longer
chains, because they reach their non-linear, finite-extension regime sooner. Meanwhile, the
stress modulus at low strain value is not strongly impacted (Figure 3). The distribution of
forces (Figure 4) gives a more detailed description of the differences at a strain value equal
to 2. It is presented as the pdf P(log(F2)), which is more convenient than the pdf of the
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direct forces P(F), and which can for our purposes sufficiently well be characterised by the
mean value and standard deviation.

1 2 3 4 50.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

z/
 (M

Pa
)

a)

A.6
B.6
C.6
D.6
E.6

1 2 3 4 50.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

z/
 (M

Pa
)

b)

A.8
B.8
C.8
D.8
E.8

Figure 3. The load vs. stretch diagrams (uni-axial deformation) for systems of (a) with connectivity 6
and (b) with connectivity 8. (see Table 1 for a complete description of the labels.)

In the case of the “six chain” model, the distribution of forces found in the mono- and
polydisperse system (A.6 and B.6) are quite similar even in the low strain state (Figure 4a).
The bimodal shape of the force distribution is due to the alignment of one third of the
chains along the stretch axis in the initial state (simple cubic lattice). In A.6, the width
of the peaks is only due to the random noise of the nodes, i.e., the thermal fluctuations.
In contrast, for the “eight chain” model the distributions of forces show a much clearer
difference on adding the polydispersity (A.8 vs. B.8). This distribution remains unimodal,
because in the body centered cubic lattice all chains have the same tilt angle with respect
to the stretch axis. At low strain, some chains experience a larger force in B.8 than in
A.8 (Figure 4b). This is reflected in Table 1 by a small increase in the mean and standard
deviation of the force distribution when comparing systems A.8 and B.8, and is also the
reason why the B.8 curve has a slightly higher modulus than the A.8 curve in Figure 3 at
small deformations.
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8 6 4 2 0 2
log(F2

= 2)

P(
lo

g(
F2 =

2)
)

a)A.6
A.6 at 0K
B.6
C.6
D.6
E.6

8 6 4 2 0 2
log(F2

= 2)

P(
lo

g(
F2 =

2)
)

b)A.8
A.8 at 0K
B.8
C.8
D.8
E.8

Figure 4. Comparison of distributions of the logarithm of squared forces at strain value equal to 2
(100%) for systems of (a) with connectivity 6 and (b) with connectivity 8. (Force unit is expressed in
J·nm−1. See Table 1 for a complete description of the labels.)

In making the systems polydisperse, some of the percolating paths will have fewer
monomers. These paths are the ones that will get more tight and appear typically in the
right tail of the distribution of the forces. Of course this is balanced by some other paths
having more monomers and which are therefore less restrictive. However, on average the
shorter chains and paths will dominate the stress behaviour, because of the non-linearity
of the forces caused by the finite extension. This explains why the modulus increases and
the maximum extension decreases. The reason why the impact of polydispersity is more
significant in the eight chain system is found in the larger number of short percolating
paths in this geometry (and this orientation) compared to the six chain system. We estimate
that the introduction of polydispersity leads to a decrease of the length of the shortest
percolating path by about 13 % in the six chain system and by about 37 % in the eight chain
system. The details of this estimation are provided in the SI.

These results highlight the relevance of the “mean number of monomers” used in
several micro-mechanical models [19,21,22]. Indeed, the addition of a distribution of
monomers per chain does not have a strong impact on the stress modulus at low strain
for the two models. However, in the literature, the main goal of this kind of analytical
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model is to produce a good approximation of experimental strain/stress curves valid up
to high strain values [22]. With these results, we can easily understand one of the reasons
why it is difficult to capture the experimental stress/strain behavior across the full strain
range. It is the realisation that there is a “mean number of monomers” that will reproduce
experimental data at low strain values, but a lower “mean number of monomers” will be
required to describe the experimental behavior at high strain values.

Models with explicit chains of variable lengths, as we have used in this work, give
an additional freedom in manipulating the force distributions and can be used to supply
input to models, such as the fuse model, to study rupture [29].

3.2. Network Topology

The second type of heterogeneity we want to explore is the network topology. To this
end we compare two types of random topology networks with our two reference systems.
One preserving the structure of the cross-links (simple cubic or body centered cubic) and
the other having a random spatial arrangement of the topological constraints.

We first discuss the comparison between the two references (A.6 and A.8) and random
networks with a preserved cross-links structure (C.6 and C.8). To generate these systems, we
start with the regular six chain and eight chain networks. While keeping a constant number
of monomers per chains (monodisperse chains) that is sufficient to allow topological
rearrangements beyond first neighbors, we apply the procedure to relax topology. In
other words, the node positions are fixed on the regular lattice during the procedure, but
the topology of the network changes gradually from a highly symmetric to a random
topology. During the relaxation of the topology, heterogeneity is progressively introduced
by allowing modifications in the neighbor connections controlled by (3). Figure S4 shows
the variation of stress/strain when systems are progressively disordered, from A.6 to C.6
and from A.8 to C.8.

The mean centrality value for C.6 and C.8 is smaller than for the references A.6 and
A.8. This means that the topology of these systems is clearly different and, given the large
standard deviations of centrality in the random networks, also the nodes can no longer
be considered to be equivalent. However, the local node density (mean and standard
deviation) remains close to that of the reference systems, at least much closer than the fully
random networks (D.6 and D.8, see Table 1 and Figure 5a). This suggests that a random
topology only has a limited impact on the initial positions of cross-links.

In the case of a “six chain” structure, the introduced topological heterogeneities result
in a lower stress modulus compared to the reference, including at low strain values, and
in a higher finite extension. Accordingly, the mean value and standard deviation of the
distribution of forces are smaller for C.6 system compared to reference A.6 at λ = 1 and 2.
This can be explained by a reduction in the fraction of chains that are aligned along the
stretch axis (Figure S5). These chains are the ones that support most of the stress, because
they cannot rotate to adapt to the imposed deformation.

In contrast, the introduced topological heterogeneities in the “eight chain” structure
system result in a higher stress modulus compared to the reference, even at low strain
values, and in a shorter finite extension. Despite a lower mean value of the force distribution
in the C.8 system compared to A.8, the higher corresponding standard deviations at λ = 1
and 2 show that a non-negligible number of more extended chains exists. Figure 4b shows
a significant wing on the right side of the distribution of forces, comparable to that of the
B.8 system. This is explained by the larger proportion of chains that are aligned along the
stretch axis (see Figure 6) and is in line with the observation that the total stress is mostly
due to highly stretched chains forces in this direction.

As a side note, we like to point out that our proposed model allows us to stop the
equilibration of topology at any point, which gives an additional control on the degree of
the introduced heterogeneity.
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Figure 5. The probability distributions of the (a) local node density and (b) centrality of networks
with a mean node connectivity equal to 8.

3.3. Spatial Distribution

Given the observations made above, that the local density of topological constraints
is not majorly affected by going to a random topology, we now compare these networks
with monodisperse networks where both the positions and the topology are random. This
case is illustrated by comparing the D.6 and D.8 systems with, respectively, the C.6 and C.8
models. In particular, we examine whether the behavior of a random network built from
structured node positions is equivalent (after dynamic equilibration) with a totally random
network.

Figure 3 shows that both systems C (regular initial structure, random topology) are,
from a macroscopic point of view, significantly different from the systems D (fully random).
The modulus at small deformations is lower in the case of the random initial structure.

Considering the indicators of heterogeneity of systems C.6 and D.6 listed in Table 1, we
find that the mean values of centrality are unexpectedly close, and the standard deviation
of centrality is just a little larger in the full random network D.6. From this indicator point
of view, these two networks are very similar. The chain orientation is also almost isotropic
after mechanical relaxation of both systems D.6 and C.6. On the other hand, the local
node density is quite different and is significantly higher when the initial structure is fully
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random. The same is true for the standard deviation of the local density. This means, that
in the D.6 system, nodes are on average closer to each other in the unstretched state than in
C.6 (or than in the A.6 reference), and that the density is more heterogeneous, as expected.
As a consequence of this spatial node distribution, the mean of the distribution of forces
in the relaxed state is lower in D.6 than in C.6, while the standard deviation is almost the
same. This behaviour remains valid also for higher strains.

Similar observations can be made for the higher connectivity “eight chain” systems
(see Table 1). Again, the distribution of centrality is similar for C.8 (regular initial structure)
and D.8 (fully random), as can be seen in Figure 5b. Moreover, there is no substantial
difference between system C.8 and D.8 in terms of chain orientation (Figure 6), both of them
are isotropic at rest. The standard deviation and mean of the centrality are only slightly
higher in the fully random system. If we compare the local node densities, however,
we again find the same big difference (Figure 5a) between C.8 and D.8, the nodes being
more packed on average and more heterogeneously distributed in the latter system. The
distribution of forces shows the same tendency as in the “six chain” case, in the relaxed
state as well as under strain.
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Figure 6. Histogram of the chain orientations at λ = 1 (after mechanical relaxation) for systems with
a mean node connectivity equal to 8. θ is the tilt angle of the chains with respect to stretch axis. For
the systems C.8 to E.8, the orientation of chain orientation is isotropic. The corresponding figure for
connectivity 6 is shown in the SI.

Like in the previous subsection, it is also here possible to change progressively from
the fully regular initial structure (systems C) to the fully random initial structure (systems
D). This is achieved by assigning the nodes initially to regular lattice sites and adding a
random displacement with increasing amplitude before connecting the network. Figure S6
shows the variation of stress/strain when systems are progressively disordered, from C.6
to D.6 and from C.8 to D.8.

The fact that the random networks are less stiff than the more regular networks, could
be explained by the notion that the regions with higher density of nodes in the initial
structure tend to form clusters of more connected nodes, while at the same time the clusters
are connected to each others by fewer chains. The initial local density therefore affects
the node centrality. This intuitive idea is confirmed by the observation that the local node
density after mechanical relaxation and the centrality are partly correlated (see SI).

Compared to the systems with regular initial structure, the local stiffness is higher in
clusters and is lower in the surrounding areas. On average, however, the global stiffness
decreases. This argument can be illustrated by considering a 1-D toy model sketched
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in Figure 7 of two different structures. If each spring has the same stiffness k, then the
regular 2-2 chain has a global stiffness k, while the “cluster” chain 3-1 has a global stiffness
3k/4 < k. This effect could be even enhanced in 3-D due to possible chain reorientations.

Figure 7. Toy model of a chain of springs in 1-D. Each line represents a spring of equal stiffness k.
The more heterogeneous bottom system with stiffer clusters is globally less stiff than the regular
chain. Note that the connectivity and the number of springs is the same in both cases.

3.4. Connectivity

There are various studies on defects in polymer networks [14,49] or the effect of cross-
link connectivity [8]. It is also a well-known fact that during the chemical reticulation
procedure the maximal connectivity of the cross-linker agent is not always reached, which
results in a lower average value of connectivity. In this context, we now compare ideal
systems (same connectivity for each node) with systems for which the functionality of the
cross-links are not uniform. We introduce this type of heterogeneity by selecting some
nodes and increasing or decreasing their connectivity, in such a way that the distribution
of node connectivity becomes triangular ranging from 4 to 8 with a mean value of 6
connections (system E.6), or the range 6 to 10 with mean of 8 (system E.8). These nodes are
randomly connected by monodisperse chains using the aforementioned procedure.

The mechanical response of these systems is shown in Figure 3. Interestingly, the
effect of a distributed connectivity appears to be negligible in both cases. In other words,
the mechanical response only depends, with respect to this property, on the mean con-
nectivity number. The dispersion around this number does not significantly change the
mechanical behavior.

3.5. Connections beyond First Neighbors

The last issue we like to address is whether the differences between systems A (regular
lattice) and C (random topology with a regular structure) are due to the possibility for
chains to connect to nodes beyond first neighbors, thus changing the initial end-to-end
distance. In order to investigate this, we prepared a system A.4 on a regular body centered
lattice, where each node has eight nearest neighbors, but is only connected to 4 of them,
forming a double diamond lattice. The system C.4 has the same initial positions, but the
topology was randomized using the procedure that was introduced before, while forcing
the nodes to connect to nearest neighbors only. By doing so, we ensure that the end-to-end
distance for every chain is identical at the end of generation procedure for both networks.
As shown in Figure 8, the random topology affects the uni-axial mechanical response of
networks and is the cause of a lower modulus. Contrary to the A and B systems, the finite
extension λmax is the same for the random topology C.4 and its reference model A.4. This
could, however, also be due to the fact that the orientation of the chains relative to the
elongation axis is different in the systems with connectivity 6 and 8.

At zero-strain the mean values and standard deviations of the distributions of forces
are already different for A.4 and C.4 (see Table 1). The difference is comparable to the one
observed in systems with connectivity 6 and 8, in that despite a higher standard deviation
of forces in C.4, the average value is small enough to have a large fraction of chains with
smaller force than in the A.4 reference system. This tendency persists at low and high strain
values, resulting in the stress–strain curve shown in Figure 8. Like in the other systems
where we have added heterogeneity, the mean centrality decreases from A.4 to C.4, but
in this case the standard deviation is large enough to include the mean centrality of the
reference system.

The most interesting quantity, however, is the local node density. The heterogeneous
topology that was introduced during the generation of the network C.4, has an effect on
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the spatial distribution of nodes after the mechanical equilibration step. As in the systems
with connectivity 6 and 8, the C.4 system with a random topology has a higher mean and
standard deviation of the local node density than the A.4 reference system, which means
that the nodes are closer to each other and more heterogeneously distributed. However,
the difference is significantly larger. This is somewhat surprising, because C.4 and A.4,
with equal initial distances, should be more similar than C.6 and A.6 or C.8 and A.8. The
larger effect in systems of connectivity 4 is possibly due to the lower connectivity of these
systems, which enhances the sensitivity to local perturbations of the network.

It therefore seems that all of the effects that were observed in changing from A.6 to C.6
or from A.8 to C.8 are still present without connections beyond the first neighbors, except
perhaps for the variation in finite extension.
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Figure 8. Comparison of the load versus stretch diagrams (uni axial deformation) of the two different
4 chain networks.

4. Discussion

There are a number of different causes that can result in disorder and heterogeneities
in polymer networks. In general, all of them have an impact on the average macroscopic
mechanical behavior of the network, i.e., the stress–strain curve with respect to modu-
lus and finite extension. The main conclusions that we can draw from this study are
the following:

• Regular lattices can have particular properties due to their anisotropy [50]. Cubic
structures are anisotropic, because they are sensitive to the direction of strain with
respect to the lattice vectors.

• On introducing more heterogeneities in the network, the force distribution becomes
wider. However, heterogeneities do not have a systematic effect on the finite extension
and modulus. Indeed, depending on the initial structure, introducing heterogeneity
can impact the mechanical properties in one way or the other.

• More surprisingly, networks with a similar topology and isotropy can have a signifi-
cantly different mechanical response (C.6 and C.8 vs. D.6 and D.8). In particular, it is
possible to decrease the small-strain modulus while keeping the same finite extension
(C.8 vs. D.8). The difference seems to originate from the spatial arrangement of the
reticulation nodes (local node density), as indicated by the similarity between the
systems C and D in terms of the centrality and the chain orientation at zero-strain.
The system is sensitive to, and has a memory of, the position of the nodes and their
“well-dispersedness” at the time that the reticulations have been created. The way
the networks are generated and the descriptors by which they are characterized are
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therefore essential. This might serve as an experimental lever to adjust the mechanical
response of a polymer network.

• Finally and unexpectedly, the variability of the cross-link valency has no impact at all,
neither on the macroscopic mechanical behavior, nor on the local force heterogeneity,
provided that the average valency is kept fixed.

We have demonstrated that to some extent it is possible to generate networks with
controlled activation of different sources of heterogeneity. The model was kept simple
on purpose and lacks some essential features of realistic polymer networks, in particular
entanglements and chain breaking. However, we believe that this kind of approach can
enhance our understanding by separating the contributions of each source of heterogeneity
to the global disorder and the average mechanical response that are observed in real
systems, where all those effects are combined.

The simulated polymer networks such as we have described here can be made more
realistic in order to feed higher-scale simulation methods, like finite elements or fuse
networks. For such realistic models, the Kuhn length, mass density of monomers, number
density and valency of the cross-links, entanglement mass and chain breaking energy can
generally be obtained experimentally. However, as we have shown, this is not sufficient to
build a network that is capable of simulating a realistic mechanical response. Indeed, it is
also important to know the structure of the network and to generate it realistically.

5. Conclusions

We have demonstrated the relevance of a simple numerical model of polymer net-
works to investigate how much different sources of heterogeneity impact the mechanical
response at the microscopic and at the microscopic scale.

Starting from ideal regular lattices, heterogeneities have been progressively introduced
until fully random networks were obtained. As expected, the distribution of forces gets
broader when more and more heterogeneity is introduced. We found that the heterogeneity
of local stress is mostly impacted by heterogeneity in the topology (graph notion) while the
average macroscopic response is mostly impacted by heterogeneity in the initial structure
(spatial notion). Surprisingly, the non-uniformity of crosslink connectivity has no significant
impact (only the average connectivity matters).

These results can provide insight for experimentalists who wish to foresee how much
changing the process of production of the polymer networks will impact (or not) the
distribution of their mechanical properties.

For numerical simulations, our results also highlight the importance of the way the
network is generated and characterized. In particular, networks with similar topology but
generated from different structures can have significantly different mechanical responses.
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