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Abstract: In the current study, a comparative molecular field analysis (CoMFA) model with the com-
bined activity of polybrominated biphenyls (PBBs) bioconcentration, long-range transport, and the
highest infrared signal intensity (weight ratio of 5:4:1) was constructed based on the threshold method
and was further evaluated and analyzed. PBB-153 derivatives with improved combined activity
values of bioconcentration, long-range transport, and the highest infrared signals intensity were
designed based on contour maps of the CoMFA model. The environmental stability and functionality
of the derivatives were also evaluated. The constructed model showed good prediction ability, fitting
ability, stability, and external prediction ability. The contribution rates of electrostatic and steric
fields to the combined activity of PBBs were 53.4% and 46.6%, respectively. Four PBB-153 deriva-
tives with significantly improved bioconcentration, long-range transport and the highest infrared
signal intensity (the combined activity value of these three parameters decreased) were screened
with good environmental stability and functionality. Results validated the accuracy and reliability,
and ability of the generated model to realize the simultaneous modification of the three activities of
the target molecule. The binding ability of the designed derivatives to food chain biodegradation
enzymes increased, thereby verifying the improvement in the bioconcentration. The half-lives of the
derivatives in air and their ability to be absorbed by the plants significantly improved compared
to the target molecule, further showing that the long-range transport of derivatives was reduced.
In addition, the introduction of the –NO group caused the N =O stretching vibration of the derivatives
to increase the infrared signal intensity. The present model provides a theoretical design method for
the molecular modification of environmentally friendly PBBs.

Keywords: polybrominated biphenyls; bioconcentration; long-range transport; infrared spectrum

1. Introduction

Polybrominated biphenyls (PBBs) are a class of brominated flame retardants with 209
homologs. Hexabromobiphenyl (PBB-153) is the main component of PBB flame retardants
and is listed in Annex A of the Stockholm Convention on Persistent Organic Pollutants
(POPs) [1]. As an additive flame retardant, PBBs are slowly released into the environment
and taken up by the organisms [2]. Researchers have detected PBBs in mussels [3], fish [4–6],
birds [7], etc., with the highest concentration reaching 12.4 ng/g. Even after 40 years of the
Michigan pollution incident, PBBs are still detected in the human serum in the Michigan
area [8]. The metabolic half-life of PBBs in the human blood is about 11 years, and the
half-life in the plasma is about 12.9 to 28.7 years [9,10], indicating that they can exist
in the human body for a long time. PBBs may affect thyroid function [11,12] and have
estrogen-like activities [13]. Experiments on mice showed PBBs to be carcinogenic [1];
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therefore, their presence in the human blood [14] and fat [15] can cause potential risks
to human health. Researchers have also detected PBB-153 in lichens and orbital soils,
penguins in Antarctica [16], and polar bears [17,18]. The above studies showed that PBBs
have definite bioconcentration and long-range transport and are extremely harmful to both
the environment and human health. Therefore, studies based on the related properties of
PBBs can provide better insights into their effective mechanism and can help design better
and environmentally friendly flame retardants.

Infrared spectroscopy is an important method to assess PBBs with simple functioning
and no secondary pollution. The infrared spectrum is generated by the vibrational and
rotational transitions of energy levels that occur when a molecule absorbs infrared radi-
ation; that is, the molecule will absorb energy from the original ground state vibrational
(rotational) kinetic energy level to the higher energy vibrational (rotational) kinetic energy
level. Each molecule has its characteristic infrared spectrum, which can be analyzed qual-
itatively and quantitatively. The detection limit of infrared spectroscopy is limited [19].
However, PBBs are mainly present in trace amounts in nature; therefore, it is necessary
to modify the molecule to improve its infrared detection sensitivity for better detection
and analysis.

The 3D-QSAR model can effectively analyze and evaluate the relationship between the
structure and properties of a series of compounds. Currently, the studies on 3D-QSAR are
not limited to the investigation of a single activity. Previously, researchers have established
3D-QSAR models to study multiple adverse reactions of quinolones [20], two hormone
activities of phthalates [21], and multiple environmental activities of polychlorinated
naphthalene [22]. The multiactivity model can effectively analyze and predict multiple
molecular properties at the same time. Yang et al. [23] have previously established a
CoMFA model of the combined activity of infrared signal, bioconcentration, and toxicity
of PBBs and successfully designed the derivatives with low bioconcentration, toxicity,
and easy detection. However, this study was primarily based on the application of infrared
spectroscopy to construct the model and did not focus much on the environmental aspect
of the derivatives. Moreover, the proposed mechanism was ineffective in explaining the
rationale behind the improved environmental activities of the target molecules. In our
study, the CoMFA model of the combined activities of PBBs bioconcentration, long-range
transport, and the highest infrared signal intensity was constructed based on the thresh-
old method. PBB-153 derivatives with improved bioconcentration, long-range transport,
and the highest infrared signal intensity were designed based on the information collected
from the model. The environmental stability and functionality of designed derivatives
were also analyzed and presented. The validation of the combined activity model and
strong mechanism analysis provides a theoretical method for the molecular design of green
and infrared-sensitive PBB derivatives.

2. Materials and Methods
2.1. Data Sources

The bioconcentration and long-range transport of 45 PBBs were predicted by the
Toxicity Estimation Software Tool (TEST 4.2.1, released by EPA, https://www.epa.gov/
chemical-research/toxicity-estimation-software-tool-test). The above properties were
expressed as bioconcentration factors (BCF) and vapor pressure (VP) at 25 ◦C. The highest
infrared signal intensity of PBBs was calculated at B3PW91/6–31G (d) level based on the
density functional theory (DFT) using Gaussian 09 software [24,25].

https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
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2.2. Expression of Combined Activities of Bioconcentration, Long-Range Transport, and Infrared
Signal Intensity of PBBs Based on the Threshold Method

The threshold method was used to characterize the combined activities of PBBs bio-
concentration, long-range transport, and the highest infrared signal intensity. The formula
used for the calculations is as follows:

Yi =
100× (Xi − Xi min)

(Xi max − Xi min)
(1)

Z = 0.5× Y1 + 0.4× Y2−0.1× Y3 (2)

where Xi is the bioconcentration (i = 1), long-range transport (i = 2) and highest infrared
signal intensity (i = 3) of the ith PBBs molecule, Xi min is the minimum value of the corre-
sponding single activity of PBBs, Xi max is the maximum value of the corresponding single
activity of PBBs, Yi is the single activity value based on the threshold value, and Z is the
combined activity value of bioconcentration, long-range transport and highest infrared
signal intensity weight ratio: 5:4:1). To reduce the influence of the order of magnitude dif-
ference of single activity between different molecules, logarithm processing was performed
on the single activity values of PBBs before calculation.

2.3. Establishment of 3D-QSAR Model of the Combined Activity of PBBs Bioconcentration,
Long-Range Transport, and Infrared Signal Intensity

The 3D-QSAR model of the combined activity of PBBs bioconcentration, long-range
transport, and the highest infrared signal intensity and the structures of 45 PBBs were
constructed using Sybyl-X 2.0 software (Figure 1). The initial geometry for all molecules
was generated using the Minimize module, the POWELL conjugate gradient method,
and the Tripos molecular force field with energy convergence criterion set at 0.001 kcal/mol.
The Gasteiger–Hückel charge was selected as the molecular charge, and the most stable con-
formation was obtained through 10,000 iterations. The molecule with the largest combined
activity value of PBBs was used as the template molecule, and the common skeleton of all
molecules was superimposed using the Align database module. Thirty-five molecules were
randomly selected as the training set and the rest as the test set. Partial least squares (PLS)
was used for analysis, and the one-off method was used for cross-validation of training
set compounds to obtain cross-validation coefficient q2 and the best principal component
fraction n; non-cross validation coefficient R2, standard deviation SEE, test value F, and the
contribution rate of molecular force field were calculated using non-cross validation re-
gression analysis. The robustness of the model was further tested and evaluated using the
perturbation stability test; Q2, cSDEP and dq2/dr2yy were considered as the corresponding
parameters. In addition, the external prediction ability of the model was tested using the
cross-validation method, and SEP and r2

pred were used as evaluation parameters.
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Figure 1. The common skeleton of polybrominated biphenyls (PBBs).

2.4. Molecular Stability and Functional Evaluation of PBB Derivatives Based on Gaussian Calculation

The quantum chemical parameters of target molecules and derivatives were calculated
at B3PW91/6–31G (d) level based on DFT using Gaussian 09 software. The frequency [26]
was used to evaluate the stability of the molecule, and the positive frequency indicated
that the molecule was stable. The dissociation enthalpy of the C–Br bond represented the
functional properties of PBBs as flame retardants. Theoretically, the higher the dissociation
enthalpy, the better the flame retardancy.
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2.5. Food Chain Analysis Based on Molecular Docking before and after Modification

The LibDock module of Discovery Studio 4.0 was used to dock PBBs (target molecules
and their derivatives) with degradation enzymes (reductase, hydrolase, P450, and P450)
in green algae, water flea, fish, and human body present in the food chain. All protein
structures were obtained from the Protein Data Bank (http://www.rcsb.org). User-specified
was selected for docking preferences, and max hits to save was selected as 10 to evaluate the
improvement in the bioconcentration of PBBs before and after molecular modification [27].

3. Results and Analysis
3.1. Evaluation of the Combined Activity of Bioconcentration, Long-Range Transport, and Infrared
Signal Intensity of PBBs

The single activity values of the bioconcentration, long-range transport, and the
highest infrared signal intensity of PBBs and the combined activity values based on the
threshold method are listed in Table S1. PBB-2 with the highest combined activity value
was used as the template molecule to construct the 3D-QSAR model. The highest value
of combined activity represented the highest bioconcentration, long-distance transport,
and the lowest value of the highest infrared signal intensity.

3.2. Establishment and Evaluation of CoMFA Model for the Combined Activity of PBBs Molecular
Bioconcentration, Long-Range Transport, and Infrared Signal Intensity
3.2.1. Establishment of CoMFA Model for Combined Activity of PBBs Molecular
Bioconcentration, Long-Range Transport, and Infrared Signal

The CoMFA model of the combined activity (log Z) of bioconcentration, long-range
transport, and the highest infrared signal intensity of PBBs (hereinafter referred to as
the combined activity CoMFA model) was established as dependent variables and the
molecular structure of PBBs as independent variables. Model evaluation parameters of
the model are shown in Table 1. The principal component of the CoMFA model was 8,
and cross-validation coefficient q2 was 0.76 (>0.5), indicating that the established model
had a good predictive ability [22]. The model standard deviation SEE was 0.06 (<0.95),
F was 67.79, and non-cross validation coefficient R2 was 0.95 (>0.9), indicating the en-
hanced fitting ability of the model [28]. The scrambling stability test parameter Q2 was
0.53, cSDEP was 0.18, and dq2/dr2yy was 1.17 (<1.2), reflecting the good stability of the
constructed model [29]. SEP and r2

pred values obtained through the external verification of
the test set were 0.19 and 0.65 (>0.6), respectively, indicating that the model had a good
external prediction ability [23]. The contribution rates of the electrostatic and steric fields
to the combined activity of PBBs were 53.4% and 46.6%, respectively.

Table 1. Evaluation parameters of the combined activity model.

Model q2 n SEE R2 F r2
pred SEP Q2 cSDEP dq2/dr2yy

CoMFA 0.76 8 0.06 0.95 67.79 0.65 0.19 0.53 0.18 1.17

3.2.2. Analysis of Contour Maps of Combined Activity CoMFA Model

The contour maps of the steric and electrostatic field of the combined activity CoMFA
model for the PBB-153 target molecule are shown in Figure 2A,B, respectively. A more
detailed explanation of contour maps is in the Supplementary Information. In the steric
field, the green area was distributed at sites 3, 3′, 5, 5′, 6, and 6′ of the molecule, and the
yellow area was mainly distributed at site 4. In the electrostatic field, the molecules were
mainly covered by the blue area, and they were distributed at sites 2, 2′, 3, 3′, 4, 5, and 6.
The introduction of small-volume groups into the green area of the steric field and low-
electrostatic groups into the blue area of the electrostatic field reduced the combined activity
of the target molecule [30]. Because the contribution rate of the electrostatic field was high,
the molecular design of PBB-153 derivatives was constructed using the electrostatic field
contour map preferentially.

http://www.rcsb.org
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3.3. Molecular Design of PBB-153 Derivatives and Model Validation
3.3.1. Molecular Modification of PBB-153 Based on Combined Activity CoMFA Model

Four PBB-153 derivatives were designed and screened according to the information
obtained from the contour map of the combined activity CoMFA model of PBBs (Table 2).
The decreased ratio of the combined activity of derivatives was in the range of 8.02% to
27.39%. Among all the derivatives, 5-NO-5′-OCN-PBB-153 derivative molecules were
most affected. 5-NO-5′-ONO-PBB-153 and 5-NO-5′-OCN-PBB-153 derivatives were both
substituted by the groups with lower electrostatic properties than Br atoms at sites 5 and
5′. Moreover, as the volume of the –OCN group was smaller than –ONO, the latter had
a higher combined activity value. The improved bioconcentration, long-range transport,
and the highest infrared signal intensity of all designed derivatives were consistent with
the information collected from the contour maps of the constructed CoMFA model.

Table 2. The combined activity of bioconcentration, long-range transport, and the highest infrared
signal before and after the modification of hexabromobiphenyl (PBB-153).

No. Molecule Combined Activity Value Change Rate (%)

0 PBB-153 1.11
1 5,5′-NO-PBB-153 1.02 8.29
2 5-NO-5′-ONO-PBB-153 0.87 21.80
3 5-NO-5′-OCN-PBB-153 0.81 27.39
4 2-OCHO-5-NO-PBB-153 1.02 8.02

3.3.2. Validation of Combined Activity CoMFA Model
Validation of Combined Activity CoMFA Model through Single Activity Evaluation

In this study, a CoMFA model of the combined activity of PBBs bioconcentration,
long-range transport, and the highest infrared signal intensity was constructed, and four
PBB-153 derivative molecules with significantly reduced combined activity values were suc-
cessfully designed based on the information of the contour maps of the model. To further
verify the accuracy and reliability of the model, three single activities of PBBs bioconcen-
tration, long-range transport, and the highest infrared signal intensity were evaluated,
and the single activity CoMFA models were constructed, and the contour maps were
compared. Gaussian 09 software was used to calculate the highest infrared signals intensity
of PBB-153 derivatives, and the constructed bioconcentration and long-range transport
single activity CoMFA models were used to predict the bioconcentration and long-range
transport activities of derivatives. The resulting values of molecular bioconcentration,
long-range transport, and the highest infrared signal intensity of PBB-153 derivatives
are shown in Table 3. Compared to the target molecule, the designed derivatives had
lower bioconcentration values, and the ratio was in the range of 3.92 to 21.63%. Moreover,
5-NO-5′-ONO-PBB-153 and 5-NO-5′-OCN-PBB-153 had relatively lower bioconcentration,
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which was consistent with the results of the combined activity. The long-range transport
properties of the derivatives were lower than those of the target molecules, and the change
rates ranged from 12.15 to 28.9%. The highest infrared signal intensity of the PBB-153
derivatives increased with the change rate from 1.96 to 7.41%. The modifications observed
in the three single activities of derivatives were consistent with the combined activity
model. In addition, the ratio of bioconcentration, long-range transport, and the highest
infrared signal intensity of 5-NO-5′-ONO-PBB-153 derivative was around 7:6:1 and was
in complete agreement with the weight ratio (5:4:1) of the constructed model, thereby
validating the accuracy of the combined activity CoMFA model.

Table 3. The single activity value and change rate of PBB-153 derivatives bioconcentration, long-range transport, and highest
infrared signal intensity.

No. Molecule Log (IR Intensity) Change Rate Log (BCF) Change Rate Log (VP) Change Rate (%)

0 PBB-153 2.84 2.22 −7.67
1 5,5′-NO-PBB-153 3.01 5.98 1.87 −15.59 −9.89 −28.90
2 5-NO-5′-ONO-PBB-153 2.92 2.79 1.78 −19.87 −9.09 −18.49
3 5-NO-5′-OCN-PBB-153 2.89 1.96 1.74 −21.63 −9.26 −20.74
4 2-OCHO-5-NO-PBB-153 3.05 7.41 2.13 −3.92 −8.60 −12.15

Validation of Combined Activity CoMFA Model Based on the Contour Maps of Single
Activity and Combined Activity CoMFA Models

CoMFA models of PBBs bioconcentration, long-range transport, and the highest
infrared signal intensity were established, and the contour maps of single activity and
combined activity models were compared (Table 4). The contribution rates of the steric
field for the three single activities were 43.7%, 43.7%, and 34.5%, respectively, and the
contribution rates of the electrostatic field were 56.3%, 56.3%, and 65.5%, respectively.
The electrostatic field showed high and consistent contribution rates in both the single
activity model and the combined activity model.

Table 4. The single activity and combined activity contour maps of PBBs bioconcentration, long-range transport, and the
highest infrared signal intensity.

CoMFA Model Combined Activity Bioconcentration Activity Long-Range
Transport Activity Infrared Intensity Activity

Steric field
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indicating the existence of the environmental stability of the theoretical derivatives [31]. 
The C–Br bond dissociation enthalpy of derivatives was in the range of –1.76 to –0.02% 
compared with the target molecule and did not change in general, indicating that the de-
rivatives retained good flame retardant properties of the target molecule and had better 
functional properties. Thus, it can be concluded that the designed PBB-153 derivatives had 
good environmental stability and functionality. 

Table 5. Calculation of frequency and C–Br bond dissociation enthalpy before and after PBB-153 
modification. 

No. Molecule Frequency C–Br Bond Dissociation Enthalpy Change Rate 
(%) 

0 PBB-153 20.27 83.37  

1 5,5′-NO-PBB-153 22.68 82.04 −1.59 
2 5-NO-5′-ONO-PBB-153 22.84 82.94 −0.52 
3 5-NO-5′-OCN-PBB-153 21.88 81.90 −1.76 
4 2-OCHO-5-NO-PBB-153 16.80 83.35 −0.02 

3.4.2. Evaluation of Environmental Friendliness of PBB-153 Derivatives 
The bioconcentration, long-range transport, toxicity, and the highest infrared signal 

intensity of PBB-153 were comprehensively analyzed to evaluate the environmental 
friendliness of the designed derivatives. Table 6 lists the logarithmic order of single activ-
ity prediction values of bioconcentration, long-range transport, and the highest infrared 
signal intensity. The improvement ratios of the original values of the three activities were 
in the range of 18.14 to 66.88%, 13.67 to 62.33%, and 88.32 to 99.39%, respectively, indicat-
ing considerably improved bioconcentration, long-range transport, and the highest infra-
red signal intensity of PBB-153 derivatives. Considering the toxicity in fish as an example, 
the biological toxicity of PBB-153 derivatives was evaluated by EPIWEB 4.1 and is shown 
in Table 6. LC50 is the median lethal concentration that governs the toxicity of a material. 
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indicating the existence of the environmental stability of the theoretical derivatives [31]. 
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indicating the existence of the environmental stability of the theoretical derivatives [31]. 
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3.4.1. Environmental Stability and Functionality Evaluation of PBB-153 Derivatives 

The environmental stability and functionality evaluation parameters of PBB-153 de-
rivatives are listed in Table 5. All frequencies of the derivatives were greater than zero, 
indicating the existence of the environmental stability of the theoretical derivatives [31]. 
The C–Br bond dissociation enthalpy of derivatives was in the range of –1.76 to –0.02% 
compared with the target molecule and did not change in general, indicating that the de-
rivatives retained good flame retardant properties of the target molecule and had better 
functional properties. Thus, it can be concluded that the designed PBB-153 derivatives had 
good environmental stability and functionality. 
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modification. 
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1 5,5′-NO-PBB-153 22.68 82.04 −1.59 
2 5-NO-5′-ONO-PBB-153 22.84 82.94 −0.52 
3 5-NO-5′-OCN-PBB-153 21.88 81.90 −1.76 
4 2-OCHO-5-NO-PBB-153 16.80 83.35 −0.02 

3.4.2. Evaluation of Environmental Friendliness of PBB-153 Derivatives 
The bioconcentration, long-range transport, toxicity, and the highest infrared signal 

intensity of PBB-153 were comprehensively analyzed to evaluate the environmental 
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signal intensity. The improvement ratios of the original values of the three activities were 
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The contour maps of the steric field of three single activities were mainly covered
by the green area with varied distribution for all three activities. For instance, the green
area was mainly distributed at sites 3, 3′ in the case of the bioconcentration contour map,
whereas it enclosed all sites of the molecule in the long-distance contour map and was
distributed near sites 2 and 3 in the infrared variation contour map. The green area in the
combined activity model contour map was dispensed at sites 3, 3′, 5, 5′, 6, and 6′. The steric
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contour maps of the combined activity CoMFA model carried the information of all three
single activities.

The three single activity electrostatic field contour maps were mainly covered by the
blue area with its distribution near sites 3, 4′, 6, and 6′ in the bioconcentration contour map,
at sites 2, 3, 4, 4′, 5, 5′, 6, and 6′ in the long-range transport contour map, and near sites 2, 2′,
4, 4′ and 5 in the infrared signal contour map. In the contour map of the combined activity
model, the blue area was distributed at sites 2, 2′, 3, 3′, 4, 5, and 6, primarily covering
the information of the three single activity contour maps. In summary, the combined
activity model of PBBs bioconcentration, long-range transport, and the highest infrared
signal intensity covered the information of the three single activity models, which can be
modified by the combined activity of PBB-153 with certain reliability.

3.4. Molecular Properties Evaluation of PBB-153 Derivatives
3.4.1. Environmental Stability and Functionality Evaluation of PBB-153 Derivatives

The environmental stability and functionality evaluation parameters of PBB-153
derivatives are listed in Table 5. All frequencies of the derivatives were greater than zero,
indicating the existence of the environmental stability of the theoretical derivatives [31].
The C–Br bond dissociation enthalpy of derivatives was in the range of −1.76 to −0.02%
compared with the target molecule and did not change in general, indicating that the
derivatives retained good flame retardant properties of the target molecule and had better
functional properties. Thus, it can be concluded that the designed PBB-153 derivatives had
good environmental stability and functionality.

Table 5. Calculation of frequency and C–Br bond dissociation enthalpy before and after PBB-153
modification.

No. Molecule Frequency C–Br Bond
Dissociation Enthalpy Change Rate (%)

0 PBB-153 20.27 83.37
1 5,5′-NO-PBB-153 22.68 82.04 −1.59
2 5-NO-5′-ONO-PBB-153 22.84 82.94 −0.52
3 5-NO-5′-OCN-PBB-153 21.88 81.90 −1.76
4 2-OCHO-5-NO-PBB-153 16.80 83.35 −0.02

3.4.2. Evaluation of Environmental Friendliness of PBB-153 Derivatives

The bioconcentration, long-range transport, toxicity, and the highest infrared signal
intensity of PBB-153 were comprehensively analyzed to evaluate the environmental friend-
liness of the designed derivatives. Table 6 lists the logarithmic order of single activity
prediction values of bioconcentration, long-range transport, and the highest infrared signal
intensity. The improvement ratios of the original values of the three activities were in the
range of 18.14 to 66.88%, 13.67 to 62.33%, and 88.32 to 99.39%, respectively, indicating
considerably improved bioconcentration, long-range transport, and the highest infrared
signal intensity of PBB-153 derivatives. Considering the toxicity in fish as an example,
the biological toxicity of PBB-153 derivatives was evaluated by EPIWEB 4.1 and is shown
in Table 6. LC50 is the median lethal concentration that governs the toxicity of a material.
A higher value of LC50 indicates that the compound is less toxic. The PBB-153 deriva-
tives showed a significant increase in their LC50 values and consequently a considerable
reduction in the toxicity in fish. On the whole, the designed derivatives exhibited lower
bioconcentration, long-range transport, biological toxicity, and higher infrared detection
sensitivity, thus theoretically being more environmentally friendly.
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Table 6. Prediction of molecular toxicity before and after PBB-153 modification.

No. Molecule LC50 Change Rate (%)

0 PBB-153 0.00022
1 5,5′-NO-PBB-153 0.01 5404
2 5-NO-5′-ONO-PBB-153 0.05 22,836
3 5-NO-5′-OCN-PBB-153 0.17 78,799
4 2-OCHO-5-NO-PBB-153 0.24 111,827

3.5. Mechanism Analysis for Improvement of PBB-153 Derivatives in the Bioconcentration

Persistent organic pollutants (POPs) can be enriched along the food chain [32]. A nat-
ural food chain (green algae→ daphnia→ fish→ human body) was selected to analyze
the changes in bioconcentration before and after PBB-153 molecular modification, and the
risk of biomagnification was evaluated. The total scores of PBB-153 and derivatives docked
with four types of degrading enzymes in organisms are shown in Table 7. It was found that
the total scores of all the derivatives were higher than the target molecule, suggesting that
the derivatives were more easily degraded by the four organisms selected from the food
chain and thus showed decreased bioaccumulation. The rising ratios of the total scores of
the derivatives docked with the degrading enzymes in green algae, daphnia, fish, and the
human body were 13.22–29.98%, 14.04–30.71%, 5.58–41.19% and 15.98–28.5%, respectively.
Among them, 5-NO-5′-OCN-PBB-153, 5-NO-5′-ONO-PBB-153, 2-OCHO-5-NO-PBB-153,
and 5-NO-5′-OCN-PBB-153 derivatives had the highest total scores. In general, green algae
and daphnia have higher degradability against the derivatives. Hence, theoretically, the bio-
concentration of the derivatives in these two low-level organisms in the food chain was
reduced, consequently lowering the risk of transmission and further enrichment in the food
chain. It is worth mentioning here that the most significant degradation derivatives in the
four organisms were mainly 5-NO-5′-ONO-PBB-153 and 5-NO-5′-OCN-PBB-153. The total
score for docking 5-NO-5′-OCN-PBB-153 with fish degrading enzyme was increased by
39.45% and was comparable to 2-OCHO-5-NO-PBB-153 (41.19%). The docking results
were consistent with the single activity prediction results of bioconcentration, indicat-
ing lower bioconcentration values of 5-NO-5′-ONO-PBB-153 and 5-NO-5′-OCN-PBB-153.
The increase in the bioaccumulation of the derivative in the organism along the food chain
and the organism’s higher degradability was indicated by the increase in the total scores
with degrading enzyme, as observed in the case of 5-NO-5′-ONO-PBB-153. In addition,
the increase in the overall total scores of the derivatives compared to the target molecule
in the food chain delivery indicated that the derivatives were more likely to be degraded
during the food chain delivery process. Finally, the experiments based on the docking of
PBB-153 derivatives with biodegradable enzymes in the food chain further verified the
reasons behind the reduction in the molecular bioconcentration of the designed derivatives
and demonstrated the potential of the molecular modification.

3.6. Mechanism Analysis for Improvement of PBB-153 Derivatives in Long-Range Transport

Lignin peroxidase (LiP enzyme) produced by white-rot fungi attached to the plants
can oxidize and reduce POPs [33], which is a kind of phytoremediation—an economic,
efficient, energy-saving, and environmentally friendly process [34]. In the present study,
the long-range transport of PBB-153 before and after molecular modification was evaluated
from three aspects. First, the total scores of molecules and LiP enzyme indicate the degree
of absorption by plants, i.e., the possibility of entering the atmosphere. Second, the half-life
in the air indicates the ability of the molecules to get oxidized in the atmosphere hence,
their stability in the atmosphere. Lastly, the vapor pressure of the molecules indicates their
long-range transport capacity. The higher the vapor pressure, the higher is the volatility
and easier the long-distance migration of the molecule.
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Table 7. Total scores of PBB-153 molecular docking with food chain degrading enzyme before and after modification.

No. Molecule Total Scores
(Green Algae)

Change
Rate (%)

Total Scores
(Daphnia)

Change
Rate (%)

Total Scores
(Fish)

Change
Rate (%)

Total Scores
(Human Body)

Change
Rate (%)

0 PBB-153 49.88 45.80 47.17 80.19
1 5,5′-NO-PBB-153 62.52 25.34 64.89 41.68 49.80 5.58 93.01 15.98

2 5-NO-5′-ONO-
PBB-153 56.47 13.22 59.86 30.71 58.88 24.81 102.00 27.19

3 5-NO-5′-OCN-
PBB-153 64.83 29.98 52.23 14.04 65.78 39.45 103.05 28.50

4 2-OCHO-5-NO-
PBB-153 60.11 20.52 52.45 14.53 66.60 41.19 96.54 20.38

The total scores of PBB-153 derivatives docking with the LiP enzyme were higher
than those of the target molecule and ranged from 3.9 to 41.15%. The changing trend was
consistent with the trend predicted by the vapor pressure single activity. This suggested
that the designed derivatives were more likely to be oxidized by bacteria present in plants,
thereby reducing their possibility of entering the air. The AopWin v1.92 method of the
EPIWEB 4.1 database was used to evaluate the ability of PBB-153 and its derivatives to
get oxidized in the atmosphere and to further determine the long-range transport after
modification (Table 8). The half-life of the target molecule in the air was about 83 days,
and that of the designed derivatives varied from 4.01 to 5.75 days, and the reduction ratio
of the target molecule ranged from 93.07 to 95.17%. Among the designed derivatives,
the 5,5′-NO-PBB-153 had the longest half-life, whereas single-activity evaluation showed
that it had a lower vapor pressure. 5-NO-5′-ONO-PBB-153 and 5-NO-5′-OCN-PBB-153
also showed lower vapor pressure and significantly reduced half-lives. This confirmed that
modified PBB-153 molecules had lower long-range transport, which was also consistent
with the prediction results of the combined activity CoMFA model. Altogether, the designed
derivatives were readily degraded by the plants, oxidized in the atmosphere, and had
lower volatilization ability and thus reduced long-range transport.

Table 8. Calculation of half-life in air and total scores of PBB-153 docking with lignin peroxidase (LiP) enzyme before and
after modification.

No. Molecule T1/2 (day) Change Rate (%) Total Scores
(LiP Enzyme) Change Rate (%)

0 PBB-153 82.96 57.70
1 5,5′-NO-PBB-153 5.75 93.07 81.45 41.15
2 5-NO-5′-ONO-PBB-153 4.01 95.17 78.94 36.80
3 5-NO-5′-OCN-PBB-153 4.21 94.92 81.23 40.77
4 2-OCHO-5-NO-PBB-153 4.86 94.14 59.95 3.90

3.7. Mechanism Analysis for Improvement of PBB-153 Derivatives in the Highest Infrared
Signal Intensity

The infrared spectra of the target molecule and four derivatives at different frequencies
are shown in Figure 3. It was observed that the frequencies corresponding to the highest
infrared signal of all derivatives were changed. The highest infrared signal intensities of 5,5′-
NO-PBB-153 and 2-OCHO-5-NO-PBB-153 increased significantly, and the corresponding
signal frequencies of 5,5′-NO-PBB-153, 5-NO-5′-ONO-PBB-153, and 5-NO-5′-OCN-PBB-
153 derivatives were comparable. The frequency and signal type of the target molecule
and its derivatives were analyzed by GaussView 5.0 software at the highest value of the
infrared signal intensity [35]. The frequency of the highest infrared signal in the PBB-153
molecule was 1484.53 cm−1 and was mainly due to the in-plane oscillation of C–H on the
two benzene rings. When the infrared signal of the 5,5′-NO-PBB-153 derivative molecule
was the strongest, the value of its frequency was 1563.32 cm−1, primarily caused by the
C–C stretching vibration on the two benzene rings and the N =O stretching vibration on the
–NO group. The frequencies of 5-NO-5′-ONO-PBB-153 and 5-NO-5′-OCN-PBB-153 at the
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strongest infrared signal were 1560.34 cm−1 and 1560.21 cm−1, respectively, mainly caused
by the unilateral C–C stretching vibration on the benzene ring and the N=O stretching
vibration on the –NO group. The frequency of the highest infrared signal of 2-OCHO-5-
NO-PBB-153 was 1128.83 cm−1, which mainly resulted from the in-plane swing vibration
of C–H on both sides of the benzene ring and the C=O stretching on the –OCHO group.
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The –NO groups were introduced in all the designed derivatives. The vibration type at
the highest signal intensity before and after the modification of the PBB-153 molecule was
changed from C–H in-plane rocking vibration to infrared vibration of newly introduced
groups. The introduction of –NO groups caused N=O stretching vibrations in the derivative
molecules (5,5′-NO-PBB-153, 5-NO-5′-ONO-PBB-153, and 5-NO-5′-OCN-PBB- 153) with
increased infrared signal intensity and frequency in the range of 1560.21 to 1563.32 cm−1.
Moreover, the introduction of the –OCHO group had a higher impact on the highest
infrared signal intensity of the molecule than the –NO group; hence, both –OCHO and
–NO group substituted 2-OCHO-5-NO-PBB-153 derivative showed the highest infrared
signal intensity as a result of C=O stretching vibrations.

4. Conclusions

In summary, a CoMFA model of the combined activity of PBBs bioconcentration,
long-range transport, and the highest infrared signal intensity was constructed. Based on
this model, four environmentally friendly PBB-153 derivatives were designed. The biocon-
centration, long-range transport, and the highest infrared signal intensity of derivatives
significantly improved. The refined values were further verified by studying their food
chain enrichment, half-life calculation, molecular docking, and Gauss calculation. In addi-
tion, we provided theoretical support for the study of pollution control of POPs.
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