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Abstract: An ionic liquid-based ionically cross-linked gel polymer electrolyte (GPE-ILs) was suc-
cessfully synthesized using acrylic acid, 2-diethylaminoethyl methacrylate, methyl methacrylate,
and ionic liquids. Electrochromic devices (ECDs) with an architecture of glass/FTO/WO3/GPE-
ILs/FTO/glass were fabricated by a laminating technology. The devices showed performances of
large optical modulation of 49.9% at 650 nm, short switching times with the coloration time (tc) of 7 s
and the bleaching time (tb) of 4 s, high coloration efficiency of 96.2 cm2 C−1, and cycling stability
of 200 cycles. The GPE-ILs exhibits high ionic conductivity, superior thermal stability and good
self-healing ability. GPE-ILs demonstrates an ionic conductivity of 3.19 × 10−3 S cm−1 at 25 ◦C and
the same ions migration behaviors with most widely used liquid electrolyte between −10 and 80 ◦C
maintains more than 80% of its tensile strength after self-healing and received only 5% weight loss at
300 ◦C.

Keywords: electrochromic device; ionically cross-linked gel; electrolyte; ionic liquids

1. Introduction

Electrochromic devices (ECDs) have attracted extensive attentions in last decades
because of their applications in energy saving technologies, like smart windows, low-power
displays, electronic skins, etc. [1–4]. However, most ECDs are suffering stability and safety
problems even they have advantages of low power consumption, high color rendering
efficiency, short switching time, etc. [5–8].

In a typical ECD device, electrolytes with high ionic conductivity, high transparency,
good thermal stability, and good electrochemical stability were desired [9–12]. Liquid
electrolytes and solid electrolytes are popular, nevertheless, liquid electrolytes are en-
countering volatilization and leakage [13,14] and solid electrolytes are suffering from low
response time and non-uniform coloring [15,16]. Gel polymer electrolytes (GPEs) were
considered as one of the ideal electrolyte candidates because of good mechanical properties
of molding ability (e.g., character of self-healing) [17–19] but ion conductivity at subzero
temperatures and fatigue properties need a further improvement before considering real
applications [20,21].

Non-covalent bonds (physically cross-linked) and dynamic covalent bonds (chemi-
cally cross-linked) are strategies of synthesizing self-healing gels [22], self-healing materials
can heal themselves after suffering external mechanical damage or harsh environments,
thereby effectively extending the service life of the material and improving its safety [23].
Generally, non-covalent bonds such as hydrogen bonding, hydrophobic bonding, and elec-
trostatic attraction can be used as the driving force for the self-healing of materials [24–26].
The ionically cross-linked polymer network is combined by the electrostatic attraction of
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high density between negatively and positively charged groups on polymer chains [27,28].
When the ionically cross-linked polymer network is destroyed, due to the movement,
rearrangement, and electrostatic attraction of the polymer chains, the network reconnects
to form ionic bonds that promote the self-healing of the damaged area [22]. Ionic liquids
(ILs) have many excellent properties, such as low vapor pressure, nonflammability, high
thermal stability, high ionic conductivity, and wide electrochemical window [29–32]. GPEs
will receive an improved ionic conductivity and long-term stability if ILs were introduced,
e.g., Fernandes et al. used sol–gel method to prepare an organic–inorganic hybrid ma-
terial containing ionic liquids as an electrolyte in ECD [33,34]. Studies about ILs-based
chemically cross-linked GPEs have been commenced [35–38] but only a few researchers
synthesized transparent ionically cross-linked GPEs because of compatibility between
ILs and ionically cross-linked networks. For applications of ECDs, a transparent GPE
was expected. Therefore, in order to obtain ILs-based ionically cross-linked GPEs with
high transparency, the selection of ILs and polymer monomers is particularly important.
Here, we compare the compatibility of the three ILs with different polymers. The polymer
monomers consist of acrylic acid, 2-diethylaminoethyl methacrylate, and six types of olefin
monomers (Table S1).

The conductivity, thermal stability, and optical properties of GPEs were obviously
improved by introducing an 3D ionically cross-linked network trapped IL-1-ethyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim]TFSI) and a highly con-
ductive Li+ source LiTFIS into GPE (GPE-ILs). Switching speed, optical modulations, and
cycling stability of ECDs adopting this GPE-ILs were investigated afterwards.

2. Materials and Methods
2.1. Materials

Methyl methacrylate (MMA, anhydrous, 99%), acrylic acid (AA, purity > 99%), 2-
diethylaminoethyl methacrylate (DEA, 99%), ethyl alcohol (anhydrous, 99.7%), and tung-
sten chloride (WCl6, 99.5%) were purchased from Aladdin (Shanghai, China). Moreover, 1-
ethyl-3-methylimidazoliumbis[(trifluoromethyl)sulfonyl]imide([Emim]TFSI, purity > 99%)
and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI, anhydrous, 99%) were purchased
from MonILs Chemical (Shanghai) Co. Ltd., China. Dibenzoyl peroxide (BPO, AR) was
provided by Sigma-Aldrich. Platinum electrodes (DJS-1C) were obtained from Shanghai
Leici. The FTO-coated glass sheet (sheet resistance: 5–7 Ω sq−1) was obtained from Zhuhai
Kaivo Optoelectronic Technology Co., Ltd. (Zhuhai, China).

2.2. Preparation of the GPE-ILs

Ionically cross-linked gel networks were formed by copolymerization of MMA, DEA,
and AA. The synthesis was completed via following steps: 1. 1 mL DEA and 1 mL AA
were added into 8 mL MMA solution in order to form a mixture of MDA. 2. Ionic liquid
[Emim]TFSI and MDA were mixed uniformly with a volume ratio of 2:1. 3. Then, 10 mg
BPO, serving as an initiator, and a certain amount of LiTFSI was added to the [Emim]TFSI
and MDA mixture. 4. This mixture were ultrasonicated for 1.5 h until the mixture changes
to a clear and transparent solution. 5. The solution was bubbled with nitrogen for 30 min
to ensure an O2-free environment, and then, the remaining gas dissolved in the system
was exhausted. 6. This O2-free solution was transferred to a sealed mold composed of two
pieces of FTO glass. 7. This mold was then heat treated at 80 ◦C for 12 h (Figure 1a). The
major reaction can be illustrated as two steps: protonation process of DEA and AA and the
process of free radical bulk polymerization (Figure 1b). Finally, a free-standing GPE-ILs
film was obtained.
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Figure 1. (a,b) Synthesis process of an ionic liquid-based ionically cross-linked gel polymer elec-
trolyte (GPE-ILs). 

2.3. Fabrication of the Electrochromic Layers 
WO3 films were deposited on FTO glasses through a templated sol–gel process in an 

ultrasonic sprayer (Sono-Tek, Corporation, Milton, NY, USA), which was reported previ-
ously [39]. 

2.4. Assembly of EC Device 
ECDs with a sandwich structure of glass/FTO/WO3/GPEs-ILs/FTO/glass were assem-

bled by adding GPE-ILs in between a WO3-coated FTO glass and a bare FTO glass, which 
is as shown in Figure 2. 

 
Figure 2. The assembly process of the electrochromic device (ECD). 

2.5. Characterization 
2.5.1. The Thermal Properties of GPE-ILs 

Thermogravimetric analysis (TGA) of GPE-ILs was performed with a Netzsch Instru-
ments simultaneous thermal analyzer (STA449F3) from 25 to 600 °C with a heating rate of 
10 °C min-1 under nitrogen atmosphere. The differential scanning calorimetry (DSC) of the 
samples was carried out using a TA-DSC2500 instrument with a temperature ranging 
from −80 to 150 °C and heating/cooling rate of 10 °C min-1. Tensile stress strain curve of 
GPE-ILs was obtained using an Electronic Universal Material Testing Machine (Instron 
5967). The length and diameter of the samples were 40 and 4 mm, respectively, and the 
stretching rate was 10 mm min-1. 

2.5.2. The Electrochemical Performance of GPE-ILs 

Figure 1. (a,b) Synthesis process of an ionic liquid-based ionically cross-linked gel polymer electrolyte
(GPE-ILs).

2.3. Fabrication of the Electrochromic Layers

WO3 films were deposited on FTO glasses through a templated sol–gel process in
an ultrasonic sprayer (Sono-Tek, Corporation, Milton, NY, USA), which was reported
previously [39].

2.4. Assembly of EC Device

ECDs with a sandwich structure of glass/FTO/WO3/GPEs-ILs/FTO/glass were
assembled by adding GPE-ILs in between a WO3-coated FTO glass and a bare FTO glass,
which is as shown in Figure 2.
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2.5. Characterization
2.5.1. The Thermal Properties of GPE-ILs

Thermogravimetric analysis (TGA) of GPE-ILs was performed with a Netzsch Instru-
ments simultaneous thermal analyzer (STA449F3) from 25 to 600 ◦C with a heating rate of
10 ◦C min−1 under nitrogen atmosphere. The differential scanning calorimetry (DSC) of
the samples was carried out using a TA-DSC2500 instrument with a temperature ranging
from −80 to 150 ◦C and heating/cooling rate of 10 ◦C min−1. Tensile stress strain curve
of GPE-ILs was obtained using an Electronic Universal Material Testing Machine (Instron
5967). The length and diameter of the samples were 40 and 4 mm, respectively, and the
stretching rate was 10 mm min−1.

2.5.2. The Electrochemical Performance of GPE-ILs

The ionic conductivity of the GPE-ILs from −10 ◦C to 80 ◦C were measured by
alternating current impedance spectroscopy, which was obtained form an electrochemical
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workstation (Bio-Logic SP-300) under working conditions of a test frequency range from
0.1 Hz to 1 MHz with the amplitude of 10 mV. The platinum electrodes (DJS-1C) are placed
in the unpolymerized precursor solution. After the polymerization is completed, the GPE-
ILs can fully contact the electrode, which obviously reduces the test error caused by the
poor contact between the gel and the electrode. The electrochemical stability window (ESW)
of GPE-ILs was measured by linear sweep voltammetry with a scan rate of 10 mV s−1 and
a voltage range from 0 to 5 V. The GPE-ILs was sandwiched between two sheets of FTO
glass, which acted as the reference and working electrode, respectively.

2.5.3. The Optical Transmittances of the ECDs

Optical transmittances of the ECDs were measured using an ultraviolet visible near-
infrared spectrophotometer (Lambda 750S, PerkinElmer) with wavelength ranging from
350 to 800 nm. Electrochemical workstation (Bio-Logic SP-300) was used to measure
chronoamperometry (CA) of the ECDs and the applied voltage was stepped between −3.0
and +3.0 V with step intervals of 40 s.

3. Results and Discussion
3.1. The Thermal Properties of GPE-ILs

Figure 3a shows DSC thermograms for GPE-ILs over the temperature range from −100
to 150 ◦C. As shown in the enlarged view of area for glass transition Figure 3b, the starting
point temperature of the glass transition is −55.6 ◦C, and the ending point temperature is
−51.2 ◦C, so the glass transition temperature is −53.4 ◦C, which is consistent with the above
analysis results of GPE-ILs that have no phase transition at −10 ◦C. When the temperature
is higher than glass transition temperature, lithium ions can easily and quickly migrate in
the electrolyte, which results in high ionic conductivity [40]. Consequently, the conductivity
of GPE-ILs at −10 ◦C still reaches 5.68 × 10−4 S cm−1, and when the temperature is above
the glass transition temperature of −54.3 ◦C, the conductivity of GPE-ILs does not decrease
sharply due to the phase transition. Therefore, ECDs with GPE-LIs as electrolyte can be
used normally in a wide temperature range.
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Figure 3. (a) Differential scanning calorimetry (DSC) thermograms for GPE-ILs over the temperature
range from −100 to 150 ◦C at a heating rate of 10 ◦C min−1. (b) Enlarged view of area for glass
transition. TGA and its DTG curve of (c) [Emim]TFSI and (d) GPE-ILs.

Weight loss of most organic gel polymer electrolytes at 300 ◦C is more than 15% [12,41–44]
that can cause a serious long-term stability issues. Existence of carbonate-based plasticizers
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in electrolyte was considered as a major reason. Replacing solvents such as PE and EC
with thermally stable [Emim]TFSI can improve thermal stabilities. Figure 3c,d shows
the TGA and DTG curves of [Emin]TFSI and GPE-ILs; the TGA curves illustrates that
[Emim]TFSI has almost no weight loss at 350 ◦C. while GPE-ILs based on [Emim]TFSI
has a weight loss of 5% at 300 ◦C probably arisen from volatilization of incompletely
polymerized monomers. As being illustrated from TG results, the weight loss stage of
GPE-ILs at 300–500 ◦C is separated into two stages: from 300 to 420 ◦C and from 400 to
500 ◦C. At 300–420 ◦C, the weight loss rate of GPE-ILs is higher than [Emim]TFSI, which
indicated that the polymer host of GPE-ILs is decomposed. At 420–600 ◦C, the weight loss
rate of GPE-ILs was basically equal to that of [Emim]TFSI, indicating that the weight loss
within this temperature range was accounted for [Emim]TFSI [45]. In general, GPE-ILs
based on [Emim]TFSI demonstrated a good thermal stability below 300 ◦C.

3.2. The Ionic Conductivity of GPE-ILs

Figure 4a shows the AC impedance spectrum of [Emim]TFSI and GPE-ILs at 25 ◦C,
an equivalent circuit as shown in Figure 4b is applied to fit experimental results. Therein,
Rs represents the bulk resistance; Rf is the interfacial resistance; CPE is the constant phase
element. In addition, then the bulk resistance values are fitted by Zview software. The
ionic conductivity of the electrolytes was calculated according to Equation (1):

σ =
1

RS
l
S

, (1)

where σ is the conductivity, Rs is the bulk resistance, l is the distance between two platinum
electrodes, and S is the interface area between the platinum electrode and the PADA gel
electrolyte. In the present measurement, l/S = 2 cm−1.
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in present work. (c) Ionic conductivity of GPE-ILs and the ionic liquid in the range from −10 to 80 ◦C.
(d) Temperature dependence of the ionic conductivity of the GPE-ILs and the ionic liquid.

Figure 4c shows the ion conductivity of GPE-ILs and [Emim]TFIS from −10 to 80 ◦C.
The ion conductivity of GPE-ILs is 3.29 × 10−3 S cm−1 at 25 ◦C. In comparison, according
to numerous reported studies, the GPEs with chemical cross-linked and organic solvents
as liquid electrolyte exhibit relatively low ionic conductivities ranging from 10−5 to about
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10−4 S cm−1 at 25 ◦C (Table 1). Figure 4d exhibits the temperature dependence of the ionic
conductivity of the GPE-ILs and the ionic liquid. Generally, the relationship between the
ionic conductivity of the liquid electrolyte and the temperature can be described by the
Arrhenius equation (Equation (2))

σ = A exp(
−Ea
KT

), (2)

where σ is the ionic conductivity, A is the pre-exponential factor, Ea is the activation energy,
K is the Boltzmann constant, and T is the temperature in Kelvin.

Table 1. Switching times of several reported ECDs and the ionic conductivity of gel polymer electrolyte.

ECDs Construction Ionic Conductivity
(S/cm) Switching Time (s) tc/tb Coloration Efficiency

(cm2 C−1) Ref.

FTO/WO3/protonic gelatin-based solid
electrolyte/NiO/FTO 1.28 × 10−5 (25 ◦C) 30/30 38.1 12

ITO/WO3/PVB-based GPEFs/Ni1−xO/ITO 4.0 × 10−5 (25 ◦C) 16.5/9.5 175.3 20
FTO/WO3/PMMA-

[Emim]BF4/LiClO4/FTO 2.9 × 10−3 (25 ◦C) 62.6/41.2 55.3 21

FTO/WO3/PADA gel electrolyte/NiO/FTO 1.33 × 10−2 (25 ◦C) 7.5/8.5 78.7 28
ITO/WO3/d-

PCL(530)/siloxane2[Emim]BF4/LiCF3SO3/ITO 4.0 × 10−4 (36 ◦C) 30/50 152 34

ITO/PANI:DBSA/PVdFHFP-ICPTES-ZrO2
/PEDOT:PSS/ITO 2.5 × 10−4 (25 ◦C) 10.06/9.50 / 46

FTO/WO3/GPE-ILs/FTO 3.29 × 10−3 (25 ◦C) 7/4 96.2 This paper

As shown in Figure 4d, the log σ is linear with 1000/T for the GPE-ILs, and the linear
correlation parameter r2 is 0.995. Therefore, the ions transfer resistance of GPE-ILs is
controlled by the thermal movement of ions so that the conductive behavior of GPE-ILs
is similar to that of liquid electrolytes [27]. This structure enables the ionic liquid, as a
continuous phase was encapsulated in the three-dimensional network of GPE-ILs, forming
continuous transport channels to facilitate the diffusion and migration of ions [24]. In
particular, at sub-zero temperature, the conductive behavior of GPE-ILs is still similar to
that of ionic liquid, which proved that phase transition does not occur and its operability
under a low temperature of −10 ◦C.

3.3. The Analysis of the ECD

In our devices, the GPE-ILs as the ion transport layer actually also plays a role in
ion storage, and the optical properties of ECDs can be changed because of the inser-
tion/extraction processes of Li+ and electrons in/out of the WO3 films. Figure 5a shows the
bleaching and coloring state of ECD under a voltage bias of ±3.0 V. The ECD demonstrated
a uniform blue color at colored state and transparency at bleached state. As shown in
Figure 5b, the transmittance of the ECD in the bleaching and coloring state are 78.6% and
28.8%, respectively. Transmittance variation of the ECD is 49.9% at 650 nm. The trans-
mittance of the ECD at 650 nm is measured in situ with a periodic voltage (depicted in
Figure 5c). As shown in Figure 5c, the coloration time (tc) and bleaching time (tb) of ECD
are 7 and 4 s, respectively. The switching times are shorter than the previously reported
publications (Table 1) due to the high ionic conductivity of GPE-ILs.
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3.4. The Coloration Efficiency and Cycling Durability of ECD

Coloration efficiency (CE) an important performance of ECDs is defined as the optical
change caused by a unit charge density at a given wavelength, which could be determined
by Equation (3):

CE =
∆OD
∆Q

=
log(Tb/Tc)

∆Q
, (3)

where ∆OD represents the change of optical density. Tb and Tc are the transmittance at
the bleached and colored states, respectively, and ∆Q can be calculated by the current
integration (in Figure 5d). The CE value of ECD is 96.2 cm2 C−1, which is higher than some
reported works (Table 1). The results show that ECDs based on GPE-ILs can obtain large
optical modulation under low energy input, which is of great significance for energy saving.

A wide electrochemical window of electrolyte will ensure that ECDs can operate stably
within the working voltage. Figure 6a shows the result of a linear sweep voltammetry on
GPE-ILs and the electrochemical stability window of GPE-ILs is 3.75 V, which indicates that
GPE-ILs is stable enough under the normal working voltage (3 V) of ECD. Figure 6b shows
the repeated coloring and bleaching process of GPE-ILs-based ECD during 50 cycles. The
detail of transmittance for 200 cycles can be obtained in Figure S1. At the beginning, the
transmittances of bleached and colored ECD are 77.6% and 27.7%, respectively. Tb slightly
drops and Tc rises after 100 cycles, Tb drops to 74.4%, Tc rises slightly to 32.3%, and the
difference reduces to 42.1%, which represents only a 7.8% decrease. As the cycle number
increases to 200, the optical modulation of ECD can be still maintained to 35%. As the cycle
number increases, Tb gradually decreases, while Tc gradually increases, which is due to the
ion trapping in tungsten oxide.
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3.5. The Self-Healing Ability of GPE-ILs

GPE-ILs with good mechanical properties can further improve stability of ECDs.
Figure 7b shows in the tensile state and stress-strain curve of GPE-ILs that the breaking
elongation of GPE-ILs is 400% and the breaking strength is 45 KPa. In Figure 7c, the
GPE-ILs is cut into two parts, and the new section is put together at room temperature
(without adding any chemicals) for 12 h. As shown in Figure 7d, the elongation at break
of GPE-ILs after self-healing is 340%, and the breaking strength is 35 KPa indicating that
the healing GPE-ILs can still maintain a good elongation and a certain strength. There are
two main reasons for the self-healing of GPE-ILs. The first reason is when the ionically
cross-linked polymer network is cut and placed together again, the network reconnects
to form ionic bonds due to electrostatic attraction. On the other hand, the ionic liquid
in GPE-ILs promotes the movement of polymer chains, and with the rearrangement of
polymer chains, it is more conducive to the interaction of electrostatic attraction in the
damaged area [22].
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4. Conclusions

A self-healing GPE-ILs was successfully fabricated, and ECDs adopting GPE-ILs
as electrolyte demonstrated desirable properties of both operating and stabilities. The
prepared ECD exhibits a large optical modulation of 49.9% at 650 nm, short response
time during the colored (7 s) and bleached (4 s) processes, high coloration efficiency of
96.2 cm2 C−1, and good cycling performance of more than 200 cycles. These properties
improvement can be attributed to the excellent properties of GPE-ILs. The ionic conductiv-
ities of GPE-ILs are 3.29 × 10−3 and 0.58 × 10−3 S cm−1 at 25 ◦C and −10 ◦C, respectively.
The weight loss of GPE-ILs is only approximate 5% under 300 ◦C, and the glass transition
temperature is −53.4 ◦C. In addition, GPE-ILs has superior self-healing ability that the
tensile properties of GPE-ILs after self-healing can still maintain more than 80%. In general,
GPE-ILs not only have great potential in traditional electrochromic devices but also are
expected to be applied to some new electronic devices such as foldable smart windows
and stretchable electronic skins.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
360/13/5/742/s1, Figure S1: In situ optical response of PECD measured at 650 nm. (a) 1–100th
cycles. (b) 100–200th cycles. Potential: 3.0 V, cycling time: 40 s, Table S1: Transparency of different
components of ionically cross-linked gel polymer electrolytes (GPEs), Video S1: Electrochromic
devices (ECD) in coloring and bleaching processes and the stretching of an ionic liquid-based
ionically cross-linked gel polymer electrolyte (GPE-ILs).
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