
polymers

Article

Isothermal Crystallization Kinetics of Poly(ethylene
oxide)/Poly(ethylene glycol)-g-silica Nanocomposites

Xiangning Wen 1,2 , Yunlan Su 1,2,*, Shaofan Li 1,2, Weilong Ju 1,2 and Dujin Wang 1,2

����������
�������

Citation: Wen, X.; Su, Y.; Li, S.; Ju, W.;

Wang, D. Isothermal Crystallization

Kinetics of Poly(ethylene oxide)/

Poly(ethylene glycol)-g-silica

Nanocomposites. Polymers 2021, 13,

648. https://doi.org/10.3390/

polym13040648

Academic Editor: Zbigniew Bartczak

Received: 19 January 2021

Accepted: 17 February 2021

Published: 22 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
xnwen@iccas.ac.cn (X.W.); sfli507@iccas.ac.cn (S.L.); wlju507@iccas.ac.cn (W.J.); djwang@iccas.ac.cn (D.W.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: ylsu@iccas.ac.cn

Abstract: In this work, the crystallization kinetics of poly(ethylene oxide) (PEO) matrix included
with poly(ethylene glycol) (PEG) grafted silica (PEG-g-SiO2) nanoparticles and bare SiO2 were
systematically investigated by differential scanning calorimetry (DSC) and polarized light optical
microscopy (PLOM) method. PEG-g-SiO2 can significantly increase the crystallinity and crystal-
lization temperature of PEO matrix under the non-isothermal crystallization process. Pronounced
effects of PEG-g-SiO2 on the crystalline morphology and crystallization rate of PEO were further
characterized by employing spherulitic morphological observation and isothermal crystallization
kinetics analysis. In contrast to the bare SiO2, PEG-g-SiO2 can be well dispersed in PEO matrix at
low P/N (P: Molecular weight of matrix chains, N: Molecular weight of grafted chains), which is
a key factor to enhance the primary nucleation rate. In particular, we found that the addition of
PEG-g-SiO2 slows the spherulitic growth fronts compared to the neat PEO. It is speculated that the
interfacial structure of the grafted PEG plays a key role in the formation of nuclei sites, thus ultimately
determines the crystallization behavior of PEO PNCs and enhances the overall crystallization rate of
the PEO nanocomposites.

Keywords: poly(ethylene oxide); nanocomposites; grafted silica nanoparticles; isothermal crystal-
lization kinetics

1. Introduction

Polymer nanocomposites (PNCs) [1–5] have gained considerable interest over the past
decades. The material properties of semi-crystalline polymers are closely related to the
morphology of nanoparticles (NPs) [6–9]. A convenient method to improve the dispersion
of NPs in the polymer matrix is to graft polymer chains on the NPs surface [10,11]. The
addition of polymer grafted nanoparticles (PGNPs) into polymer matrix can optimize
their mechanical properties [12,13], optical ability [14,15], rheological properties [16,17],
and electrical performance [18,19]. Recent studies have shown the spatial distribution of
PGNPs can be controlled by varying the grafting density (σ), chain length of matrix vs. the
grafted polymer (P/N), NPs size, and chemical properties of the grafted chains [20,21].

In semi-crystalline nanocomposites, the presence of NPs can significantly impact the
crystallinity, crystal nucleation, and growth of polymer matrix [22–24], which is vital to
fully exploit the potentially excellent properties of PNCs. Over the past decades, there have
been extensive works on the crystallization kinetics of polymer nanocomposites containing
various one-dimensional and two-dimensional PGNPs, i.e., carbon nanotubes, cellulose
nanocrystal, clay and graphene oxide [25–28] as well as how they were modulated by the
PGNPs addition. Müller et al. [27] found that the multiwall carbon nanotubes grafted
linear poly(ε-caprolactones), (PCL) (MWNT-g-PCL) can nucleate the linear PCL but cause
a decrease both in spherulitic growth rate and in the overall isothermal crystallization
kinetics of cyclic PCL. The results line in the contact between liner grafted chains with
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cyclic PCL, forming a transient entanglement network, thus slowing the crystallization
rate. It seems the interfacial interactions and chain dynamics are the main factors affecting
the crystallization of PNCs.

Recently, increasing attention has focused on the PNCs with three-dimensional PGNPs,
i.e., silica (SiO2), in which the grafted chains show more controllability and richer con-
formational behavior than the case of flat surface [29]. Wen et al. [30] demonstrated that
controlling the spatial dispersion of PEG-g-SiO2 in PEO matrix can presumably modulate
the crystallization behavior of the matrix chains. PEG-g-SiO2 (in the case of high σ and low
P/N) can significantly increase the nucleation efficiency of PEO, where the grafted NPs
are under a good dispersion state. The aggregation of PEG-g-SiO2 at higher P/N values
and low σ occurs to limit the effectiveness of grafted chains on the nucleation ability of
the nanocomposites. Jimenez et al. [13] study the crystallization kinetics of PEO matrix
with amorphous poly(methyl methacrylate) chains grafted SiO2 (PMMA-g-NPs). It was
found the crystal nucleation is unaffected by the addition of PMMA-g-NPs, while causing
a decrease in spherulitic growth, crystallinity, and melting points. NPs functionalized
with either unimodal or bimodal amorphous polymer chains exhibit various self-assembly
morphologies [31] and also show retardation in spherulitic growth rates. The current
understanding considers these reductions mainly come from two aspects: (i) The increase
in viscosity with the inclusion of PGNPs [31]. (ii) The confinement effects imposed on the
polymer melts due to the addition of NPs [13]. Both of these effects slow down the chain
mobility to crystal growth front.

PEO is an attractive semi-crystalline polymer in many fields of research [32], and its
silica nanocomposites can enhance the ion conductivity for applications in biomaterials and
as electrolytes in lithium batteries [33]. In our previous study [34], the semi-crystalline PEG
chains grafted SiO2 (PEG-g-SiO2) endows a notable increase in the overall crystallization
rate. The results indicate that the interfacial structure is closely related to the grafting
density, which plays a critical role in the nuclei formation and finally determines the non-
isothermal crystallization kinetics of the PNCs. The addition of grafted silica NPs can
also enhance nucleation of semi-crystalline polymer matrix like PCL [35], poly(L-lactide)
(PLLA) [36], polypropylene (PP) [37], etc.

In order to understand the parameters affecting the role of semi-crystalline chains
grafted NPs on the isothermal crystallization kinetics of polymer, the influence of PEG-
g-SiO2 on the nucleation kinetics, morphology, spherulitic growth rate, and overall crys-
tallization kinetics of PEO nanocomposites was systematically investigated in this work.
Here, PEG-g-SiO2 with a grafting density of 0.73 chains/nm2 was added into two differ-
ent PEO matrices (i.e., the molecular weights of matrix PEO is 1700 and 7800 g·mol−1,
respectively). We found that the presence of PEG-g-SiO2 remarkably elevates the nucle-
ation density and crystallization rate, especially in the case of a better dispersion (at low
P/N). These results are different from the earlier studies where the grafted chains are
amorphous [13,31]. This work, therefore, aims to elucidate the crystallization kinetics in
the polymer nanocomposites with semi-crystalline chains grafted NPs.

2. Experimental
2.1. Materials

Methoxy polyethylene glycol (MPEG) with molecular weights Mn = 4 kg·mol−1, was
purchased from TCI (Tokyo, Japan). Monodisperse spherical SiO2 nanoparticles with
a mean diameter = 50 nm, were prepared by the method of Stöber and Fink [38]. N-
(2-aminoethy)-3-aminopropylmethyldimethoxysilane (ADMS) was purchased from Alfa
Aesar Co., Shanghai, China. Poly (ethylene oxide) with molecular weights of 1700 and
7800 g·mol−1 were purchased from Polymer Source, Inc (Montreal, QC, Canada).

2.2. Sample Preparation

Monodisperse SiO2 were separately grafted with PEG chains of Mn = 4 kg·mol−1

through a series of experiments. The grafting densities (σ values in chains/nm2 were
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calculated by TGA) obtained using the “grafting to” method, which has been reported in
our previous study [30,39]. For clarity, the PEG grafted SiO2 was denoted as PEG-g-SiO2,
where the σ in this study is 0.73 chains/nm2.

To prepare the PEO/PEG-g-SiO2 nanocomposites, PEO and PEG-g-SiO2 were individ-
ually dispersed in acetonitrile at room temperature and then mixed in the desired volume
ratios to obtain the PNCs with a SiO2 content of 24 wt%. The mixtures were sonicated for
5 min and then stirred for ≈ 6 h at room temperature before casting onto Petri dishes. The
nanocomposites were dried under a fume hood for 24 h to remove the solvent.

2.3. Characterization
2.3.1. Thermogravimetric Analysis

The σ of PEO was calculated by a PerkinElmer 8000 thermogravimetric analysis
apparatus [40] (TGA, PE8000, Waltham, MA, USA). Samples of 2–3 mg were heated from
50 to 100 ◦C at a rate of 40 ◦C/min and held for 2 min at 100 ◦C to remove physically
adsorbed water, then heated from 100 to 800 ◦C with a rate of 20 ◦C/min.

2.3.2. Differential Scanning Calorimetry

The non-isothermal crystallization and melting behavior of PEO nanocomposites were
recorded by a PerkinElmer 8500 DSC apparatus (Waltham, MA, USA). The equipment
was calibrated with indium and tin standards. The samples (3–5 mg) were encapsulated
in aluminium pans, and ultra-pure nitrogen was used as a purge gas. First, the samples
were heated to 80 ◦C and held for 3 min at that temperature to erase any previous thermal
history. Second, they were cooled to −60 ◦C, and finally, reheated to 80 ◦C. All tests were
performed at a cooling and heating rate of 10 ◦C/min. The peak temperatures of the
obtained crystallization (Tc) and melting (Tm) exotherms were recorded.

The isothermal crystallization of PEO nanocomposites was recorded by PerkinElmer
8500 DSC under a N2 atmosphere. The samples were held for 3 min at 80 ◦C to erase
thermal history, then cooled at 100 ◦C/min to the selected crystallization temperature and
held for 20 min.

The glass temperature (Tg) of the PEO nanocomposites was recorded by PerkinElmer
8500 DSC under a He atmosphere. The samples were cooled to −150 ◦C after holding 3 min
at 80 ◦C under a ballistic cooling procedure, approximately with a rate of 280 ◦C/min. Then
heated to 0 ◦C at 500 ◦C/min, and the Tg was recorded during subsequent heating scans.

2.3.3. Polarized Light Optical Microscope

A polarized light optical microscope (PLOM, Olympus BX51, Tokyo, Japan) equipped
with a Linkam THMS600 temperature controller was used to observe the crystalline mor-
phology of PNCs. The samples were sandwiched between two cover glasses and heated
to 80 ◦C for 5 min. Then, the samples were cooled at 60 ◦C/min to desired Tc, and the
number of spherulites and their sizes were monitored as a function of time. The nucleation
density (N*) was calculated from the numbers by determining the volume (cm3) from the
measured sample thickness and the area of the field of view of the microscope.

3. Results and Discussion
3.1. Nucleation Kinetics of PEO Nanocomposites Studied by PLOM: Primary Nucleation

Before exploring the isothermal crystallization kinetics in PEO nanocomposites, we
first focus on the non-isothermal crystallization behavior of the samples. Figure 1a,b
illustrates the DSC melting and cooling curves of neat PEO, PEO/SiO2 and PEO/PEG-g-
SiO2 with a matrix molecular weight (Mn) of 1700 g/mol and the SiO2 content of 24 wt%
(The DSC curves of PEO nanocomposites with matrix Mn = 7800 g/mol are shown in
Figure A1 of Appendix A). Figure 1c presents the crystallization (Tc) and melting (Tm)
temperatures of all PEO nanocomposites employed here. The appearance of the increased
Tc in PEO/PEG-g-SiO2 suggests that the PGNPs exhibit a significant nucleation effect on the
crystallization process of PEO. Based on our recent work [30], it is probably more relevant
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to the better dispersion state (the dispersion state of PEO nanocomposites was studied
using SAXS scattering combined with TEM, not shown here) of the PGNPs under a higher
grafting density (σ = 0.73 chains/nm2) and lower P/N value (the P/N studied here is 0.425
and 1.95) compared to the bare SiO2. The well dispersed sample, 1700PEO/PEG-g-SiO2
(where 1700 represents the matrix Mn = 1700 g/mol), showed a more excellent increase
in Tc (neat 1700PEO undergoes crystallization at 28.5 ◦C and 1700PEO/PEG-g-SiO2 at
35.2 ◦C) as well as an increase in the PEO crystallinity (Table 1 summarizes the relative
parameters obtained in the crystallization process). The data in Figure 1c show there are
minor differences in the melting point with the changing of P/N.
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Figure 1. DSC heating (a,b) cooling scans of neat PEO, PEO/SiO2, and PEO/PEG-g-SiO2 with a
matrix molecular weight of 1700 g/mol. (c) The changes in the Tc and Tm for the two different
nanocomposites with matrix molecular weights of 1700 g/mol and 7800 g/mol, and the silica content
is 24 wt% in the nanocomposites studied here.

In this part of the study, the main point is to defer a detailed exploration of the crystal
nucleation and growth kinetics in PEO nanocomposites. Therefore, we employed PLOM
measurements to monitor the spherulitic growth for different nanocomposites at different
crystallization temperatures, Tc. Figure 2 summarizes the primary nucleation kinetics
studied by PLOM. The direct information on the nucleation ability of PEO nanocomposites
can be obtained by counting the number of spherulites with time changing, as shown
in Figure 2a–c. PEO and PEO/SiO2 exhibit similar nucleation kinetics with respect to
the measured nucleation density, N* (as shown in Figure 2d). In the case of PEO/PEG-g-
SiO2, PEG-g-SiO2 behaves more effectively as the nucleating agent and presents a much
higher nucleation density in the Tc range, i.e., 38–41 ◦C for 1700PEO/PEG-g-SiO2 (with
P/N = 0.425) and 44–48 ◦C for 7800PEO/PEG-g-SiO2 (with P/N = 1.95) (details on the
N* changing at matrix Mn = 7800 g/mol are shown in Figure A2, Appendix B). It can be
seen the nucleation densities of 1700PEO/PEG-g-SiO2 are almost two orders of magnitude
higher than that of neat PEO, which shows a constant nucleation density in the Tc range
(as shown in Figure 2d). A similar changing tendency with higher nucleation densities can
also be observed in 7800PEO/PEG-g-SiO2. This leads us to speculate that the grafted PEG
chains may serve as a template providing an increase of the nucleation sites to enhance the
N* of PEO nanocomposites. Regardless, the changing tendency of increasing nucleation
density with a decrease of P/N is consistent with our recent study [30], the more stretched
grafted PEG chains at high grafting density (0.73 chains/nm2) and lower P/N can enhance
the interaction with matrix PEO, thus improving the nucleation density.
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(c) PEO/PEG-g-SiO2. The inset images represent the PLOM images of PEO nanocomposites corresponding to 34 ◦C
for neat PEO, 32 ◦C for PEO/SiO2 and 39 ◦C for PEO/PEG-g-SiO2. The matrix molecular weight of PEO is 1700 g/mol.
(d) Nucleation densities of neat PEO, PEO/SiO2, and PEO/PEG-g-SiO2 at different Tc. (e) Plots of logI versus 1/[Tc(∆T)2],
the solid line is the fitting according to Equation (1).

The primary nucleation rate I was obtained by counting the number of spherulites
in a specific area at different crystallization times [41] (i.e., I = dN∗

dt ). Turnbull–Fisher
model [42,43] is adopted here to better understand the effects of NPs on the primary
nucleation:

log I = log I0 −
∆F∗

2.3kT
− 16σσe(∆σ)T02

m

2.3kT(∆T)2(∆Hv)
2 (1)

where I0 is related to the segments’ diffusion from the melt state to the nucleation site.
∆F* represents a parameter proportional to the free energy of primary nucleation. k is
1.381 × 10−23 J·K−1. ∆Hv is the volumetric melting enthalpy (J/cm3), and ∆Hv can be
calculated as ∆Hv = ∆Hm

0·ρ (∆Hm
0 is the melting enthalpy of 100% crystalline PEO [44]

with a value of 205 J·g−1 and ρ is the monomer density of PEO with a value of 1.064 g·cm−3).
∆T is the supercooling calculated by ∆T = Tm

0 − Tc, and Tm
0 is the equilibrium melting

point. The Tm
0 of PEO nanocomposites studied here were determined by DSC 8500, as

shown in Figure A3 of Appendix C. In PEO nanocomposites with matrix Mn = 1700 g/mol
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and 7800 g/mol, it is observed that either isothermal thickening to the integral-folding
chain (IF) (n = 0) crystal or thinning to the IF (n = l) crystal occurs depending upon the
thermodynamic stability of the nonintegral-folding chain (NIF) crystal. Both thickening and
thinning processes are observed at intermediate crystallization temperatures. An almost
constant melting temperature may basically be attributed to the competition between
overall crystallization and the isothermal thinning process (Appendix C) [45]. σ and σe
are the free energies of the lateral and fold surface of PEO, respectively. ∆σ is a parameter
related to nucleation efficiency [43]. σσe(∆σ) = 140 erg3/cm6 for 1700PEO/PEG-g-SiO2
and σσe(∆σ) = 134 erg3/cm6 for 7800PEO/PEG-g-SiO2 were obtained from the slope of the
straight line given by logI vs. 1/(T∆T)2 [43].

Two basic conclusions can be obtained from Figure 2e: (1) The significant change
of primary nucleation rate I is closely related to the addition of PGNPs, (2) nucleation
rate decreases with the increase of P/N value in the measured temperature range. This
result implies that the good compatibility between PEG-g-SiO2 and the PEO matrix at low
P/N can enhance the interactions between matrix chains and PGNPs. Compared to the
bare SiO2, the improvement of dispersion state of PEG-g-SiO2 appears to be the key factor
for the enhancement of N* observed in Figure 2. Similar trends of increasing nucleation
density have been observed in PLLA nanocomposites containing PEG grafted graphene
oxide [46] and linear PCL system containing MWNT-g-PCL (linear PCL chains grafted
multiwall carbon nanotubes) [27].

3.2. Growth Kinetics of PEO Nanocomposites Studied by PLOM: Secondary Nucleation

Following the discussions above, to further separate out the effects of PEG-g-SiO2
on the spherulitic growth kinetics (i.e., secondary nucleation), the growth process of each
sample at different times is measured by PLOM. Figure 3a–c shows the micrographs of
1700PEO/PEG-g-SiO2 spherulites isothermally crystallized at 39 ◦C at different times. The
results clearly show that the number of spherulites in 1700PEO/PEG-g-SiO2 increases with
the increase of time, while neat PEO and PEO/SiO2 exhibit only one nucleus during the
growth process, as shown in Figure A4 of Appendix D.

The linear dependence of the spherulitic radius on the measured time was shown in
Figure 3d, which indicates there is no disturbance by the diffusion during growth.

Lauritzen and Hoffman model (LH theory) is used here to ascertain the spherulitic
growth rate (G) according to the following form [47–49]:

G(T) = G0 exp
(

−U∗
R(Tc − T∞)

)
exp

(
−KG

g

Tc
(
T0

m − Tc
)

f

)
(2)

where U∗ is the activation energy for transporting segments to the crystallization front
(a universal value is taken as 1500 cal·mol−1), R is the gas constant with a value of
8.314 J·mol−1·K−1 and G0 is a constant. Tc is the crystallization temperature. Tm

0 is
the equilibrium melting point and the Tm

0 value was shown in Table 1 that summarizes the
parameters related to the crystallization and melting behavior of the studied PEO PNCs.
f is the temperature correction factor defined as f = 2Tc/

(
T0

m + Tc
)
. T∞ is the temperature

associated with chain dynamics cease and usually taken as T∞ = Tg − 30K (T∞ value was
shown in Table 1). Fitting the data (converted to the liner formula as lnG + U∗/(R(Tc – T∝))
vs. 1/Tc

(
T0

m − Tc
)

f , as shown in Figure A5 of Appendix E) by the LH theory in Figure 3e
allows the prediction of the secondary nucleation energy barrier KG

g , as shown in Table 1.
Obvious retardation in the growth rate (G) was obtained in Figure 3e with the presence

of NPs. Bare SiO2 tends to form aggregations at a higher content as 24 wt% (results were
confirmed by TEM and SAXS measurement [30]), which may cause the polymer chains to
be confined in the restricted space [50]. It is considered that the reduction in the G is mainly
linked with the geometric constraints within NPs [51] at a considerably high content. In
the case of PEO/PEG-g-SiO2 with a low P/N = 0.425, PEO nanocomposites exhibit the
lowest G within the measured Tc range. The results may partially relate to an increase
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of the interfacial interaction under a good dispersion state. Kumar et al. [31] studied the
effects of unimodal and bimodal grafted SiO2 with various dispersion states on the PEO
spherulitic growth and they found the decrease of the growth rate was mainly caused
by the increase in the nanocomposite viscosity, which finally hindered the transport of
crystallizable segments to the crystalline growth front [34,51–53].
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Figure 3. (a–c) PLOM images of 1700PEO/PEG-g-SiO2 isothermally crystallized at 39 ◦C taken at
18 s, 30 s, and 74 s, respectively. (d) The variations of spherulitic radius with a function of time for
four selected spherulites. (e) Spherulitic growth rate, G, as a function of temperature for each of the
indicated PEO nanocomposites. The dotted lines correspond to the Lauritzen–Hoffman fits. The
insert is the enlarged image of 1700PEO/PEG-g-SiO2.

Figure 4 shows the secondary nucleation energy barrier of the PEO nanocompos-
ites, KG

g normalized by the neat PEO, KG
g PEO. It is clearly implied that the addition of

PEG-g-SiO2 obviously decreases the energy barrier in spherulitic growth. In the case of
1700PEO/SiO2, KG

g exhibits larger value than that of neat PEO. It means that more energetic
requirements are needed for secondary nucleation. Table 2 summarizes the KG

g studied
in different systems, a decrease of KG

g values can be observed with the addition of bare
nanoparticles and polymer grafted nanoparticles in PCL nanocomposites [27,54]. The
phenomenon that the addition of nanofillers can lower the energetic requirement in the sec-
ondary nucleation was also reported in PEO nanocomposites combined with unmodified
SiO2 NPs (NPs radius = 7 nm) [50], as shown in Table 2. One special case was reported by
Kumar et al. [31,55], who shows a relatively minimal change in KG

g value with different
NPs and loadings, as shown in Table 2. Moreover, they found that the spatial dispersion
of the unimodal or bimodal amorphous polymer chains grafted NPs mainly impacts the
chain diffusion [31].
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Table 1. Parameters related to the crystallization and melting behavior of the studied PEO nanocomposites.

Sample Tc (◦C) Tm (◦C)
a ∆Hm
(J g−1) Xc (%) Tm

0 (◦C) Tg (◦C) T∞ (◦C) b Kg
G (K2) c R2

neat 1700PEO 28.5 50.4 150.1 73.2 50.8 −45.9 −75.9 5.2 × 104 0.99
1700PEO/SiO2 25.9 49.1 159.2 77.6 48.8 −35.7 −65.7 5.9 × 104 0.99

1700PEO/PEG-g-SiO2 35.1 50.4 182.9 89.2 50.4 −43.6 −73.6 1.3 × 104 0.99
neat 7800PEO 39.2 62.3 171.9 83.8 62.2 −40.3 −70.3 3.7 × 104 0.99

7800PEO/SiO2 39.1 60.0 163.9 79.5 61.1 −36.7 −66.7 2.7 × 104 0.99
7800PEO/PEG-g-SiO2 43.1 61.1 170.4 83.1 62.5 −37.3 −67.3 3.2 × 104 0.96

a The melting enthalpy of PEO nanocomposites was obtained by the non-isothermal crystallization process and normalized by the weight
of PEO matrix. b Kg

G was obtained by PLOM measurements. c R2 represents the correlation coefficient as fitting to Equation (2). The value
of ∆Hm

0 for PEO (melting enthalpy of 100% crystalline PEO) is 205 J/g [44].
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Figure 4. Changing tendency of each PEO nanocomposite in secondary nucleation energy barrier KG
g

vs. KG
g PEO.

Table 2. Secondary nucleation energy barrier KG
g studied in different nanocomposites.

System 1 [55] PEO a VPEO/SANP = 78 VPEO/SANP = 16 VPEO/SANP = 139

Kg
G (104 K2) 13.0 13.1 13.1 12.2

System 2 [50] PEO 1 wt% SiO2/PEO 5 wt%
SiO2/PEO 9 wt% SiO2/PEO

Kg
G (104 K2) 3.65 3.53 3.49 3.36

System 3 [54] PCL b PCL–CNW c PCL–MFC

Kg
G (104 K2) 14 6.3 5.5

System 4 [27] d L-PCL
e L-PCL/SWNT-

ODA

f L-PCL/MWNT-
g-PCL

Kg
G (104 K2) 11.2 10.4 8.7

a VPEO/SANP represents the ratio of PEO volume (VPEO) to NPs surface area (SANP). b PCL–CNW represents
PCL with surface modified sisal nanowhiskers (CNW) and c PCL–MFC represents PCL with microfibrillated
cellulose (MFC). d L-PCL represents linear poly(ε-caprolactones). e L-PCL/SWNT-ODA represents PCL with
octadecylamine functionalized single wall CNTs. f L-PCL/MWNT-g-PCL represents PCL with linear PCL grafted
multiwall carbon nanotubes.

3.3. Overall Isothermal Crystallization Behavior

The overall isothermal crystallization behavior was probed by the DSC measurements
in which both primary nucleation and crystal growth are considered [56,57]. Avrami
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equation was employed to understand the primary crystallization process. It provides an
efficient analytical method to describe the spherulitic nucleation and growth at the early
stages of the impingement [27,58–60]:

1 − Xc(t − t0) = exp
[
−K(t − t0)

n] (3)

where t is the crystallization time, t0 is the induction time, and n is the Avrami index. K is
overall crystallization constant. Xc(t) is the relative crystallinity at time t.

Figure 5 shows the relative crystallinity of the neat PEO changing with the crystalliza-
tion time at Tc = 35 ◦C. The Avrami fittings correspond to the primary crystallization process
covering 3%–20%. Figure 6a shows the inverse of half-crystallization, 1/τ50% (which repre-
sents the overall crystallization rate containing both nucleation rate and growth rate) as a
function of the isothermal crystallization temperature, Tc. The overall crystallization rate
constant K, obtained from the Avrami equation with a unit of min−n, is directly related to
the Avrami index, n. To make a direct comparison of K in the same units, K was normalized
by elevating to the power 1/n. Figure 6b shows the K1/n (with a unit of min−1, which
also implies the overall crystallization rate) vs. Tc. It was found that the values of K1/n

predict the trend of experimental data points (1/τ50% vs. Tc) in Figure 6a, which indicates
the Avrami theory can adequately fit the data. Figure 6c shows the Avrami indexes, n as
a function of crystallization temperature. The Avrami index values are very similar for
neat PEO and PEO nanocomposites, which are around 2.5 in the tested Tc range, indicating
that the PNCs formed spherulites instantaneous [61]. The obtained n values reflect the
superstructures formed are slightly influenced by the incorporation of SiO2.

Polymers 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

units, K was normalized by elevating to the power 1/n. Figure 6b shows the K1/n (with a 
unit of min−1, which also implies the overall crystallization rate) vs. Tc. It was found that 
the values of K1/n predict the trend of experimental data points (1/τ50% vs. Tc) in Figure 6a, 
which indicates the Avrami theory can adequately fit the data. Figure 6c shows the Av-
rami indexes, n as a function of crystallization temperature. The Avrami index values are 
very similar for neat PEO and PEO nanocomposites, which are around 2.5 in the tested Tc 
range, indicating that the PNCs formed spherulites instantaneous [61]. The obtained n 
values reflect the superstructures formed are slightly influenced by the incorporation of 
SiO2. 

 
Figure 5. Isothermal crystallization behavior explored by DSC. Plots of relative crystallinity vs. crystalli-
zation time for neat 1700PEO at 35 °C. The solid lines are the fittings according to Equation (3). 
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It is clear that the presence of PEG-g-SiO2 can obviously accelerate the overall crystal-
lization rate both in the case of P/N = 0.425(with matrix Mn = 1700 g/mol) and P/N = 1.95
(with matrix Mn = 7800 g/mol). The overall crystallization rate follows the order as:
PEO/PEG-g-SiO2 > neat PEO > PEO/SiO2. Previous studies have shown the high enhance-
ment of the crystallization rate in nanocomposites with the addition of PGNPs [25,34,46],
and one possible rationale for these results is attributed to more nucleation sites under
the good dispersion of the PGNPs. In our work, as described above, the Tm (as shown in
Table 1) of the PEO matrix are almost unaltered by the presence of any SiO2 nanoparticle,
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while the PGNPs endow a high nucleation ability to SiO2 nanoparticles, resulting in a
marked enhancement of Tc. The surface decoration of the PEG chains remarkably improves
the interactions between PGNPs and PEO matrix. Better compatibility of the PEG-g-SiO2
with PEO matrix compared to the bare SiO2 generates notable nucleation sites. Thus, we
speculate that the strongly stretched grafted crystallizable chains coupling to a wetting
brush interface allows the matrix chains to be templated by the surface chains [39]. In
the case of PLOM results, the addition of PEG-g-SiO2 notably hindered the spherulitic
growth rate. Therefore, the significant increase of the overall crystallization rate should be
dominated by the increase of nucleation density.
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Figure 6. (a) The inverse of half crystallization time 1/τ50% as a function of crystallization tempera-
ture, Tc. (b) K1/n as a function of Tc. (c) Avrami index n as a function of crystallization temperature, Tc.
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4. Conclusions

We have investigated the isothermal crystallization kinetics of PEO nanocomposites
(PEO/SiO2 and PEO/PEG-g-SiO2) using DSC and PLOM techniques. The key conclusion of
our study is that the addition of PEG-g-SiO2 in PEO matrix can alter the primary nucleation
and the spherulitic growth rate. Compared to the unmodified SiO2, the better dispersion
of PEG-g-SiO2 at lower P/N shows a stronger nucleation effect and elevates the nucleation
density, thus resulting in a marked enhancement in the crystallization rate. On the other
hand, the spherulitic growth rate of PEO nanocomposites was significantly retarded.

The results are quite different from the bare silica NPs or NPs grafted with amorphous
brushes, in which the addition of NPs does not affect the secondary nucleation energy
barrier. Thus, we believe that the nature of the graft chains also plays a crucial role in the
crystallization behavior of semi-crystalline polymer nanocomposites.
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Appendix C. Equilibrium Melting Temperature of the PEO Nanocomposites

Tm is the melting point of the specimens after complete crystallization at different
isothermal crystallization temperatures. The equilibrium melting temperature Tm

◦C,
corresponding to a hypothetical infinitely thick crystal, can be obtained by the direct or
indirect extrapolation of Tm data to Tm = Tc.
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