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Abstract: The objective of the present research is to propose chitosan as a nanocarrier for caffeine—
a commonly used drug in combating cellulite. Being a hydrophilic drug, caffeine suffers from
insufficient topical penetration upon application on the skin. Chitosan nanoparticles loaded with
caffeine were prepared via the ionic gelation technique and optimized according to a Box–Behnken
design. The effect of (A) chitosan concentration, (B) chitosan solution pH, and (C) chitosan to
sodium tripolyphosphate mass ratio on (Y1) entrapment efficiency percent, (Y2) particle size, (Y3)
polydispersity index, and (Y4) zeta potential were studied. Subsequently, the desired constraints
on responses were applied, and validation of the optimization procedure was confirmed by the
parameters exhibited by the optimal formulation. A caffeine entrapment efficiency percent of
17.25 ± 1.48%, a particle size of 173.03 ± 4.32 nm, a polydispersity index of 0.278 ± 0.01, and a
surface charge of 41.7 ± 3.0 mV were attained. Microscopical evaluation using transmission electron
microscope revealed a typical spherical nature of the nanoparticles arranged in a network with a
further confirmation of the formation of particles in the nano range. The results proved the successful
implementation of the Box–Behnken design for optimization of chitosan-based nanoparticles in the
field of advanced polymeric systems for pharmaceutical and cosmeceutical applications.

Keywords: chitosan; caffeine; cellulite; ionic gelation; Box–Behnken Design; optimization

1. Introduction

Cellulite is a complex metabolic condition that affects more than 85% of post-pubertal
females. Its pathophysiology is complex which involves the presence of excess fats in
the subcutaneous tissue, resulting in skin irregularities [1]. The skin nodularity caused
by the projection of deep fatty layer outward is referred as “orange peel appearance” [2].
Caffeine, a naturally derived alkaloid, is used in multi-diverse industries including food
and beverages, health supplements, cosmetology, and pharmaceuticals [3]. It is the prevail-
ing ingredient in topical anti-cellulite products due to its pharmacological activity [4]. It
reduces lipogenesis and promotes lipolysis through various mechanisms; principally, it
inhibits hormone sensitive lipase (HSL) through inhibition of phosphodiesterase enzymes
(PDE) [5]. An increase in the activity of the aforementioned enzymes enhances the degrada-
tion of triglycerides. Additionally, caffeine increases the secretion of catecholamine which
both activates the β-receptors and blocks the α-receptors in the skin, resulting in enhanced
lipolysis and preventing excessive fat accumulation [6–8].
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The main challenge of tackling cellulite using topical treatments is the presence of
lipophilic stratum corneum (SC) which acts as a barrier in preventing the entry of for-
eign entities including drug molecules [9]. The use of nanotechnology in combating
such challenge is expected to enhance drug penetration as reported in previous stud-
ies [10,11]. Caffeine has been formulated in different nanosystems such as liposomes [12],
ethosomes [13] solid lipid nanoparticles [14], and polymeric nanoparticles fabricated from
synthetic polymers such as polycaprolactone [15]. Among the materials used for the pro-
duction of nanocarriers for caffeine, chitosan (CS) has been also proposed in the literature.
Despite the infinite advantages offered by such polymer, the number of studies conducted
regarding the incorporation of caffeine in CS is very limited.Accordingly, the research
works of Sahudin et al. [16] and Suptijah et al. [17] proposed chitosan as a promising
carrier for caffeine. Chitosan possesses numerous benefits including its biodegradability,
bioavailability, and high safety profile [18,19]. Most importantly, CS exhibits permeability
enhancing properties due to its cationic nature which enhances skin penetration through
interacting with the oppositely charged SC, loosening the tight junction, thus enhancing
penetration to subcutaneous adipocytes [20,21]. CS nanoparticles are commonly assembled
via ionic crosslinking between positive amino groups present in the CS chains with an
oppositely charged agent such as sodium tripolyphosphate (TPP)—a multivalent non-toxic
anion (TPP) [22–25]. Due to the aforementioned advantages, it is used as a carrier for a
wide array of drugs including herbal extracts [26,27], antimicrobial agents [28], antiviral
drugs [29], and anticancer agents [30]. Accordingly, CS–TPP nanoparticles represent the
optimum carrier for local drug delivery system intended for topical use.

The Box–Behnken design (BBD), subcategorized from Response Surface Methodology
(RSM), is a statistical tool that allows the analysis and evaluation of the main, interaction,
and quadratic effects [24]. Moreover, BBD generates optimal formulation according to pre-
set desired responses through the optimization of the studied parameters [31]. Construction
of formulations is performed through selecting the midpoint lying in the center across each
edge in a hypothetical 3D cubic shape. Furthermore, replication of the center point, also
referred as “information rich point”, allows estimation of pure experimental uncertainty.
This approach of experimental design has proved to be a valuable tool in terms of time
saving and economic saving as it allows identification of the interactions by changing the
variables simultaneously, thus maximum information can be obtained from a minimum
number of experiments [32]. The uniqueness of implementing such design is its inclusion
of the midpoints only upon constructing the design and exclusion of the “corner points”,
thus avoid any combined factor extremes that might lead to potential loss in the validity of
the results [33].

In the present work, caffeine loaded CS–TPP nanoparticles were developed using ionic
gelation method to allow an efficient dermal delivery of caffeine to subcutaneous adipocytes
at adequate concentration. BBD was utilized for the optimization and investigation of the
effects of different factors on desired responses. Encapsulation efficiency percent (EE%),
particle size (PS), polydispersity index (PDI), and zeta potential (ZP) were determined for
the generated formulations, as well as for the optimal formulation. In addition, microscopic
analysis using transmission electron microscope of the optimal formulation was conducted
to confirm morphology and size of the prepared nanoparticles.

2. Materials and Methods
2.1. Materials

Caffeine was purchased from Thermofisher (Kandel, Germany). Low molecular
weight CS and TPP were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO,
USA). Acetic acid was purchased from Al-Nasr Pharmaceutical Company (Cairo, Egypt).
Sodium hydroxide was purchased from Fisher Scientific (Loughborough, UK). Hydrochlo-
ric acid was purchased from Al Ahram Laboratory Chemicals Co. (Cairo, Egypt). Ultrapure
water was used throughout this study.
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2.2. Methods
2.2.1. Experiment Design

The Box–Behnken design, a three-factor and three-level design, was used to statistically
optimize the parameters under investigation and to assess the main, interaction, and
quadratic effects of the formulation parameters. The design and analysis of 15 experimental
runs were developed using Stat-Ease’s Design-Expert-7® (Version 7.0.0, Minneapolis, MN,
USA). The factors (independent variables) employed were (A) CS concentration, (B) pH of
CS solution, and (C) CS: TPP mass ratio. Low, medium, and high levels of each individual
factor presented as −1, 0, and +1, respectively, with their actual values are shown in Table 1.
The dependent variables (responses) chosen in the study included EE% [Y1], PS [Y2], PDI
[Y3], and ZP [Y4]. The optimum caffeine-loaded CS–TPP nanoparticles formulation was
characterized for the previously mentioned responses.

Table 1. Independant responses with their respective levels.

Factors (Independent Variables) Levels
Low (−1) Medium (0) High (+1)

(A) CS * conc (%) 0.05 0.15 0.25
(B) CS solution pH 3 4 5
(C) Mass ratio CS:TPP 2:1 4:1 6:1

* CS: Chitosan.

The independent variables range was selected according to previously published
literature [22,23,34,35]. Three distinctive zones: clear solution, opalescent suspension,
and aggregates, were observed when TPP was added to different concentration of CS.
Opalescent suspension indicated presence of very small particles, achieved at a final CS
concentration between 0.1 and 0.3%, and TPP concentration between 0.02 and 0.1% [22].
The effect of different pH values (from pH of 3 up to 6) of CS solution on PS, PDI, and
ZP have been previously studied [23,34,35]. For this reason, the effect of pH within the
pre-selected range was used in the current model. The presence of CS and TPP in specific
ratios is considered a critical factor in controlling PS and stability of CS nanoparticles.
Therefore, a wide range of CS: TPP mass ratio, varying from 2:1 to 6:1, was studied in the
present research.

2.2.2. Fitting of Responses to Optimum Model

The responses attained from each formulation were fitted in different models; namely,
linear, 2-factor interaction (2 FI), and a quadratic model. The best fitted model for each
response was determined and selected based on the analysis of variance (ANOVA) em-
ploying highest R2, predicted and adjusted R2, and adequate precision [36]. Predicted
R2 measures the ability of the model to predict a response, while adjusted R2 determines
the efficacy of variables in improving the model fitting, taking in account the number of
variables, thus the presence of insignificant variables tends to decrease the adjusted R2 val-
ues [32]. Closeness of the predicted and adjusted R2, with an approximate difference of 0.2,
should be attained to be in a “reasonable agreement” [37]. Adequate precision is also one
of the important parameters in selecting the optimum response for a given variable, and is
calculated as a signal-to-noise ratio, which should reach a value of >4 to be desired [38].
The selected model was also evaluated for the lack of fit test, and the insignificance of such
value relative to pure error indicated the existence of a significant correlation between the
chosen independent variables and their responses [39]. The reproducibility of a model
is determined through coefficient of variance percent (CV%), which is a percent ratio of
the standard error to the mean value of a response, thus a model with a CV% of <10%
indicated reproducibility [40].

The composition of fifteen experimental trials with three repetitions of the center
point generated by the BBD are illustrated in Table 2. Selection of the most fitted model to
each parameter and its significance was performed using analysis of variance (ANOVA),
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expressed as p-value < 0.05. The coefficient of determination (R2) was employed for the
selection of the best fit model.

Table 2. Composition of generated formulations using the Box–Behnken design (BBD).

Factor Levels in Their Actual Value

Formulations CS Concentration (%) pH Mass Ratio (CS:TPP)

F1 0.05 3 4:1
F2 0.05 4 2:1
F3 0.05 5 4:1
F4 0.05 4 6:1
F5 0.15 4 4:1
F6 0.15 3 6:1
F7 0.15 4 4:1
F8 0.15 5 6:1
F9 0.15 3 2:1

F10 0.15 5 2:1
F11 0.15 4 4:1
F12 0.25 3 4:1
F13 0.25 4 2:1
F14 0.25 5 4:1
F15 0.25 4 6:1

2.2.3. Preparation of Caffeine-Loaded CS–TPP Nanoparticles by Ionic Gelation Technique

The ionic gelation method was adopted in the preparation of the CS–TPP nanopar-
ticles [41]. In brief, different concentrations of CS solution in 1% (v/v) acetic acid were
prepared and stirred overnight. The final pH of CS solution was adjusted according to the
stated values mentioned in Table 2 using 1 M sodium hydroxide solution for the high pH
values and 1 M hydrochloric acid for low pH values. On the other hand, TPP was dissolved
in 2 mL of deionised water containing 10 mg caffeine to achieve different CS: TPP mass
ratios [27]. The crosslinker solution was sonicated using a water bath sonicator (Elma-Hans
Schmidauer: El masonic S60 H, Singen, Germany) for the dissolution of TPP and caffeine.
The addition of TPP/caffeine solution into 8 mL CS was performed drop-wisely using a
disposable syringe under a magnetic stirrer (Labnet, Accuplate PC 4200, Mexico) until a
translucent nanoparticle suspension was formed. The suspension was then stirred for 1 h
at 1000 rpm at room temperature to allow complete interaction. The resulting nanoparticles
were collected by cooling centrifugation (Centurion Ltd. PRO-Research K241R, Chich-
ester, UK) at 15,000 rpm for 45 min at 4 ◦C and were washed with deionized water and
re-centrifuged at the same conditions to remove excess unreacted soluble CS present in
the supernatant. Moreover, the supernatant was used at the end of the experiment to
determine drug entrapment efficiency (EE%) [42].

2.2.4. Characterization of Caffeine-Loaded CS–TPP Nanoparticles

Entrapment Efficiency Percent (EE%)

The amount of caffeine entrapped within the nanoparticles was determined by indirect
method, through calculating the amount of unentrapped drug. The nanosuspension was
centrifuged as mentioned above, and the clear supernatant containing the free unentrapped
drug was collected, diluted with distilled water and measured spectrophotometrically
(Jasco, V-630, Japan) at the wavelength with the maximum caffeine absorbance (λmax)
273 nm [43]. Absorbance was converted to the corresponding concentration via a pre-
constructed calibration curve [15]. Any interferences that may occur due to unfiltered
suspended particles were excluded via spectrophotometric measurement of the supernatant
of the unloaded CS–TPP nanoparticles, used as a blank sample [44]. Each sample was
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measured three times and the mean and standard deviation (SD) were calculated. EE% for
each formulation was calculated using the following Equation (1):

EE% =
Total Caffeine added − free Caffeine in supernatant

Total Caffeine added
× 100 (1)

Particle Size (PS) and Polydispersity Index (PDI)

Measurements of the PS and PDI were performed on freshly prepared samples, diluted
in deionised water and measured at 25 ◦C using a Malvern Zetasizer (Malvern Instruments
Ltd., Malvern, UK). Sample measurements were conducted in triplicate for each preparation
and the results were reported in terms of mean diameter (Z-average) ± SD.

Zeta Potential (ZP)

Zeta potential (ZP) was measured by a Malvern Zetasizer (Malvern Instruments Ltd.,
Malvern, UK) by measuring the electrophoretic mobility of the nanoparticles. The stability
of nanosuspension is principally governed by the magnitude of its surface charge [45]. The
borderline between stable and unstable colloidal system is either positive or negative 30 mV.
Accordingly, an absolute value greater than 30 mV is considered stable. [46]. Dilution of
freshly prepared samples was performed using deionized water; a portion was injected
into a Zetasizer capillary cell attached to electrodes at both ends. Measurements were made
at room temperature in triplicate, and results were reported in terms of mean ZP ± SD.

2.2.5. Formulation Optimization

Optimization of the CS–TPP nanoparticles was developed using Design Expert®

software (RSM-BBD) after applying specific constraints on the chosen dependent variables.
The optimization aimed to maximize EE%, minimize PS and PDI, and maximize ZP. The
optimized caffeine-loaded CS–TPP nanoparticles were prepared and measured for the
aforementioned responses to ensure the reliability of the developed model.

2.2.6. Characterization of the Optimal-Caffeine Loaded CS–TPP Nanoparticles Formulation

Entrapment Efficiency, Particle Size, Polydispersity Index, and Zeta Potential

The EE% PS, PDI, and ZP of optimized CS–TPP nanoparticles was determined as
previously described.

Transmission Electron Microscope (TEM) Examination

In addition to the previously mentioned characterization techniques, microscopic
analysis of the surface morphology and structure of the optimal caffeine-loaded CS–TPP
nanoparticles was carried out using TEM (H-600, Hitachi, Tokyo, Japan) [38]. Nanosuspen-
sion was diluted using distilled water; a drop was placed over a copper grid coated with
carbon film. Imaging of CS–TPP nanoparticles was performed at an operating voltage

3. Results and Discussion

The ability of CS–TPP nanoparticles to entrap hydrophilic drugs such as caffeine
along with other parameters was investigated. A design consisting of fifteen formulations
and containing three replicated center points, (F5), (F7), and (F11) as demonstrated in
Table 2, were developed by BBD and prepared. The results were analyzed and provided
considerable information for the optimization of the formulation. Results of all responses
including EE% (Y1), PS (Y2), PDI (Y3), and ZP (Y4) are listed in Table 3 as mean ± SD. The
data were fitted into different mathematical models and the optimum model was selected
based on the optimum R2, adjusted R2, predicted R2, and adequate precision as shown
in Table 4.
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Table 3. Responses on encapsulation efficiency percent (EE%), particle size (PS), polydispersity index
(PDI), and zeta potential (ZP) of the generated formulations.

Formulations EE ± SD (%) (Y1) PS ± SD (nm) (Y2) PDI ± SD (Y3) ZP ± SD (mV) (Y4)

F1 7.09 ± 1.81 120.2 ± 2.01 0.249 ± 0.004 39.5 ± 4.11

F2 10.13 ± 0.91 181.003 ± 8.54 0.24 ± 0.008 26.0 ± 4.00

F3 5.19 ± 1.03 163.33 ± 7.64 0.261 ± 0.004 23.3 ± 1.15

F4 3.45 ± 0.52 95.33 ± 5.03 0.263 ± 0.004 27.0 ± 1.00

F5 17.22 ± 0.24 182.00 ± 3.00 0.287 ± 0.003 29.5 ± 5.07

F6 13.8 ± 0.52 121.33 ± 9.07 0.273 ± 0.004 44.6 ± 0.51

F7 16.62 ± 0.29 226.00 ± 10.15 0.281 ± 0.004 32.0 ± 2.00

F8 11.11 ± 0.24 175.67 ± 5.86 0.459 ± 0.005 24.7 ± 3.06

F9 19.82 ± 0.59 323.67 ± 7.77 0.392 ± 0.009 34.6 ± 4.13

F10 17.92 ± 0.41 496.00 ± 7.55 0.517 ± 0.031 22.0 ± 2.00

F11 14.06 ± 0.43 184.00 ± 6.00 0.245 ± 0.005 27.3 ± 1.15

F12 23.02 ± 0.24 463.67 ± 12.66 0.473 ± 0.028 43.7 ± 1.53

F13 26.34 ± 0.52 883.67 ± 7.37 0.736 ± 0.016 27.0 ± 3.00

F14 21.15 ± 0.19 725.67 ± 6.11 0.753 ± 0.004 24.0 ± 2.00

F15 19.25 ± 0.1 345.67 ± 8.51 0.553 ± 0.039 37.3 ± 2.52

Table 4. ANOVA analysis of the investigated responses.

Model R2 R2 Adjusted R2 Predicted Adequate Precision Remarks

Entrapment efficiency percent (Y1)

Linear 0.9814 0.9763 0.9705 43.125 Suggested
2FI 0.9814 0.9674 0.9445 27.801 -

Quadratic 0.9923 0.9793 0.9833 29.158 -

Particle size (Y2)

Linear 0.8155 0.7652 0.7652 12.766 -
2FI 0.9013 0.8272 0.8272 11.249 -

Quadratic 0.9954 0.9872 0.9872 35.272 Suggested

Polydispersity index (Y3)

Linear 0.7834 0.7244 0.6492 11.002 -
2FI 0.8499 0.7374 0.6757 8.52 -

Quadratic 0.996 0.9888 0.9684 34.508 Suggested

Zeta Potential (Y4)

Linear 0.8913 0.8617 0.7871 16.182 Suggested
2FI 0.9405 0.8959 0.7666 14.098 -

Quadratic 0.9768 0.9351 0.8235 14.94 -

3.1. Effect of Investigated Independent Variables on Entrapment Efficiency Percent (EE%)

Upon fitting the data responses on different models as shown in Table 4, the linear
model was the significant model for the EE% analysis with a p-value < 0.0001, a p-value of
0.8979 for the lack of fit, and the CV% was 6.95%. The regression equation (Equation (2)) of
the fitted model for EE% is:

EE% = +14.87 + 8A − 1B − 3.5C (2)

It can be deduced from Equation (2) that the CS concentration (A) had a positive impact
on EE%, while the CS solution pH (B) and CS: TPP mass ratio (C) had an inverse relationship
with EE%. ANOVA analysis of the final model suggested that A, B, and C factors had a
significant effect on the EE% of caffeine, all having a p-value of < 0.05. Moreover, the
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significance of the factors was further confirmed by the high respective F-value of 480.00,
7.50, and 91.88, which indicated that variation between sample means existed.

Entrapment efficiency had a positive linear relationship upon increasing concentration
of CS solution as shown in the one factor plot in Figure 1A. A maximum EE% of 26% (F13)
was attained at a CS concentration of 0.25%. At a low CS concentration (0.05%), a low
EE% value of 10% was observed at a constant CS:TPP mass ratio and pH in comparison
to (F13). Increasing the CS concentration increased availability of the protonated CS
(–NH3

+) in the system, confirmed by elevation of ZP. Accordingly, availability of the
binding sites for the crosslinker increased, hence higher EE% [42]. These results were in
agreement with Kalam et al. [47], confirming the decrease in EE% was due to a lower
concentration of CS used. Contrarily, increasing the pH of CS solution while maintaining
constant values of the other factors resulted in a significant reduction in the EE%; however,
it should be noted that the reduction is not intense as shown in Figure 1B. This was
demonstrated by (F6) with pH 3, which achieved an EE% of 13.8 ± 0.52%, which was
reduced to 11.11 ± 0.24% upon increasing pH to 5 (F8). This could be explained due to the
decrease in the protonation of CS molecule at higher pH conditions. Thus, the capacity of
the CS to ionically interact with TPP ions was reduced resulting in a lower EE%, despite the
larger size of formed nanoparticles [36]. Moreover, the CS: TPP mass ratio had an inverse
effect on EE% upon increasing the ratio from 2:1 to 6:1. As observed from Figure 1C, the
EE% decreased significantly upon increasing the CS: TPP mass ratio from 2:1 to 6:1. This
could be demonstrated by comparing (F13) having an EE% of 26.34 ± 0.52% when the CS:
TPP mass ratio is 2:1, which was reduced to 19.25 ± 0.1% upon increasing the mass ratio to
6:1 as in (F15). This could be explained due to the presence of a low amount of TPP anions
available for crosslinking with CS. Low EE% was confirmed by the reduced particle size.
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The low EE% could be attributed to the hydrophilic nature of caffeine and its small
molecular weight which led to its complete loss into the hydrophilic phase, rather than its en-
trapment in the formed CS–TPP nanoparticles, which is in agreement with Bodmeier et al. [48].
These findings were also supported by Lazaridou et al. [49], who reported that the low
EE% of deferoxamine mesylate upon its entrapment in CS–TPP nanoparticles was due to
its hydrophilic nature. This confirms that hydrophilic drugs have a low EE% in CS–TPP
nanoparticles due to their high water solubility, thus partitioning to the aqueous phase.

Another prospective to be considered in interpreting EE% is the interaction of caffeine
with the positively charged CS molecules. Based on caffeine chemical structure, it tends
to protonate when it dissolves in water [15,50]. Positively charged caffeine interacted with
the positively charged CS present in the acidic media, leading to repulsion between the two
moieties due to similar charges. This repulsion is expected to contribute to the low entrapment
of caffeine within the chitosan polymeric nanoparticles. In a similar trend, Janes et al. [51]
assessed the ability of CS–TPP nanoparticles to entrap the positively charged hydrophilic drug
doxorubicin, similar to caffeine. Their results revealed a low EE% reaching 9.1%, which was
explained by the presence of repulsion between a similarly charged polymer and drug.

Such results of low entrapment efficiency of caffeine were also attained using other
nanocarriers as reported in the literature, including liposomes reaching 10% entrap-
ment [52]. Furthermore, low values of EE% was also witnessed by Ascenso et al. [53]
upon incorporation in vesicles including transfersomes, ethosomes, and transethosomes
reaching a value of less than 10%, which confirms that the hydrophilicity of caffeine
molecules is responsible for its low entrapment within the polymeric network.

3.2. Effect of the Investigated Independent Variables on Particle Size (PS)

The fundamental approach in utilizing nanoparticles in topical drug delivery products
is to exploit their small size to overcome the SC barrier and facilitate drug penetration [10].
Thus, it is essential to target nanoparticles with low PS for successful delivery of caffeine.
The quadratic model was the significant model as shown in Table 4 with a p-value of < 0.05;
an insignificant lack of fit value was obtained in this model with a p-value of 0.4739, and
CV% was 8.52. The final equation (Equation (3)) to correlate the three independent variables
and PS was as follows:

PS = +197.33 + 232.6A + 66.47B − 143.38C + 54.8AB − 113AC − 29.25 BC + 134.11 A2 + 36.86 B2 + 45.06C2 (3)

According to the ANOVA analysis, the three independent variables studied had an
effect on the PS as all formulations had a p-value of < 0.05 and the F-value for each of the
factors was 610.49 for (A), 49.86 for (B), and 231.96 for (C). PS of all the prepared formulations
ranged from 95 ± 5 to 884 ± 7 nm as presented in Table 3. The 3D surface plot, illustrated
in Figure 2A, showed that increasing the concentration of CS along with increasing the TPP
amount for the crosslinking (low mass ratio of 2:1) resulted in the largest PS formation. CS is
present as extended chains at a low concentration which facilitates dispersion of TPP anions
to the exposed positively charged amino groups of CS. This rapid dispersion leads to the
formation of small compact nanoparticles. However, upon increasing CS concentration, the
molecules become entangled in such a way that it hinders TPP anions dispersion within CS
molecules, thus inefficient crosslinking occurs, and hence larger particles are formed [23,54].
Moreover, at a low CS: TPP mass ratio (2:1), the presence of excess TPP anions above
equilibrium leads to interaction with the amino groups in CS and the formation of enlarged
particles with lower surface charge. This can also be seen by comparing the PS of (F4)
(95.33 ± 5.03 nm) with a CS:TPP of 6:1, which increased rapidly on reducing the CS:TPP
mass ratio to 2:1 in (F2), reaching a PS of 181.003 ± 8.54 nm while maintaining the same
CS solution pH and concentration. Nanoparticle formation principally depends on the
formation of inter and intra-molecular interaction between CS chains and multivalent TPP.
Thus, at a high CS: TPP mass ratio (small quantity of TPP is available in comparison to
CS), TPP crosslink with CS forming small non-aggregated nanoparticles. However, as the
CS:TPP mass ratio declines (larger quantity of TPP is available in comparison to CS) as
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in the current study, CS molecules were fully crosslinked with the presence of excess TPP,
which resulted in large aggregated particles and precipitation forming a turbid suspension.
This result was in agreement with Bing Hu et al. [55], who suggested that PS decreased
linearly with increasing CS: TPP mass ratio. This phenomenon was also witnessed by
Papadimitriou et al. [56], Aziz et al. [57], Leelapornpisid et al. [58], and Perinelli et al. [59]
who elucidated that at smaller CS: TPP mass ratios, the amount of TPP was in excess, linking
the nanoparticles together to form larger particles. This effect was further augmented upon
increasing the pH of the CS solution, due to the decreased protonation of CS molecules
leading to decreased crosslinking ability with TPP. Along these lines, a pattern of increased
PS was witnessed upon increasing the CS solution pH, (F6) having a PS of 121.33 ± 9.07 nm
at a pH of 3, which increased significantly to a value of 175.67 ± 5.86 nm in (F8) upon
increasing pH to 5. The protonation degree of CS decreased as the pH of the solution
increased, leading to reduction in its capacity to crosslink with TPP and the formation of
large non-compact particles. [36]. This could be attributed to the change in the conformation
of CS molecule from an extended highly protonated form in the acidic medium, to a less
protonated folded form in a high pH medium. The folding, referred to as loop conformation
of the CS chain, also resulted in fewer amino groups being exposed to the TPP anions, lower
crosslinking, and eventually the formation of CS–TPP nanoparticles with larger PS. These
findings are in agreement with Abd-Allah et al. [23]. The effect of the CS solution pH and
CS concentration on PS at a CS: TPP mass ratio of 4:1 is demonstrated in the 3D surface
plot in Figure 2B, showing that the effect of pH on PS had a much higher impact upon the
formulation using a higher concentration of CS.

Polymers 2021, 13, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 2. 3D surface plot response of the main effect of (A) CS concentration and CS: TPP mass ratio, and (B) CS 

concentration and CS solution pH on the PS. 

3.3. Effect of the Investigated Independent Variables on Polydispersity Index (PDI) 

Another important parameter to be considered during formulation is the size uni-

formity of the nanoparticles, referred to as “polydispersity index” (PDI) [60]. It is a dimen-

sionless numerical value that ranges from 0.0, indicating a highly uniform size distribu-

tion, to 1.0, which is attained when samples have non-uniform particle size distribution 

[61]. Along these lines, the PDI in our current study ranged from 0.24 ± 0.008 (F2) up to 

0.753 ± 0.004 (F14), displayed in Table 3, indicating that a number of the prepared formu-

lations had an acceptable PS distribution. 

In a similar trend to PS, the quadratic model was the most suitable model in analyz-

ing the effect of the three factors on PDI (Table 4). ANOVA analysis of the final model 

indicated that all factors, A, B, and C, significantly affected the PDI with a respective F-

value of 807.13, 130.78, and 40.82. Insignificant lack of fit value with a p-value of 0.7374 

and CV% of 4.7 were obtained in this model. The regression equation (Equation (4)) of the 

quadratic model for the PDI was: 

PDI = +0.27 + 0.19A + 0.076B − 0.042C + 0.067AB − 0.051AC + 0.015BC + 0.10A² + 0.062B² + 0.076C² (4)

The pattern of PS variation in our present study linearly correlated with PS distribu-

tion, meaning that an increase in PS was accompanied with an increase in PDI. This was 

consistent with the data reported by Fan et al. [62]. As previously described in detail in 

Section 3.3, an increase in CS concentration and CS solution pH resulted in an increase in 

PS. Increasing CS concentration above a certain level was accompanied by an increase in 

the electrostatic repulsion between CS molecules, leading to an increase in the intermolec-

ular hydrogen bond formation. Hence, the rearrangement and aggregation of CS–TPP na-

noparticles occurred with variable sizes and increased PDI value as seen in Figure 3A [63]. 

However, increasing the CS solution pH reduced the CS protonation and the crosslinking 

ability of CS with oppositely charged TPP; thus, the probability of the formation of com-

pact CS–TPP nanoparticles was reduced, and larger heterogeneous particles were formed 

as seen in Figure 3B [23]. On the contrary, increasing the CS: TPP mass ratio reduced the 

PDI (Figure 3C). Decreasing the CS: TPP mass ratio resulted in the formation of larger 

particles when compared to increased mass ratio. This was due to the higher availability 

of TPP at a low mass ratio, bearing in mind that TPP is a multivalent (penta) anion with a 

capacity of forming five ionic bonds with amino group present in CS, which led to for-

mation of larger aggregated particles [64]. The intensity of the impact of each of the factors 

is demonstrated in the 3D surface plot in Figure 4: increasing the CS concentration in-

creased the PDI intensely, while the CS solution pH resulted in moderate increase in the 

PDI. Alternatively, a decrease in the CS: TPP mass ratio slightly increased PDI, indicating 

that the impact of CS concentration and pH was greater than that of mass ratio [65]. 

Figure 2. 3D surface plot response of the main effect of (A) CS concentration and CS: TPP mass ratio, and (B) CS concentration
and CS solution pH on the PS.

3.3. Effect of the Investigated Independent Variables on Polydispersity Index (PDI)

Another important parameter to be considered during formulation is the size unifor-
mity of the nanoparticles, referred to as “polydispersity index” (PDI) [60]. It is a dimension-
less numerical value that ranges from 0.0, indicating a highly uniform size distribution, to
1.0, which is attained when samples have non-uniform particle size distribution [61]. Along
these lines, the PDI in our current study ranged from 0.24 ± 0.008 (F2) up to 0.753 ± 0.004
(F14), displayed in Table 3, indicating that a number of the prepared formulations had an
acceptable PS distribution.

In a similar trend to PS, the quadratic model was the most suitable model in analyzing
the effect of the three factors on PDI (Table 4). ANOVA analysis of the final model indicated
that all factors, A, B, and C, significantly affected the PDI with a respective F-value of
807.13, 130.78, and 40.82. Insignificant lack of fit value with a p-value of 0.7374 and CV% of
4.7 were obtained in this model. The regression equation (Equation (4)) of the quadratic
model for the PDI was:

PDI = +0.27 + 0.19A + 0.076B − 0.042C + 0.067AB − 0.051AC + 0.015BC + 0.10A2 + 0.062B2 + 0.076C2 (4)
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The pattern of PS variation in our present study linearly correlated with PS distribution,
meaning that an increase in PS was accompanied with an increase in PDI. This was consistent
with the data reported by Fan et al. [62]. As previously described in detail in Section 3.3, an
increase in CS concentration and CS solution pH resulted in an increase in PS. Increasing
CS concentration above a certain level was accompanied by an increase in the electrostatic
repulsion between CS molecules, leading to an increase in the intermolecular hydrogen
bond formation. Hence, the rearrangement and aggregation of CS–TPP nanoparticles
occurred with variable sizes and increased PDI value as seen in Figure 3A [63]. However,
increasing the CS solution pH reduced the CS protonation and the crosslinking ability of
CS with oppositely charged TPP; thus, the probability of the formation of compact CS–
TPP nanoparticles was reduced, and larger heterogeneous particles were formed as seen
in Figure 3B [23]. On the contrary, increasing the CS: TPP mass ratio reduced the PDI
(Figure 3C). Decreasing the CS: TPP mass ratio resulted in the formation of larger particles
when compared to increased mass ratio. This was due to the higher availability of TPP at a
low mass ratio, bearing in mind that TPP is a multivalent (penta) anion with a capacity of
forming five ionic bonds with amino group present in CS, which led to formation of larger
aggregated particles [64]. The intensity of the impact of each of the factors is demonstrated
in the 3D surface plot in Figure 4: increasing the CS concentration increased the PDI
intensely, while the CS solution pH resulted in moderate increase in the PDI. Alternatively,
a decrease in the CS: TPP mass ratio slightly increased PDI, indicating that the impact of CS
concentration and pH was greater than that of mass ratio [65].
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3.4. Effect of the Investigated Independent Variables on Zeta Potential (ZP)

Stability of the colloidal system is determined by measuring the surface charge, re-
ferred as zeta potential. The surface charge depends on the type of constituents used in
the CS–TPP nanoparticles. The linear model was the most optimum model for the ZP as
presented in Table 4, with a p-value of < 0.05, an insignificant lack of fit value of 0.4659, and
CV% of 8.98% were attained. ANOVA analysis indicated that only the CS solution pH and
CS: TPP mass ratio had a major significant effect on the ZP with a p-value of < 0.05 and
respective F-values of 76.5 and 9.43. The regression equation of the chosen model was as
follows (Equation (5)):

ZP = +30.84 + 2.02A − 8.54 B + 3.00 C (5)

As shown from Table 3, all formulations showed a positive value that ranged from a
minimum of 22.0 ± 2.00 mV (F10) to a maximum of 44.6 ± 0.51 mV (F6). The positive charge
of CS–TPP nanoparticles, arising from the amino groups, is advantageous as it facilitates
skin penetration [66,67] since skin surface is negatively charged due to the presence of both
phosphatidylcholine [68] and carbohydrates [69] containing negatively charged groups.

A positive correlation between the CS: TPP mass ratio and ZP is observed in Figure 5A.
This was harmonious with Fan et al. [54] who interpreted that the reduction in ZP upon
using lower mass ratios was due to neutralization of CS positively charged amino groups
by TPP anions. A similar result was stated by Gan et al. [70], Stoica and Ion [71], and
Ing et al. [55] who observed an intense decline in the ZP upon reducing the CS to TPP ratio.
Moreover, Pooja et al. [72] found similar results and suggested that the increased surface
charge upon increasing the mass ratio of CS:TPP was due to the increased availability of
free positive amino groups within the CSS–TPP complex. In an opposite manner, increasing
the pH of CS solution resulted in a significant reduction in the ZP (Figure 5B). This was due
to the deprotonation of the CS molecule amine group which led to a reduction in the net
positive charge of the CS–TPP nanoparticles, hence decreased ZP values [44]. Moreover,
Rázga et al. [73] observed an increase in ZP value upon reducing the pH from 6.0 to 3.5
(more acidic environment), from a value of 23 ± 1 to 38 ± 3 mV due to the protonation of
the CS amine functional groups, with a subsequent conformational rearrangement from
the coiled form to an extended form.
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3.5. Formulation Optimization

After the statistical analysis of the fitted models, optimization of the formulation was
conducted using Design Expert®. Upon applying the desired constraints, maximum EE%
and ZP, and minimum PS and PDI, a formulation with a calculated desirability of 0.805 was
selected. The optimized level for each factor for the optimal formulation concluded by the
software were as follows: the CS concentration used was 0.19%, a CS solution pH of three,
and a CS: TPP mass ratio of 5.26:1. The formulation prepared under the aforementioned
values were further characterized to assess the validity of the optimization process.

3.6. Characterization of the Optimal Caffeine-Loaded CS–TPP Nanoparticles
3.6.1. Determination entrapment Efficiency (EE%), Particle Size (PS), Polydispersity Index
(PDI), and Zeta Potential (ZP)

The observed values of the tested responses, EE%, PS, PDI, and ZP are shown in
Table 5, It is important to note that the observed values were in very close agreement
with the predicted values obtained by the software which confirm the validity of the
optimization process and the high fitting of the chosen model to represent each response
tested. Moreover, this was further confirmed as the values observed practically lay between
the low and the high confidence interval present in Table 5. The size distribution (intensity-
based) and the ZP reports of the optimal formulation are shown in Figure 6, displaying a
“Good” quality result of the report indicating that the sample meets the quality criteria.

Table 5. Validation of the optimization process.

Response Predicted Value Observed Value Low Confidence Interval High Confidence Interval

EE% 16.8412 17.25 ± 1.48 15.68 18.00
PS (nm) 177.267 173.03 ± 4.32 128.43 226.11

PDI 0.303 0.278 ± 0.01 0.27 0.34
ZP (mV) 42.067 41.7 ± 3 38.96 45.17

3.6.2. Transmission Electron Microscope (TEM) Examination

Figure 6C confirmed the spherical nature of caffeine-loaded CS–TPP nanoparticles
with an average size of 30 to 40 nm. The appearance of particles aggregated in a network
was consistent with the findings of Keawchaoon et al. [74]. The smaller PS displayed by
TEM was much smaller than the size detected by dynamic light scattering techniques
(Zetasizer device). It must be highlighted that the latter technique depends on determining
the hydrodynamic diameter of the particles, hence larger diameters are expected due to the
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swelling of the CS polymer, as well as the aggregation of particles upon their dispersion in
water. In a different manner, TEM measures solely the exact diameter of a single individual
particle, therefore an actual smaller size is observed. This was also reported by several
other authors [24,75].
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4. Conclusions

Caffeine-loaded CS–TPP nanoparticles were prepared successfully using the ionic
gelation technique. The effect of three independent variables; namely, CS concentration,
CS solution pH, and CS: TPP mass ratio on the entrapment efficiency percent, particle size,
polydispersity index, and zeta potential, were extensively studied. Statistical analysis and
optimization were performed using the Box–Behnken design; an optimal formulation with
a desirability of 0.805 was deduced. Despite the satisfactory results of PS 173.03 ± 4.32 nm,
PDI 0.278 ± 0.01, and a ZP of 41.7 ± 3.0 mV, the EE% showed a relatively low value of
17.25 ± 1.48%, which was as a result of multiple factors including caffeine hydrophilicity
and low molecular weight alongside its positively charged nitrogens. The demonstrated
results confirmed the successful utilization of the Box–Behnken design as a tool for analysis
and optimization of polymeric nanoparticles fabricated from naturally occurring chitosan to
be implemented in the field of advanced polymeric systems for pharmaceutical application.

Author Contributions: All three authors, A.N.E., M.G.A. and S.A.A. were involved in the concep-
tualization and methodology. Visualization, supervision, reviewing and editing were conducted
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