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Abstract: Hybrid layers of donor-acceptor (D-A) copolymers containing N,N′-dialkylperylene-
3,4,9,10-tetracarboxydiimide electron-acceptor units covered with silver nanoparticles (Ag-NPs)
were prepared by electrochemical doping of pristine layers during reduction processes. In situ
optical absorption spectra of the layers were recorded during the formation of Ag-NP coverage.
The hybrid layers were characterized by absorption spectroscopy, scanning electron microscopy
(SEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX).
In the absorption spectra of the hybrid layers, a surface plasmon band characteristic of Ag-NPs
appeared. Significant improvements in light absorption due to the plasmonic effects of Ag NPs were
observed. Stable Ag-NPs with an average diameter of 41–63 nm were formed on the surface, as
proven by SEM and XPS. The Ag-NP coverage and size depended on the hybrid layer preparation
conditions and on the copolymer composition. The metallic character of the Ag-NPs was proven
by XPS. The location in the surface layer was further confirmed by EDX analysis. To the best of our
knowledge, this is the first report on such hybrid layers having the potential for a variety of photonic
and electronic applications.

Keywords: hybrid layers; silver nanoparticles; donor–acceptor copolymers; perylenetetracarboxydi-
imide acceptor units; absorption; spectroelectrochemistry; SEM; XPS

1. Introduction

Third-generation semiconducting polymers, including low-bandgap donor-acceptor
(D-A) copolymers, are of interest due to their many potential applications, namely in
photonics and electronics, such as in light-emitting diodes, photovoltaic devices, pho-
todetectors, organic field-effect transistors, sensors, optical switches, and electrochromic
devices, due to their specific physical, optical, and/or electronic properties [1–14]. The
combination of organic semiconductors and metal nanoparticles (NPs) can further improve
device performances. Particularly, the incorporation of metal NPs in organic solar cells can
enhance the device absorption, charge transport, and, finally, their performance [15–18].

Recently, we synthesized and characterized a series of D–A copolymers containing
N,N′-dialkylperylene-3,4,9,10-tetracarboxydiimide electron-acceptor units, which differ by
the side chains attached to the perylene-3,4,9,10-tetracarboxydiimide (PDI) units (either
dodecyls or 2-ethylhexyls) and further by the electron-donor units (9,9-dioctylfluorene,
9-(2-ethylhexyl)carbazole, or 9-(heptadecan-9-yl)carbazole) [19]. We showed the effects of
the alkyl side-chain combination on the photophysical and electrochemical properties and
spectroelectrochemical behavior of the copolymers. Results concerning the electrochemical
behavior of their thin films indicates that these copolymers could be promising for further
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development of interesting hybrid layers with silver nanoparticles, using electrochemi-
cal doping. The copolymers exhibit interesting photophysical and electronic properties
and very good thermal and oxidation stability, which is important for the photonic and
electronic applications; therefore, such hybrid layers are of research interest.

In this work, we report the preparation and detailed characterization of hybrid layers
of two PDI-based copolymers (CFC8-DDPDI and CFC8-EHPDI in Figure 1) with silver
nanoparticles (Ag-NPs) of average sizes below 100 nm. The thin hybrid layers were
prepared during reduction by electrochemical doping of copolymer layers, using silver
nitrate. The UV–vis absorption spectra were measured in situ during the hybrid layer
preparation. Scanning electron microscopy (SEM) was used to study the layer morphology
and to determine the sizes of Ag-NPs. X-ray photoelectron spectroscopy (XPS) was used to
analyze the surface composition of the layers to prove Ag-NP formation in the hybrid layers
and to determine whether there are any interactions between the silver and copolymers.
Furthermore, the layers were characterized by energy dispersive X-ray spectroscopy (EDX).
To the best of our knowledge, this is the first report on such hybrid layers having great
potential for a variety of photonic applications.
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were characterized by size-exclusion chromatography, 1H, 13C NMR, and FTIR spectros-
copy. The weight-average molecular weight (Mw), dispersity (Đ), and the polymerization 
degree (P) were as follows: Mw = 27,000, Đ = 1.59, and P = 24 for CFC8-DDPDI and Mw = 
13,200, Đ = 1.39, and P = 13 for CFC8-EHPDI. The synthesis of the copolymers and their 
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Figure 1. Chemical structures of the copolymers poly[N,N′-didodecylperylene-3,4,9,10-
tetracarboxydiimide-1,7-diyl-alt-9,9-dioctylfluorene-2,7-diyl] (CFC8-DDPDI) and poly[N,N′-bis(2-
ethylhexyl)perylene-3,4,9,10-tetracarboxydiimide-1,7-diyl-alt-9,9-dioctylfluorene-2,7-diyl]
(CFC8-EHPDI).

PDI derivatives and PDI-based polymers represent an interesting class of n-type
semiconductors [20,21]. Particularly, PDI-based polymers were reported as potential n-
type materials for all-polymeric solar cells [22–25]. Furthermore, they are also interesting
as interfacial materials (electron transporting layers), not only in organic solar cells but
also in perovskite solar cells [26,27]. Silver nanoparticles (Ag-NPs) and their composites
are very interesting for photonic, as well as biological and medical, applications [28–37].
The properties of Ag-NPs are significantly different from those of bulk metals. Due to
the maximization of the total surface area with Ag-NPs, the hybrid layers are particularly
interesting for sensing and catalysis.

2. Materials and Methods
2.1. Materials and Layer Preparation

The copolymers under study were synthesized by the Suzuki coupling reaction and
were characterized by size-exclusion chromatography, 1H, 13C NMR, and FTIR spec-
troscopy. The weight-average molecular weight (Mw), dispersity (Ð), and the polymer-
ization degree (P) were as follows: Mw = 27,000, Ð = 1.59, and P = 24 for CFC8-DDPDI
and Mw = 13,200, Ð = 1.39, and P = 13 for CFC8-EHPDI. The synthesis of the copolymers
and their characterization are described in detail in our previous paper [19]. Chloroform
(spectroscopic grade), acetonitrile (extra dry), tetrabutylammonium hexafluorophosphate
(electrochemical grade), and silver nitrate (AgNO3) were purchased from commercial
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suppliers (VWR International s.r.o., Stříbrná Skalice, Czech Republic, Lach-Ner, s.r.o., Nera-
tovice, Czech Republic, Merck spol. s.r.o., Praha, Czech Republic and Sigma Aldrich spol.
s.r.o., Praha, Czech Republic).

Thin layers of copolymers were prepared by spin-coating onto indium-tin oxide (ITO)
substrates from chloroform solutions. The ITO glass substrates were purchased from Merck
(Gernsheim, Germany). All thin-film preparations were conducted in a glove box (M. Braun
Inertgas-Systeme GmbH, Garsching, Germany), under a nitrogen atmosphere Layer thick-
nesses were measured by using a KLA-Tencor P-10 profilometer (KLA-Tencor Corporation,
Milpitas, CA, USA). The thicknesses were in the range of 130–160 nm. The hybrid layers
(HLs) were prepared by electrochemical doping of pristine copolymer layers (PLs) during
reduction. HL1 and HL2 were prepared during the reduction of corresponding pristine lay-
ers (PL1 and PL2) at the potentials (−1 and −1.5 V vs. Ag/Ag) exceeding those of the first
and second reduction process, respectively. The electrochemical doping was performed
with a PA4 polarographic analyzer (Laboratory Instruments, Prague, CZ) with a homemade
cuvette three-electrode cell in a glove box, under a nitrogen atmosphere; an electrolyte
solution of 0.1 M tetrabutylammonium hexafluorophosphate in anhydrous acetonitrile
was used. Platinum (Pt) wire and a non-aqueous Ag/Ag+ electrode (Ag in 0.1 M AgNO3
solution) were used as the counter and reference electrodes, respectively. For the hybrid
layer preparation, an electrolyte solution with AgNO3 (concentration 7 × 10−4 M) was
used. The doping time was 12 min.

2.2. Methods

UV–vis spectra were measured on a Perkin-Elmer Lambda 35 UV/VIS spectrometer
(PerkinElmer Instruments, Shelton, CT, USA). Spectroelectrochemical (in situ absorption
spectra) measurements were performed with the homemade cuvette three-electrode cell
in a glove box (M. Braun Inertgas-Systeme GmbH, Garsching, Germany) connected to
a Perkin-Elmer Lambda 35 UV/VIS spectrometer, using fiber optics. A high-resolution
FE-SEM (JEOL Ltd., Tokyo, Japan) JSM-7800F Prime (resolution: 0.7 nm at 15 kV) equipped
with an in-lens Schottky plus field emission electron gun and an EDS detector was used
for the thin-film characterization. A thin conductive layer of Pt with a thickness of ~20 Å
was deposited on the films before SEM. XPS measurements were performed by using
a K-Alpha+ XPS spectrometer (ThermoFisher Scientific, East Grinstead, UK), operating
at a base pressure of 1.0 × 10−7 Pa. All samples were analyzed by using microfocused
(spot sizes of 30 µm and 400 µm) monochromatic Al Kα X-ray radiation (72 W). Survey
spectra were recorded with a step size of 1 eV and a pass energy of 200 eV, and HR spectra
were recorded with a step size of 0.1 eV and a pass energy of 50 eV. The X-ray angle of
incidence was 30◦, and the emission angle was along the surface normal. The binding
energy (BE) scale of the XPS spectrometer was calibrated by the well-known positions
of the C 1s C–C and C–H, and C–O and C(=O)–O peaks of polyethylene terephthalate
and the Cu 2p, Ag 3d, and Au 4f peaks of Cu, Ag, and Au metals, respectively. The
data acquisition was performed by using the instrument software Thermo Avantage. The
data files were converted to the AVG format. The spectra were analyzed, using CasaXPS
software version 2.3.23 (Casa Software Ltd., BayHouse, UK), after data-file conversion to
the VAMAS format [38]. The Universal Tougaard background (two parameters for Ag
3d and three parameters for C 1s, N 1s, and O 1s regions) was used for the analysis [39].
The analyzer transmission function, Scofield sensitivity factors, and effective attenuation
lengths (EALs) for photoelectrons were applied for quantification. The analyzed results
were evaluated as average values from the analysis of 3 or 4 measurements. The HR C 1s,
Ag 3d, N 1s, and O 1s spectra were analyzed, using the Voigt profile. The goodness of fit
was indicated by the residual standard deviation value (<1.38) and the residuals to the fit,
and Monte Carlo–based error analysis was performed.
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3. Results and Discussion
3.1. Hybrid Layer Preparation and Absorption

Thin copolymer HLs with Ag-NPs were prepared by electrochemical doping of PLs
during reduction under various conditions. As reported in our previous paper, the copoly-
mers under study (Figure 1), regardless of the copolymer structure and side chain com-
bination, exhibited reversibility in absorption during the reduction cycle and irreversible
oxidation absorption changes during the oxidation cycle. In the reduction cycle, two redox
reactions are observed for all copolymers corresponding to the reduction of the carbonyl
groups on the PDI unit. The first reduction, in which a carbonyl group on the PDI unit
gains an electron to form PDI−, occurs at ca. −1 V vs. Ag/Ag+, and the second carbonyl
group reduction to PDI2− occurs at ca. −1.3 V vs. Ag/Ag+. Detailed electrochemical and
spectroelectrochemical behavior for all copolymers is reported in our previous paper. In the
reduced state, a cation dopes the negatively charged PDI unit to achieve charge neutrality.
Therefore, we attempted to dope the copolymer films with silver, by adding silver nitrate
(AgNO3), and tested whether homogenous and stable nanoparticles could be formed.
The spectral changes in the absorption spectra of the CFC8-DDPDI and CFC8-EHPDI
copolymer layers during Ag doping were recorded and are displayed in Figures 2 and 3;
these spectra were measured in situ at two potentials, −1 V and −1.5 V vs. Ag/Ag+, i.e.,
when the potential reached or exceeded the first (at −1 V vs. Ag/Ag+) and second (at
−1.3 V vs. Ag/Ag+) reduction peak potentials, respectively.
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measured during Ag doping for 12 min at potential exceeding that of the first (−1 V vs. Ag/Ag+)
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pristine APL layers: Adif = AHL − APL) are displayed by green curves.
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The absorption spectra of the copolymer PL layers in the neutral state (blue curves
in Figures 2 and 3) exhibit broadband absorption in the visible region with two well-
resolved maxima, which are given in Table 1. The broad bands in the visible spectral
region correspond to π-π* transition of the conjugated backbone. When a potential is
applied, the formation of anions and dianions with strong absorption in the visible region
and NIR is observed depending on the potential value. When a potential is applied, the
formation of anions and dianions with strong absorption in the visible region and NIR
is observed depending on the potential value. The absorption significantly differs, as
demonstrated in Figures 2 and 3 (gray curves). The strong absorption band (maximum at
ca. 750 nm) and additional bands with maxima at 831–836 nm and at 1024–1033 nm in the
NIR are characteristic of the first reduction process corresponding to PDI− anion formation
(Figure 2), whereas the strong absorption in the visible region with two clear maxima at
598–603 nm and 662–665 nm corresponds to the PDI2− dianion (Figure 3). Without doping,
the absorption changes are reversible, i.e., when the potential is switched off, the initial
absorption spectrum is recovered. Detailed electrochemical and spectroelectrochemical
behavior for the copolymers is reported in our previous paper [19]. During the doping
processes, an additional increase in the absorption band with a maximum at 400–450 nm is
observed. This absorption band increases with increasing doping time (i.e., time of applied
potential) and accompanies the absorption changes due to the reduction mentioned above.
When the potential is switched off, the absorption bands corresponding to the anion and
dianion disappear, and the absorption spectrum corresponding to the hybrid layer can be
compared with the initial spectrum of the copolymer layer before doping. It is evident
that, in both cases, the spectral changes at 400–500 nm remained and correspond to the
changes produced by the formation of Ag nanoparticles, for which a surface plasmon (SP)
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absorption band is characteristic in this spectral region [40–42]. The position of the SP
absorption band maximum depends on the size of the Ag-NPs.

Table 1. Absorption maxima of the pristine and hybrid layers (λmax), maxima of difference spectra
(λdifmax), and parameters of the distribution (d0, σ) determined from SEM. The main maxima in the
visible spectral region are printed in bold.

Copolymer Layer λmax (nm) λdifmax (nm) d0 (nm) σ (nm)

CFC8-DDPDI PL1 336, 447, 556
CFC8-DDPDI PL2 334, 445, 557
CFC8-DDPDI HL1 340, 433 431 49.7 13.4
CFC8-DDPDI HL2 338, 441 439 62.7 13.4
CFC8-EHPDI PL1 334, 460, 559
CFC8-EHPDI PL2 334, 460, 559
CFC8-EHPDI HL1 335, 431 425 41.0 10.1
CFC8-EHPDI HL2 336, 472, 546 514 57.3 10.2

The absorption spectrum of the pristine layer (PL) consists of broad bands with
maxima at ca. 446 and 557 nm for CFC8-DDPDI and 460 and 559 nm for CFC8-EHPDI.
In the spectra of the hybrid layers (HL1) prepared at the potential corresponding to PDI−

anion formation, the maxima of the increased absorption band corresponding to the
SP band, which dominates, are located at 440 and 435 nm for CFC8-DDPDI and CFC8-
EHPDI, respectively. The absorption spectra of the hybrid layers (HL2) prepared at the
potential corresponding to the PDI2− dianion formation show a significant absorption
band contribution at long wavelengths and a long-wavelength tail. This could indicate
that the Ag-NPs prepared during the first reduction process (PDI− anion) not only are of
smaller size (diameter) than those prepared at potentials exceeding the second reduction
process potential but also differ in shape. In addition to Ag-NP spheres, Ag-NPs of other
shapes, such as discs, hexagons, or triangles, could be formed [43,44]. Difference spectra
(the differences in the absorbance (A) of the hybrid AHL and pristine APL layers: Adif = AHL
− APL), which demonstrate improvement in light absorption due to the plasmonic effects
of Ag NPs, are shown by green curves in Figures 2 and 3. The absorbance enhancement
contribution to the total absorbance is 0.58 and 0.74 for CFC8-DDPDI HL1 and HL 2 layers,
respectively, and 0.40 and 0.65 for CFC8-EHPDI HL1 and HL2 layers, respectively. An
overview of the absorption maxima for the PL and HL spectra and maxima of the difference
spectra is given in Table 1. The maxima of the HL1 difference spectra at 431 and 425 nm
for CFC8-DDPDI and CFC8-EHPDI, respectively, correspond well to the SP absorption of
spherical Ag-NPs. The red-shifted maxima and long absorption tails in the spectra of the
HL2 layers prepared during the second reduction process indicate that Ag-NPs of mixed
shapes with red-shifted SP absorption are present in the HL2 layers, such as nanocircular
discs with SP absorption at 510–581 nm or hexagonal and truncated nanotriangles with SP
at wavelengths >581 nm [43,44]. The SP absorption peak can shift to a higher wavelength
with increased aggregation of nanoparticles [45–48]. This could also be the case here due to
the higher Ag-NP concentration in the HL2 layers. Broadening of the absorption peak for
the HL2 layers may be attributed to the longitudinal SP peaks due to the higher amount of
aggregation and formation of chain-like structures in the surface layer.

3.2. Scanning Electron Microscopy

The surface morphology was studied by SEM, to determine the size and distribution of
the Ag-NPs in the hybrid layers. SEM images of pristine and hybrid copolymer thin layers
made of CFC8-DDPDI and CFC8-EHPDI are shown in Figures 4 and 5, demonstrating the
presence of Ag-NPs and their good homogenous coverage. Ag-NP sizes were extracted
from the SEM micrographs by using ImageJ software, and histograms with normal distri-
bution function (Gaussian) fits are also displayed in the figures. The general formula for
the probability function of the normal distribution is given by the equation f (x) = f 0 + A
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exp(−(x − d0)2/2σ2). The mean particle diameter, d0, and distribution parameter, σ, of
the distribution function are given in Table 1, together with the absorption maxima of the
hybrid layers. Smaller mean particle diameters (average size) of Ag-NPs were evaluated
for the HL1 hybrid layers prepared during the first reduction process, whose distribution
was also narrower than that for the HL2 layer prepared at a potential exceeding the second
reduction potential. The smaller diameters correspond well to the absorption maxima
at shorter wavelengths, which agrees with SP theory [40]. Other shapes than spheres
and chain-like structures were also identified on the HL2 layer surfaces, which is in good
agreement with the absorption spectra outlined above.
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3.3. X-ray Photoelectron Spectroscopy

XPS as a surface analytical method was used to prove the Ag-NP presence at the
surface of the hybrid layers and to determine the changes in the structure of the pristine
(PL1, PL2) and hybrid (HL1, HL2) layers. The measurements were performed on the same
layer, its pristine part, and hybrid part containing Ag-NPs. The XPS wide (survey) spectra
of the PL and HL layers for both copolymers CFC8-DDPDI and CFC8-EHPDI shown in
Figure 6 contain signals from all constituent elements (C, O, N) of the copolymers. In
addition, Ag characteristic peaks corresponding to Ag 4d, Ag 4p, Ag 4s, Ag 3d5/2, Ag
3d3/2, Ag 3p3/2, Ag 3p1/2, and Ag 3s photoelectron and Ag MNN Auger lines [49] are
observed in the spectra of the hybrid layers, proving successful coverage of the copolymer
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surface by Ag-NPs, as shown by SEM. Minor In and Sn 3d peaks appear in the spectra of
CFC8-EHPDI HL layers. They originate from the ITO substrate and are caused by free pin
holes in the layer. The increase in the intensity of Ag peaks is accompanied by a decrease
in the C 1s, N 1s, and O 1s peak intensities. Visual inspection of the XPS survey spectra
is important, particularly for the hybrid layers, where the inelastic background increased
with increasing Ag-NP coverage due to inelastically scattered photoelectrons [50].
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Figure 6. XPS wide (survey) spectra of the pristine and hybrid layers of CFC8-DDPDI and CFC8-
EHPDI copolymers prepared at −1 (HL1) and −1.5 (HL2) V vs. Ag/Ag+.

Quantitative XPS analysis is complicated by the elastic and inelastic scattering pro-
cesses that occur during the transport of the excited electrons out of the solid. In the first
approach, the traditional quantification analysis, in which the surface concentration is
proportional to the measured peak intensity (or peak area considering the proper relative
sensitivity factors (RSFs)), was used to obtain information about surface atomic element
concentrations. The quantification was performed by using Casa XPS software considering
the sum of C, N, O, and Ag atoms for the PL and HL layers as 100%. Regions up to approx-
imately 30 eV below the peak kinetic energy (KE) were used for the evaluation. The results
are summarized in Table 2. The quantification analysis revealed slightly higher amounts
of oxygen than the values expected for the stochiometric ratio of the repeat copolymer
unit (expected C:N:O is 77:2:4 for CFC8-DDPDI and 69:2:4 for CFC8-EHPDI). The higher
O values (up to seven or eight atoms instead of four) arise predominantly from ambient
atmosphere (air/water) contamination and, for the HL1 CFC8-EHPDI layer, partly from
the ITO substrate, as mentioned above. Contaminating species (water and ITO) were
determined from the detailed analysis of O 1s high-resolution spectra measured on several
thin films and at different spots, as shown below. The evaluated atomic Ag percentage
values up to 20% for the HL2 hybrid layers prepared at the potential of −1.5 V vs. Ag/Ag+,
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which exceeds the second reduction process potential corresponding to the PDI2− dianion
formation, are higher than the Ag atomic percentage values of 12–15% for the HL1 layers
prepared at the potential of −1 up to −1.05 V vs. Ag/Ag+ corresponding to the PDI−

anion formation. The higher Ag contents for HL2 than for HL1 layers correlate well with
the SEM results.

Table 2. Results of XPS traditional quantitative analysis (atomic %) for the copolymer layers
under study.

Copolymer Layer Ag 3d C 1s N 1s O 1s

CFC8-DDPDI PL1 0 89.5 ± 0.4 2.3 ± 0.3 8.2 ± 0.3
CFC8-DDPDI HL1 15.0 ± 0.2 75.2 ± 0.7 1.9 ± 0.6 7.9 ± 0.6
CFC8-DDPDI PL2 0 91.0 ± 0.4 2.4 ± 0.3 6.6 ± 0.3
CFC8-DDPDI HL2 20.3 ± 0.3 72.9 ± 0.7 1.9 ± 0.6 4.9 ± 0.5
CFC8-EHPDI PL1 0 90.1 ± 0.4 2.6 ± 0.3 7.3 ± 0.3
CFC8-EHPDI HL1 11.7 ± 0.2 79.4 ± 0.6 2.3 ± 0.5 6.6 ± 0.5
CFC8-EHPDI PL2 0 89.6 ± 0.4 2.6 ± 0.3 7.8 ± 0.3
CFC8-EHPDI HL2 19.0 ± 0.3 72.0 ± 0.7 2.1 ± 0.6 6.9 ± 0.6

The C 1s, N 1s, and O 1s peak area intensity ratios of the HL and PL layers (IHL
C1s/IPL

C1s,
IHL
N1s/IPL

N1s, IHL
O1s/IPL

O1s) characterizing the peak intensity attenuation and the ratios of the
RSF-corrected peak intensities of Ag 3d and C 1s (IHL

Ag3d/IHL
C1s) for the HL layers showing

an Ag increase in HL are summarized in Table 3. We also performed a comparison of the
HL spectra with a reference metallic Ag spectrum. The metallic Ag reference spectrum
was taken on metallic Ag cleaned by argon ion sputtering until no O or C contaminants
could be observed. The intensity ratios of HL and metallic Ag, IHL

Ag3d/IMetal
Ag3d , displayed in

Table 3, are qualitatively in good agreement with the Ag atomic percentage determined
from traditional analysis. In addition to the traditional analysis, we also evaluated the
total amount of substance (AOS) within the outermost few nanometers of a surface, by
analyzing the XPS spectrum, using the simple algorithm suggested by Tougaard [51,52].
The Ag atomic percentages obtained by using this method (Table 3) are slightly higher than
those evaluated by using traditional quantification analysis.

Table 3. XPS results as ratios of relative sensitivity factor (RSF)-corrected peak intensities and Ag
atomic percentage evaluated by using the simple algorithm suggested by Tougaard [51,52], for the
copolymer layers under study.

Copolymer Layer IHL
C1s/IPL

C1s IHL
N1s/IPL

N1s IHL
O1s/IPL

O1s IHL
Ag3d/IHL

C1s IHL
Ag3d/IMet

Ag3d Ag at. %

CFC8-DDPDI HL1 0.702 0.702 0.811 0.200 0.134 16.3
CFC8-DDPDI HL2 0.694 0.693 0.647 0.279 0.186 21.7
CFC8-EHPDI HL1 0.819 0.819 0.849 0.148 0.116 13.5
CFC8-EHPDI HL2 0.656 0.656 0.718 0.265 0.173 20.2

The high-resolution (HR) Ag 3d, C 1s, N 1s, and O 1s spectra showed more details. Rep-
resentative HR spectra of pristine and hybrid layer surfaces are shown in Figures 7–13. The
HR Ag 3d spectra of the hybrid layers exhibit characteristic Ag 3d5/2–Ag 3d3/2 spin–orbit
components with a spin–orbit splitting separation of 6 eV, whereas no peaks originating
from silver appear in the Ag 3d spectra of the pristine copolymer layers. The spin–orbit
splitting separation of 6 eV is in good agreement with the value for metallic Ag [53]. The
BEs of Ag 3d5/2 in all Ag 3d spectra of the hybrid layers are in good agreement or slightly
up-shifted compared with the Ag 3d5/2 BE of metallic Ag (368.28 eV). The up-shifts were
detected in the spectra of the CFC8-DDPDI layers, with the most pronounced up-shift of
0.44 eV for the HL2 layers. Both the Ag 3d5/2 and Ag 3d3/2 main peaks show asymmetry;
therefore, the HR Ag 3d spectra (Figure 7) have to be modeled with additional symmetrical
lines corresponding to the satellites, similar to the metallic Ag spectrum. The satellites
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(S1, S3) with a 1–1.5 eV energy separation relative to the main Ag 3d5/2 and Ag 3d3/2 peaks
can be interpreted as an emission process associated with an atomic-like pure p-screening,
two other satellites (S2 and S4 ca. 3.5 eV) are associated with the plasmon loss features, and
the fifth satellite (S5 ca. 12 eV) is due to the 4d→ 5p shake-up [54–56].
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NP-size-dependent or Ag-coverage-dependent up-shifts in the Ag 3d BE have been
observed before for Ag-NPs or clusters, but for significantly smaller sizes than in our
case [57–63]. Ag BE up-shifts have also been observed on a rubene layer covered with thin
Ag, explained by the negative charge transfer from diffused Ag to the rubene molecules [64],
and further in Ag-NP–conducting polymer polyaniline, explained by partial oxidation of
Ag due to the interaction with N atoms [65]. In our case, the Ag-NPs are in the Ag metallic
state, which was proven by the values of the Auger parameter (AP). The Ag metallic state
is distinguishable mainly through the AP, which is nearly 2 eV higher than the AP value
for any other oxidized Ag species [66]. The modified AP α is defined as the sum of the BE
and the kinetic energy (KE) of prominent and convenient photoelectron and Auger peaks,
respectively, from the same element in an XPS spectrum. The APs (α4, α5) were evaluated
from the experimental BE of the Ag 3d5/2 component maximum (BEAg3d) and the KE of
the two most intense peaks existing in the Auger electron structure M4N45N45 (α4) and
M5N45N45 (α5) for HL copolymer layers, metallic Ag and AgNO3 samples. The AP values
for the hybrid layers (α4 = 725.9–726.0 and α5 = 720.3–720.6 eV) are in very good agreement
with the evaluated values for metallic Ag and are significantly different from the values for
Ag in other chemical states. Here, we demonstrated this fact by comparison with AgNO3
(α4 and α5 values of 723.0 and 718.2 eV, respectively). Thus, a chemical reaction between
Ag and the O or N atoms of the copolymer can be ruled out. A possible explanation for the
BE up-shift could be charge redistribution at the surface and interface [67].

Modeling the C 1s core-level spectra is more complicated than that of the Ag spectra
because there is a set of chemically shifted components due to the different chemical
states of carbons with different BEs in the copolymer structure. There are more bonding
environments for carbon, for which the shift is small and difficult to resolve. In this work,
the HR C 1s spectra were modeled with four components corresponding to aromatic C sp2,
aliphatic C sp3, C–N sp3, and C=O groups and π-π* satellite components (Figures 8 and 9).

The component areas were constrained to correspond to the chemical structure of
the polymer repeat units. In the HR spectra of the pristine PL layer, the component peak
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maxima located at 284.9 eV (aromatic C sp2), 285.3 eV (aliphatic C sp3), 286 eV (C–N sp3),
and 288.5 eV (O=C–N) are in good agreement with the positions reported in the literature
for the corresponding groups [68–70]. The peak at approximately 287 eV can be assigned
to the shake-up excitations associated with the aromatic C sp2. Its position agrees with
that observed in the spectra of PDI derivatives [71,72]. The other weaker peaks at higher
BEs are correlated with shake-up phenomena-π-π* satellite peaks associated with C=O and
aromatic C sp2 [70–73]. In the spectra of the hybrid layers, the main peak area decreases,
and an increase in the satellite/main peak area ratios is observed. The most pronounced
changes accompanied by up-shift of the main peaks were found in the CFC8-DDPDI
HL2 spectrum.

In the HR N 1s spectra of the pristine layers (Figures 10 and 11), the dominant peak at
400.7 eV is assigned to N–C=O groups, and the smaller peak at higher BE (at approximately
403 eV) represents π-π* satellite features characteristic of nitrogen-containing aromatic
polymers. In the HR N 1s spectra of the hybrid layers, the peak corresponding to N–C=O
groups dominates, but the analysis of the spectra is more complicated. It is evident from
the wide spectra that the N 1s energy region is influenced by the Ag 3d photoelectron losses.
An additional peak appears at a lower BE, and its contribution increases with increasing
Ag 3d doublet peaks. This peak could be assigned to the Ag 3d core line satellite (bulk
plasmon) [54]. All changes can be directly correlated with the presence of metallic Ag-NPs
on the surface of the copolymer film. An NO3− contribution (406.1 eV) was not observed
in the HR N 1s spectra.

The HR O 1s spectra of the CFC8-DDPDI layers were deconvoluted into four compo-
nents (Figure 12). The main contribution with a maximum at 531.9 eV is assigned to the
C=O of the imide groups in the copolymer and the peak at 533.9 eV to the shake-up [74].
The components with maxima at approximately 532.7 and 537 eV could originate from air
contamination, from adsorbed water and oxygen, respectively [75–78]. The air contamina-
tion content could be different for different layers, as demonstrated by comparison of the
PL1 and PL2 layers. The higher relative area of the peak corresponding to the adsorbed
water in the PL1 spectrum than that in the PL2 spectrum is in good agreement with the
quantitative analysis, where a higher amount of oxygen was evaluated for PL1 than for
PL2. An additional peak at 530.3 eV appears in the HR O 1s spectra of the CFC8-EHPDI
films (Figure 13), which can be assigned to the indium tin oxide from the ITO substrate [79].
The In and Sn appearances are evident in the survey spectra (In 3d and Sn 3d doublet
peaks). In the HR O 1s spectra of the hybrid layers, an increase in the satellite/main peak
area ratio is observed in addition to a decrease in the main peak area and a decrease in the
adsorbed H2O peak area.

3.4. Energy Dispersive X-ray Spectroscopy

EDX analysis, which allows inspection of the spatial distribution of elements, also
confirms the Ag-NP presence in the hybrid layers. EDX pattern and an example of ele-
mental mapping images are shown in Figures 14–16. Peaks corresponding to the C, O,
N, and Ag atoms appear in the EDX spectrum of the hybrid layers. Additional strong
peaks, such as the In, Sn, O, Na, Mg, Al, Si, and Ca peaks originating from the ITO glass
substrate, are present because the EDX technique analyzes the X-ray characteristic radiation
emitted upon bombarding the sample with electrons, which originates from depths up to
10 µm underneath the surface. The Ag percentage values determined from EDX analysis
(atomic % considering as 100% the sum of all elements) and the Ag/C intensity peak
ratio values given in Table 4 are significantly lower than the values determined from XPS
analysis, which proves that the Ag-NPs are located at the surface layer. The relative values
of the EDX results (normalized IHL

Ag3d/IHL
C1s) for the HL1 and HL2 layers are in very good

agreement with the relative values obtained from XPS analysis (normalized IHL
Ag /IHL

C ) and
correlate well with the SEM results.
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Figure 15. Electron (left) and elemental (right) mapping images of CFC8-DDPDI HL1 and HL2
hybrid layers.
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Table 4. EDX analysis results and comparison with XPS results for the hybrid layers under study. 
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Figure 16. Electron (left) and elemental (right) mapping images of CFC8-EHPDI HL1 and HL2
hybrid layers.
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Table 4. EDX analysis results and comparison with XPS results for the hybrid layers under study.

Copolymer Layer EDX XPS EDX XPS EDX

Ag Atomic % IHL
Ag3d/IHL

C1s IHL
Ag /IHL

C Normalized IHL
Ag3d/IHL

C1s Normalized IHL
Ag /IHL

C

CFC8-DDPDI HL1 0.51 0.200 0.0120 0.715 0.742
CFC8-DDPDI HL2 1.00 0.279 0.0162 1 1
CFC8-EHPDI HL1 0.45 0.148 0.0082 0.529 0.505
CFC8-EHPDI HL2 0.83 0.265 0.0154 0.948 0.952

4. Conclusions

Hybrid layers of the PDI-based CFC8-DDPDI and CFC8-EHPDI copolymers with
Ag-NPs were prepared during reduction by electrochemical doping of pristine layers,
using silver nitrate. The hybrid layers were characterized by optical, SEM, XPS, and EDX
methods. The formation of Ag-NPs was evident in the measured in situ optical absorption
spectra, where a characteristic SP absorption band appeared. Hybrid layers exhibited
significantly higher light absorption due to the plasmonic effects of Ag-NPs, which is
promising for the use in solar cells. The presence of Ag-NPs and their size were proven
by SEM, XPS and EDX methods. The results of the SEM study showed very homogenous
coverage of Ag-NPs, with the average diameter depending on the potential applied during
reduction and on the copolymer side chains. Larger diameters (63 and 57 nm for CFC8-
DDPDI and CFC8-EHPDI, respectively) were determined for the HL2 layers prepared at
potentials corresponding to the second reduction than those (50 and 41 nm) for the HL1
layers prepared at potentials corresponding to the first reduction process. XPS confirmed
the existence of stable Ag-NPs and their metallic character. The Ag atomic percentage was
higher for HL2 than for HL1 layers. EDX analyses confirmed the location of the Ag-NPs
in the surface layer. The hybrid layers with Ag-NPs of diameters below 100 nm have the
potential for various photonic and electronic applications, particularly in photovoltaics,
sensing, or catalysis.
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