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Abstract: Recently, the application of polymer-based composites at cryogenic conditions has become
a hot topic, especially in aerospace fields. At cryogenic temperature, the polymer becomes more
brittle, and the adverse effect of thermal stress induced by temperature is more remarkable. In this
paper, the research development of thermoset and thermoplastic polymers for cryogenic applications
are all reviewed. This review considers the literature concerning: (a) the cryogenic performance of
modified thermoset polymers and the improving mechanisms of the reported modification methods;
(b) the cryogenic application potential of some commercial thermoplastic polymers and the cryogenic
performance of modified thermoplastic polymers; (c) the recent advance in the use of polymer for
special cryogenic environment-liquid oxygen. This paper provides a comprehensive overview of the
research development of the polymer for cryogenic application. Moreover, future research directions
have been proposed to facilitate its practical applications in aerospace.

Keywords: polymer; modification; cryogenic properties; liquid oxygen compatibility

1. Introduction

Cryogenic liquids, such as liquid helium (LHe,4 K, liquid hydrogen (LH2,20 K),
Liquid nitrogen (LN2,77 K), liquid oxygen (LOX,90 K), Liquid methane (LMG,112 K)
play an important role in aerospace, superconductivity, energy and medical fields [1–3].
Due to the light weight, high specific strength, excellent corrosion resistance, good anti-
fatigue performance and designability of the polymer-based composites, the research
and application of polymeric matrix composites in the cryogenic fields has become a hot
topic, especially in aerospace [4–10]. Polymer-based composites materials offer significant
advantages in space applications with weight reduction of 25% to 35% and cost savings of
near 50% [4,5,7]. The current cost to send 1 Kg of payload into geosynchronous transfer
orbit using the SpaceX Falcon launcher is approximately $7500 [8]. Thus, paying more
attention to polymer matrix composites for cryogenic application is an interesting and
meaningful work.

In cryogenic regions, the cryogenic tanks of launch vehicles are a particularly difficult
application for polymer-based composite materials [6,9]. Not only must laminates used
in these applications be very structurally efficient, but they must also contain extremely
volatile cryogenic propellants (such as LH2 and LOX) [9]. A brief introduction of compos-
ites cryogenic tank research process in some projects is shown below. In 1987, McDonnell
Douglas Corporation (MDC) completed the first LH2 composite cryogenic tank for a single
stage to orbit (SSTO) spaceplane (X-30). This tank was fabricated using the thermoplastic
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graphite-reinforced material with a high glass transition temperature [5,7]. In 1994, the LH2
composite cryogenic tank of DC-XA was fabricated in two halves using a carbon/epoxy
material by Douglas Aircraft Company [8]. At the same time, Lockheed Martin Space
Systems Company build a honeycomb (HC) sandwich structure composites LH2 tank of
the reusable launch vehicle (RLV) X-33 with the carbon/epoxy prepreg. Subsequently,
other reusable launch vehicles such as orbital test vehicle (OTV) X-34 continued to evaluate
composite cryogenic tank [11]. In the 2010s, during the composite cryogenic tank tech-
nology development (CCTD) project of NASA’s Game Changing Development Program
(GCDP), polymeric matrix composite cryogenic tanks with diameters of 2.4 m, 5.5 m and
10 m were built by the Boeing Company [5]. In 2014, during the Cryogenic Hypersonic
Advanced Tank Technologies (CHATT) of the European Commission’s Seventh Framework
Program, a polymeric matrix composites cryogenic tank with a Polyethylene liner was
manufactured [6]. In 2016, a 12 m diameter polymeric matrix composites LOX tank was
fabricated by Space Exploration Technologies Corporation (Space X) [12]. This composites
LOX tank was the largest cryogenic tank ever produced so far.

Although most of the above projects attempt to adopt mature material systems to
reduce technical risks, there are still various problems for lack of enough information about
the performance of polymeric composites under cryogenic environment [3–8]. Numerous
works on the design and analysis of composite cryogenic tank has intensified since the
failure of the X-33 RLV fuel tank, where fuel leakage occurred on the tank wall. The leakage
was due to the fractures in the polymer and the high thermal stress caused by the mismatch
of coefficient of thermal expansion (CTE) between the polymer and carbon fiber [12–18].
While, for reusable launch vehicles, the cryogenic performance of polymer-based compos-
ites under thermal and mechanical cyclic load is one of the most critical issue. Shindo’s
research group has studied the Delamination growth mechanisms and fatigue behavior of
fiber reinforced polymer based woven composites under Mode I [19], Mode II [20], Mode
III [21] and mixed-mode I/II [22] fatigue loadings at 77 K and 4 K. The fatigue delamination
growth rates of fiber reinforced polymer-based woven composites at 77 K and 4 K were
lower than those at room temperature. Their interesting and meaningful work can lay
a foundation for the design and application of polymer-based composites in cryogenic
environment. At cryogenic temperature, when the fiber-reinforced polymer-based com-
posites structure is subjected to combined thermal and mechanical loads, microcracks may
initiate at loads well below the ultimate strength of the composite materials [23]. The
maximum residual thermal stress in the carbon/epoxy composite is the longitudinal tensile
stress in the matrix, which is a potential danger to the safety of composites structure for
cryogenic use [24]. Meanwhile, the residual thermal stress has a significant effect on the
stress distributions near the crack fronts in the composites at cryogenic temperatures [25].

Therefore, improving the mechanical properties including strength, ductility, impact
strength and reducing the CTE of the polymer is desirable in developing high-performance
composites for cryogenic engineering applications.

The polymers used in composite applications include thermosets and thermoplastics,
or blends of the two. In thermoset composites, the matrix starts as low molecular weight
material. During the curing process, the resin forms a rigid, high molecular weight struc-
ture. This rigidity is caused by the crosslinks (usually covalent bonds) formed among the
polymer chains, which give the resin strength and thermal stability. As the crosslinking
density (crosslinks per unit volume) increases and chain length decreases, the movement of
polymer chains is more constrained and the resin becomes stiffer. This effect is magnified
when the resin is exposed to cryogenic temperatures [11,14]. As Figure 1a shows, taking
tensile properties as an example, the tensile strength, modulus and fracture strain of ther-
moset polymers demonstrate a dramatic change. Many works have been done to enhance
the toughness and strength of thermoset polymers at room temperature. Very often, these
properties can be effectively improved by introducing various toughening agents, such
as inorganic fillers, block copolymer, hyperbranched polymer, reactive diluents, reactive
liquid rubber, and thermoplastic [17,18,26–32]. Such research has made remarkable achieve-
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ments. Thus, it is feasible to improve the mechanical properties of the thermoset polymer
at cryogenic temperature by adopting similar methods. Unlike thermoset polymers, the
thermoplastic polymer does not crosslink among polymer backbone chains, which gives
thermoplastic composites the unique ability to be reprocessed by melting and reconsol-
idating [33]. In contrast to thermoset polymer, the thermoplastic polymer’s mechanical
properties under different environments exhibit a similar variation trend (Figure 1b). To
date, due to the limitation of relatively complicated manufacturing process and high cost,
no large-scale studies have been performed to investigate the mechanical performance
of thermoplastic polymer and its composites under cryogenic temperature [34]. With the
development of science and technology, thermoplastic polymers will have a better prospect
application in the cryogenic engineering field based on the high toughness, recycle ability.
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Figure 1. The typical tensile stress-strain behaviors of (a) thermoset polymer and (b) thermoplastic polymer under room
and cryogenic temperature.

Figure 2 provides an overview of the research and development of polymer and
modified polymer for cryogenic application. The modification approaches, effects and
mechanisms of the modified polymer at cryogenic temperature are all summarized. In this
review, as mentioned above, Sections 2 and 3 present the research and development of
thermoset and thermoplastic polymer under cryogenic applications. To the polymer-based
composites applied for LOX, besides meeting the physical requirements at cryogenic tem-
perature, the polymer-based composites adopted in LOX systems must also be chemically
compatible with LOX. Subsequently, Section 4 presents the recent advances in the use of
polymer for liquid oxygen. Finally, Section 5 summarizes the advances made on polymers
for cryogenic applications, where we are now, and provides insight into future research in
the cryogenic polymer-based composites.
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nanoparticle, rubber, compounds with flexible chain structures and functional organic compounds.

2. The Research Development of Thermoset Polymer for Cryogenic Application

Generally, thermoset polymers such as epoxy (EP) resin, phenolic resin, polyester
resin, bismaleimide resin, etc., are made of an initial liquid mixture of polyfunctional
organic molecules. They gradually react with each other to form a three-dimensional
cross-link network [35]. Among these numerous thermoset polymers, EP-based thermosets
hold a prominent position for their high adhesion strength, excellent mechanical properties
and good processability [27,36]. However, the high cross-link density lowers the fracture
toughness and the resistance to crack initiation of the thermosets. This largely restricts
their applications in a cryogenic environment [11]. Therefore, toughening of thermoset
polymers has become a necessity to ensure the feasibility of these materials for practical
applications. These drawbacks can be overcome by decreasing the cross-link density of
thermoset resin or incorporating heterogeneous phases with some additives such as rigid
inorganic nanomaterial, soft polymers (elastomer, block copolymers, high-performance
plastic polymer and hyperbranched polymer) [18,26–32].

In this section, the research and application development under the cryogenic tem-
peratures of thermoset polymers modified by various components (rigid nanomaterial,
thermoplastic, rubber and other compounds) are summarized. Meanwhile, the effects
on the cryogenic properties of thermoset polymers modified by changing their cross-link
structure are also reviewed.

Table 1 exhibits previous works on the mechanical properties of thermoset polymers
modified by nanomaterial, thermoplastic, rubber and other compounds at the cryogenic
temperatures. From this table, the current mechanical level that the modified thermoset
polymer can achieve at cryogenic temperature could be clearly realized. As shown in
Figure 3, we also summarized the modification effect of different method on tensile proper-
ties at different temperatures. Compared with pristine polymers, the increase or decrease
in tensile properties of modified polymers at room temperature doesn’t mean that would
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demonstrate the same variation trend at cryogenic temperatures. Introducing the fillers
into polymers, such as CNTs, Graphene and PES, the tensile strength and modulus of
polymers at room or cryogenic temperature all could be improved. However, the effects of
modification method cannot be predicted. Meanwhile, the research progress about such
methods is described in detail below.

Table 1. Cryogenic mechanical properties of modified thermoset polymers.

Resin System 1 Modifier 1 Content Temperature Mechanical Properties Ref.

DGEBF/DETDA MWCNTS 0.5 wt% 77 K

Tensile strength: 119.35 MPa
Tensile modulus: 5.26 GPa

Tensile fracture strain: 3.20%
Impact strength: 35.56 KJ/m2

[37]

DGEBA/EP-
PU/DETDA MWCNTS-NH2 0.2 wt% 77 K

Tensile strength: 120 MPa
Tensile modulus: 7.0 GPa

Flexural strength: 275 MPa
Flexural modulus: 8.0 GPa
Impact strength: 32 KJ/m2

Fracture toughness: 3.25 MPa·m1/2

[38]

DGEBA/15 wt%
Oligomer/D-230 O-CNTs 0.5 wt% 77 K

Tensile strength: 91.7 MPa
Tensile modulus: 3.6 GPa

Impact strength: 46 KJ/m2
[39]

DEGBA/DETDA Graphene 0.1 wt% 77 K
Tensile strength: 140.0 MPa
Tensile modulus: 7.0 GPa

Impact strength: 21.9 KJ/m2
[40]

DGEBA/DETA GO-PDA 1 wt% 150 K

Tensile strength: 70 MPa
Tensile modulus: 3.29 GPa

Tensile fracture strain: 2.50%
GIC: 666.32 J/m2

KIC: 1.58 MN/m3/2

[41]

DGEBA/diluent/D-230 FGSs 1.6 wt% 143 K
Tensile strength: 82.91 MPa
Tensile modulus: 5.54 GPa

Tensile fracture strain: 1.65%
[42]

DGEBA/TETA GO 0.2 wt% 193 K
Tensile strength: 150 MPa
Tensile modulus: 4.7 GPa

Tensile fracture strain: 3.7%
[43]

DGEBA/D-230 Fe3O4/GO 0.5 wt% 77 K

Tensile strength: 96.4 MPa
Tensile modulus: 5.9 GPa

Tensile fracture strain: 19.5%
Impact strength: 44.2 MPa

KIC: 2.1 MN/m3/2

[44]

DGEBF/DETD SiO2 4 wt% 77 K
Tensile strength: 77.63 MPa
Tensile modulus: 4.62 GPa
Tensile fracture strain: 2.2%

[45]

DGEBA/BCE/BCP Nano-clay 3 wt% 77 K
Tensile strength: 169 MPa
Tensile modulus: 5.5 GPa

Tensile fracture strain: 2.2%
[46]

DGEBA/DDM KH560-modified silica 1 wt% 90 K
Tensile strength: 169 MPa
Tensile modulus: 9.0 GPa

Tensile fracture strain: 2.5%
[47]

DGEBF/DETD PES 20 phr 77 K
Tensile strength: 86.64 MPa
Tensile modulus: 4.32 GPa

Tensile fracture strain: 2.87%
[48]
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Table 1. Cont.

Resin System 1 Modifier 1 Content Temperature Mechanical Properties Ref.

DGEBA/D-230 PBT/PEI/PC 1.5 wt% 77 K
Impact strength: 34.5 KJ/m2(PBT)
Impact strength: 39.8 KJ/m2(PEI)
Impact strength: 36.01 KJ/m2(PC)

[49]

DGEBA/DETDA HTPU 5 phr 77 K

Tensile strength: 161.67 MPa
Tensile modulus: 6.89 GPa

Tensile fracture strain: 2.58%
Impact strength: 30 KJ/m2

[50]

DGEBF/DDM EPSE 5 wt% 90 K Tensile strength: 210 MPa
Tensile fracture strain: 3% [51]

DGEBF/DDM EPSE 5–8 wt% 77 K KIC: 2.35 MN/m3/2 (5 wt%)
KIC: 2.6 MN/m3/2 (8 wt%) [52]

DGEBF/DETD NR 15 phr 77 K

Tensile strength: 129.98 MPa
Tensile modulus: 4.13 GPa

Tensile fracture strain: 3.15%
KIC: 2.2 MN/m3/2

[53]

DGEBA/NA/A-178 HK021 80 phr 77 K LSS: 9.7Mpa [54]

DGEBF/MeTHPA H30 10 wt% 77 K

Tensile strength: 115.6 MPa
Tensile modulus: 3.8 GPa

Tensile fracture strain: 3.1%
Impact strength: 32 KJ/m2

[55]

1 Abbreviations: DGEBF, diglycidyl ether of bisphenol-F; DETD, diethyl toluene diamine; MWCNTs, Multi walled carbon nan-
otubes; DGEBA, diglycidyl ether of bisphenol-A;EP-PU, epoxy grafted polyurethane; MWCNTS-NH2, aminated Multi walled carbon
nanotubes; D-230, polyoxypropylenediamine; O-CNTs, oxidized multi-walled carbon nanotubes; GO-PDA, graphene oxide/poly p-
phenylenediamine;FGs, functionalized graphene sheets.TETA, Triethylene tetra amine;GO, graphene oxide; BCE, 2,2-bis(4-cyanatophenyl)
isopropylidene; BCP, block copolymer; DDM, 4,4′-diaminodiphenylmethane; KH-560, 3-glycidoxypropyltrimethoxysilane; PES, Polyether-
sulfone; PBT, Polybutylene terephthalate; PEI, Polyether imide; PC, Polycarbonate; HTPU, hydroxyl-terminated polyurethanes; EPSE,
epoxy-functionalized polysiloxane;NR, carboxylic nitrile-butadiene nano-rubber; NA, nadictetrahydric-methylanhydride; A-178, com-
mercial name of silane coupling agent; HK021, commercial name of diol molecule; MeTHPA, Methyltetrahydrophthalic anhydride; H30,
commercial name of hyperbranched polyester. 
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Figure 3. (a) The tensile strength and (b) tensile modulus change of CNT [37], graphene [40], silica [45], PES [48], NR [52]
and H30 [55] modified polymer composites compared with unmodified polymers at room and cryogenic temperature.

2.1. Enhancing the Cryogenic Performance of Thermoset Polymer by Introducing the Rigid
Nanomaterial
2.1.1. Carbon Nanotubes

Carbon nanotubes (CNTs) have attracted a huge deal of attention owing to their
exceptional mechanical and physical properties. High aspect ratio (length/diameter)
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and low density have made them a promising reinforcing material for polymer matrix
composites [55–57]. There are some ways to enhance polymer matrix composites with
carbon nanotubes (CNTs). Such as mixing CNTs into a polymer matrix, grafting CNTs
on the fiber for the matrix-fiber interface region, and inserting paper-formed CNTs to the
laminar interface [30,55]. Among these methods, mixing CNTs into the polymer matrix
is the most efficient, economical and convenient one. However, weak interfacial bonding
between CNTs and polymers leads to poor stress transfer, limiting the full realization of
CNTs as reinforcements for polymers [33,57–59].

Chen et al. studied the cryogenic mechanical properties of MWCNTs reinforced
EP nanocomposites [37]. The MWCNTs were treated using a mixture of concentrated
sulfuric and nitric acids. The acid-treated MWCNTs were dispersed into the epoxy via
the ultrasonic technique. The tensile mechanical properties of epoxy nanocomposites
containing MWCNTs with weight fractions of 0.02%, 0.05%, 0.2%, 0.5%, 1%, and 2% were
tested at room temperature and 77 K (Figure 4a,b). It was found that the tensile strength,
toughness and impact strength reached the maximum at cryogenic temperature when the
MWCNT content was 0.5 wt%. With the temperature decreasing from room temperature
to cryogenic temperature, the big differences of thermal expansion coefficients between
EP and the uniformly dispersed MWCNTs led to a thermal contraction of the EP matrix.
The contraction generated a stronger MWCNT–EP interfacial bonding. Due to the strong
interfacial bonding, the interface is capable of transferring load more effectively from the
polymer to the MWCNTs. Thus, the cryogenic mechanical properties of polymers were
enhanced by MWCNTs.
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The strengthening effects of aminated MWCNTs (MWCNTs-NH2) on the cryogenic
mechanical performance of EP-based composites were discussed by Jia, et al. [38]. The
EP-based composites contain a 30% soft polymer modifier, EP grafted polyurethane (PU),
which was synthesized by controlling the reaction between –OH in EP and –NCO in PU. The
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cryogenic (77 K) mechanical properties of MWCNTs-NH2 modified EP-based composites
increased up to 0.2 wt% MWCNTs-NH2 and then decreased with higher MWCNTs-NH2
content. For 0.2 wt% MWCNTs-NH2 modified EP-based composites, the tensile strength,
flexural strength, impact strength and fracture toughness at 77 K were enhanced by 31.2%,
70.2%, 100.0% and 26.0%, respectively, compared with those of neat EP. The existence of
reactive groups (–NH2) in MWCNTs-NH2, the best dispersibility of MWCNTs-NH2 (0.2%)
in the EP matrix and the thermal contraction of the EP matrix can help in strengthening
the interfacial interaction between MWCNTs-NH2 and EP matrix at cryogenic condition,
resulting in an effective load transfer. As shown in Figure 4c,d, at cryogenic temperature,
the fracture surface of CNTs modified epoxy is much rougher than epoxy and exhibits
micromesh cracks. The addition of CNTs increased the resistance to crack propagation in
epoxy. Hence, the toughness of the thermoset polymer is improved.

Similarly, the oxidized multi-walled carbon nanotubes (O-CNTs) were added to the
epoxy using a reactive oligomer to enhance the cryogenic (77 K) mechanical properties
of EP-based composites by Yi et al. [39]. In this research, the EP modified with 15 wt%
oligomers containing 0.5 wt% of O-CNTs showed 69.5% improvements in impact strength
at 77 K, compared to the unmodified EP. Kim et al. found that the crack resistance and
the fracture toughness of carbon fiber reinforced epoxy-based composites at cryogenic
temperature (123 K) could also be enhanced by adding the aminated carbon nanotubes
into the resin matrix [60]. The aminated CNTs were conducted by chemical surface treat-
ment with triethylenetetramine (TETA). Except for aminated CNTs, the carboxyl (COOH)
functionalized CNTs could also improve composites’ mechanical properties. Prusty, et al.
reported that the flexural strength of carboxyl (COOH) functionalized CNTs modified
EP-based composites increased by 16.2% at 198 K, compared with pristine carbon nanotube
reinforced epoxy-based composites [61]. Takeda et al. [62] found that the simultaneous
addition of 0.5 wt% CNTs and 10 phr n-butyl glycidyl ether (BGE) lead to the increase
in the tension–tension fatigue lives for fiber reinforced bisphenol-F epoxy composites at
77 K.The improvement in fatigue lives can be attributed to the fact that the fatigue life of
composites is significantly affected by the matrix material because the introduction of CNTs
and BGE resulted in the obviously enhanced glass fiber/epoxy interfacial adhesion [63].

2.1.2. Graphene

Graphene, a new two-dimensional carbon nanomaterial, known for its single-layered
atom-thick flatbed structure, has brought a new dimension to the nanotechnology world
due to its high thermal conductivity, electrical conductivity and mechanical stiffness
(130 GPa) [64,65]. Graphene possesses a higher aspect ratio than CNTs, predominantly ideal
for reinforcement. Compared with other nanofillers, the presence of graphene effectively
prevented crack propagation by producing a large amount of plastic deformation [66–69],
making it a promising candidate for enhancing the cryogenic properties of thermoset
polymer. It has been reported that the uniform dispersion of nanofillers such as graphene
and CNTs into polymers plays a significant role in determining the mechanical, thermal,
and physical properties of the resultant nanocomposites and is one of the challenging
works [68,70]. It is also well confirmed that graphene functionalization could improve the
dispersion of graphene in the polymer [71,72].

Shen et al. demonstrated that the introduction of graphene oxide sheets at a proper
content of 0.1 wt% into the EP matrix could simultaneously enhance the cryogenic (77 K)
tensile strength, Young’s modulus, and impact strength [40]. The tensile and impact
strengths of graphene/EP composite reached the maximum with an improvement of 10.5%
and 23.7% at 77 K, respectively. At the relatively low content, the graphene with a good
dispersion can resist the propagation of cracks in the polymer. Thus, the fracture surfaces
of the graphene-modified EP are rougher than those of pure EP (Figure 5a,b). Hussein
et al. synthesized a hybrid filler based on graphene oxide/poly p-phenylenediamine
(GO-PDA) [41]. At 153 K, the GO-PDA nanofiller could improve the strength, fracture
strain, and toughness of EP when added at a low content. Lee et al. added functionalized
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graphene sheets (FGs) to the epoxy resin to enhance its cryogenic performance [35]. FGS/EP
nanocomposites’ strength and toughness increased by 200% and 700% at 143 K, respectively,
at the loading of 1.6 wt% FGS. And the CTE of polymer resin reduced about 25% at the
same contents. A Fe3O4 modified graphene oxide (Fe3O4/GO) nanofiller, which was
synthesized by a modified co-precipitation reaction between Fe2+ and Fe3+ ions in the
presence of GO, was used to modify the cryogenic mechanical properties of the polymer by
He et al. [44]. The study reflected the CTE of Fe3O4/GO (0.5 wt.%) modified EP composite
is decreased by 51.6% compared with neat EP. Besides, compared to CF/EP composite,
the micro-cracks density of Fe3O4/GO modified CF/EP composite at 77 K is decreased
by 60.0%. Recently, Huang et al. compared two different approaches employing GO into
CF/EP composites. One is dispersing GO into EP matrix, the other is coating it onto the
surface of CF [45]. The result demonstrated that two ways could improve the mechanical
properties of composites at cryogenic temperature. However, the latter is a more desirable
employment method in the fabrication of GO-modified polymer-based composites for the
strong chemical interaction and mechanical interlocking between CF and polymer. At
77 K, the bending strength and modulus of GO coating CF reinforced composites increased
by 47.62% and 23.28%, respectively, compared with the controlled sample. The above
researches all confirmed that the toughening mechanisms of graphene are crack deflection
and plastic void growth due to the improved interface strength caused by polymer/filler
CTE mismatch (Figure 5c) at cryogenic temperature.
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2.1.3. Other Inorganic Nanomaterials

Besides graphene and CNTs, there are other inorganic nanoparticles used to improve
the mechanical properties of polymeric composites, such as silica and nanoclay [26,27,73,74].
Low cost, ease of fabrication and excellent compatibility with polymer have made them
more readily available than many other kinds of nanofillers like CNTs and graphene [74–78].

Huang et al. found that the tensile strength, tensile fracture strain of SiO2/EP nanocom-
posites could be increased by almost 42% and 44% respectively by adding 4 wt% SiO2 to the
diglycidyl ether of bisphenol-F (DGEBF) type EP [45]. With the increase of silicate content,
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Young’s modulus at 77 K of the SiO2/EP nanocomposite increased and the average CTE
from 298 K to 77 K decreased (Figure 6a,b). The SiO2/EP nanocomposite was prepared by
using DGEBF type EP and tetraethylorthosilicate via the sol-gel process. Besides, nano-
silica can also be added to EP resin with the direct blending method. This method is more
convenient, practical, and economical. By directly adding SiO2 nanoparticles into the epoxy
matrix, the contact forces and energy absorption capacities of fiber-reinforced composites
are improved during the low-velocity impact (LVI) test at a cryogenic temperature [79].
However, as the nano filler itself usually has a strong tendency to agglomerate, adding
the filler into the EP directly will result in the non-uniform dispersion of nanofiller and
reduce affinity between the filler and the matrix [71]. Wang studied the dispersion of
silica modified by different silane coupling agents (SCAs) in DGEBA type EP resin and
tested the mechanical properties of these different silica/EP nanocomposites at cryogenic
temperature (77 K) [47]. Compared with other coupling agents, the KH560-modified silica
enhanced EP nanocomposite has superior performance at cryogenic temperature.

Layered silicate, such as nanoclay, becomes a more promising nanofiller in EP-based
nanocomposites due to the high intercalation chemistry, high aspect ratio, thermal stability
and low cost. It has been shown in the Unmanned Space Vehicle (USV)-CRYOTANK
project of the Italian Aerospace Research Program that the organo-modified nanoclays
and layered hydroxides could improve the barrier properties of cyanate-esters and EP
based polymer matrix composites [80]. The research conducted by NASA Glenn Research
Center has demonstrated that adding a layered silicate clay to an appropriate matrix can
significantly improve the performance of a polymer matrix composite for cryogenic tank
applications [81]. The nanoclay enhanced EP nanocomposites with 70% lower hydrogen
permeability than the base EP resin. Due to a clamping force induced on nanoclay by
negative thermal expansion, the lap joint shear strength of nanoclay (1 wt%) modified EP
adhesive increased by 8.6% at 77 K [82]. Nevertheless, researchers investigated the mode I
fracture toughness (KIC) of EP at cryogenic temperature (123 K), which was determined
by the 3-point bending method with the single edge notch bend specimens with a very
sharp pre-crack (Figure 6c,d). The results revealed the KIC of the nanoclay reinforced EP
was lower than pristine epoxy, although the fracture surface was much rougher than that
of the pristine EP (Figure 6e,f) [83]. Similar to silica, the challenge of adding nanoclay
to polymer matrix is dispersion. Hu found that the incorporation of a block copolymer
polyethyleneoxide-co-polypropylene oxide-co-polyethylene oxide (PEO-PPO-PEO) into
nanoclay modified EP could improve the dispersion of clay in the matrix and prevent clay
agglomerations [46]. Moreover, the tensile strength and Young’s modulus at 77 K of this
nanoclay modified hybrid nanocomposite were enhanced by 31.0% and 14.6%, respectively.

The deformation of layered nanoclay under stress could form microvoids and inhibit
crack propagation, which does favor to the improvement of the toughness of nanoclay mod-
ified polymer-based composites. Besides, the tearing effect by the flake shape of nanoclay
is also a fact that increased the toughness of nanoclay modified polymer matrix composites.
The transverse cracks in CF reinforced nanoclay-EP composites under cryogenic cycling
were significantly reduced when nanoparticle fillers were incorporated at 5 wt%, which
was much lower than those used for traditional fillers [84].

2.2. Enhancing the Cryogenic Performance of Thermoset Polymer by Introducing the Soft Organic
Modifiers

Soft modifiers, such as thermoplastic polymers, rubber, hyperbranched polymer and
siloxane also play an important role in improving the toughness of polymer matrix compos-
ites [27,28,85]. When adding such soft modifiers into the brittle networks of the thermoset
matrix, the flexible chains or groups of soft modifiers contribute to the intermolecular force
and stress relaxation at the crack tip in the matrix [18,86], resulting in the improvement in
the fracture toughness of thermoset polymer. At cryogenic temperature, the resin contracts,
and the introduction of soft modifiers increase the occupied volume of the resin chain.
Thus, the toughness would be enhanced [87].
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2.2.1. Thermoplastic Polymer

Toughening the thermoset matrix with thermoplastic polymers, especially engineering
thermoplastics, has received much attention because it generally does not cause dramatic
decrease to other mechanical or physical properties [88–91].

Owing to the high thermal stability and easy processability, polyethersulfone (PES),
was used as an additive into DGEBF type epoxy to enhance the cryogenic mechanical
properties by Yang et al. [48]. They found that the tensile strength, tensile fracture strain,
and impact strength at 77 K increased with the PES content increasing up to 20 phr. When
the content of PES was 20 phr, the remarkable improvement of the mechanical proper-
ties might be ascribed to the co-continuous phase structure of PES and EP with excellent
interfacial adhesion, which was beneficial to absorb the crack energy and able to shear
yielding against the crack. While further increasing the ratio of PES content to 25 phr in the
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blend, the disconnected EP particles would be surrounded by the continuous phase of PES,
which was phase inversion structure. Thus, the reduction of tensile strength, elongation
at break, and impact strength occurred. The cryogenic performance of EP can also be
improved by using other thermoplastic resins. During the research conduct by He et al.,
three different types of thermoplastics, polyetherimide (PEI), polycarbonate (PC), and
polybutylene terephthalate (PBT) were used to modify EP for cryogenic applications [49].
The impact strength of the modified EP at cryogenic temperature increased with increasing
thermoplastic content up to 1.5 wt% and then decreased for further loading (2.0 wt%). As
shown in Figure 7, unlike PBT and PEI, the fracture surface of PC modified EP at 77 K
reveals a smooth surface with elongated material. It seems that the PC has good bonding
with epoxy [92]. The addition of thermoplastic could lower the thermal stress presented in
the fiber–EP laminate and improve the micro-crack resistance of fiber-reinforced modified
EP composites. They also found that the toughing efficiency of PEI and PC were better than
PBT on EP. Wu et al. evaluated the cryogenic temperature (77 K) mechanical properties of
DEGBA type EP composites modified by two Kinds of hydroxyl-terminated polyurethanes
(HTPU) with different molecular weights [50]. By changing the HTPU content into the
epoxy, two-phase structures of homogeneous phase and sea-island structures were success-
fully obtained. The homogeneous phase resulted in higher enhancing effects on impact and
tensile properties, while the sea-island structure showed better retention in the mixture’s
glass transition temperature. Li synthesized the EP-functionalized polysiloxane (EPSE) and
blended it into bisphenol-F epoxy resin to improve the cryogenic mechanical properties
of EP [51]. The EPSE has better compatibility with EP resin because of the existence of
an epoxy group in EPSE. The O-Si-O group in the EPSE could enhance the movability of
epoxy networks and has better plastic deformation deflecting the crack propagation. Thus,
the tensile strength, failure strain, fracture toughness and impact strength at 90 K increased
by 11.2%, 33.8%,30.7% and 14.8% respectively, when mixed 10 wt% PSE into DGEBF type
EP. Briefly, the toughening of thermoplastic is caused by the resistance to crack propagation
and dissipation of energy.
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2.2.2. Rubber

Rubber modification as a major toughening approach to overcome the inherent brittle-
ness and high notch sensitivity limit of thermoset polymers has been adopted by many
researchers [93–96]. While the addition of rubber also resulted in reductions of both the
glass transition temperatures and the interlaminar shear strength of the fiber-reinforced
composites [28,97,98].

Preformed rubber particles, core-shell rubber (DP5031, Zeon Chemicals Inc., Shanghai,
China), and solid carboxyl functional rubber (Nipol1472, Zeon Chemicals Inc.) were
used to modify the resin by Nobelen [99]. Their study focused on the influence of the
toughener types on the microcracking response to cryogenic cycling of the fiber-reinforced
laminates. Compared to the CF/EP composites toughened with preformed rubber particles
or core-shell rubber, the carboxyl-functionalized rubber could present homogeneously
in the continuous epoxy phase resulting in a dramatic reduction in the crack density
of the laminate when exposed to cryogenic cycling. However, when the DP 5045 and
DP 5031 rubber particles were combined to modify the resin matrix, a significant drop
in the microcrack density was observed. It can be concluded that the concentration of
rubber additive is a more critical factor than the type. They also discussed the influence of
carboxyl-terminated butadiene acrylonitrile (CTBN) liquid rubbers on the microcracking
response of polymer-based composite materials to cryogenic cycling [100]. In their work,
it was also shown that an increase of rubber concentration in CF/EP laminates led to a
decrease in the microcrack density which resulting from cryogenic cycling. Similarly, the
tensile strength, failure strain and fracture toughness (KIC) at 77 K of the EP composites
were simultaneously enhanced by the addition of Carboxylic nitrile-butadiene nano-rubber
(NR) particles [52]. Such mechanical properties at 77 K were observed to increase with the
increase of the NR content up to 15 phr. Compared with pure EP, at 77 K, the tensile strength,
fracture toughness and failure strain of NR EP blend with 15 phr NR was increased by
40.2%, 48.3% and 55.9%, respectively. The observed increase in mechanical performance
could be attributed to the shear yielding deformation of the dissipation zone among the
homogeneously dispersed soft NR in the EP matrix brings about the reduction of stress
concentration near the crack tip as shown in Figure 8. Nevertheless, Young’s modulus of
EP resins was slightly decreased with the increase of the NR particles.
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2.3. Enhancing the Cryogenic Performance of Thermoset Polymer by Decreasing the Crosslink
Density

It is known that the different network structures cause different properties even if the
polymers have the same chemical structure. Due to the chemical reaction, the crosslinking
network of thermoset polymer resins is usually rigid and brittle. Thus, controlling the
network structures of thermoset polymer is also an effective way to obtain the desired
properties [101–104]. Many studies have concluded that the toughness of thermoset EP
resin could be enhanced by an alteration of the network topology without using other
toughening agents.

Nishijima introduced free volume and free space, which was defined as the unoccu-
pied space between and within the molecules, to explain the toughening mechanism of
EP at a cryogenic temperature [105]. The free space of resin networks can be changed by
adding plasticizer, altering the molecular weights, the length of chains, or both. From the
fracture toughness test results at LHe temperature (2 K), the EP with different crosslinking
densities was preferable for cryogenic use [106]. Besides, they used DGEBA as a modifier to
improve the fracture toughness of the multifunctional EP tetraglycidyl meta-xylenediamine
(TGMXDA) resin system at a cryogenic temperature [87]. The results suggested that epox-
ies with larger molecular weights among crosslink relaxed stress at the crack tip, even
at cryogenic temperatures. By comparing the mechanical and thermal properties of EP
systems with different chemical structures, network structures and morphology, Ukei
found that the two-dimensional network structured epoxies (phenoxy) were promising
because they showed high fracture toughness at cryogenic temperatures [107].

Except for changing the structure of epoxies, the crosslinking network structure of the
resin system also can be controlled by changing the types and dosages of curing agents,
adding compounds with active groups or changing the curing process. Wang studied the
cryogenic performance of the phosphorus-containing bisphenol an epoxy resins/aromatic
amine systems. The crosslink density of resin systems was controlled by changing the
EP/amine equivalent ratio (SR) [108]. According to this research, the tensile strength, strain
energy and impact toughness of the phosphorus-containing bisphenol A EP resin/aromatic
amine system reached the maximum when the SR was 0.8. It is known that the internal
stress within the bulk material can significantly affect the performance of the finished
product by creating micro-cracks and voids. Conversely, the introduction of soft segments
into brittle EP resin can dramatically reduce internal stress. Yang et al. introduced flexible
diamines (D-230 and D-400) and hyperbranched polymer(H30) into the diethyl toluene
diamine (DETD) and Methyltetrahydrophthalic anhydride (MeTHPA) cured DGEBA resin
systems respectively and investigated the mechanical properties of the modified EP resin
systems at 77 K [54,109]. The results show that the tensile strength and impact strength
at 77 K are simultaneously improved by adding flexible diamines and hyperbranched
polymer at an appropriate content. Similarly, the addition of other compounds with the
active groups, such as n-butyl glycidyl ether [110], polyethylene glycol [111] and EP-
functionalized polysiloxane [112], could improve the cryogenic performance of DGEBF or
DGEBA based EP. Generally, by decreasing the crosslink density or introducing a soft seg-
ment to the brittle network of thermoset polymers, the tensile strength and toughness of the
polymer would decrease and increase respectively. Meanwhile, at cryogenic temperature,
the internal stress could be reduced. These results suggest that the mechanical properties of
thermoset polymers at cryogenic temperature could be enhanced by balancing the internal
stress and strength reduction.

3. The Research Development of Thermoplastic Polymer for Cryogenic Application

The development of thermoplastic resins, especially high-performance engineerings
plastics, such as polyamide (PA), polyetheretherketone (PEEK), polyethersulfone (PES), and
perfluoroalkoxy (PFA), promises several advantages over thermoset resins in terms of their
improved range of mechanical properties and processing techniques available [34,113,114].
The thermoplastic resins exhibit several times increases in fracture toughness over epoxies,
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which show great potential for cryogenic applications. There is almost no storage problem
with thermoplastic as they can be stored indefinitely at room temperature without deleteri-
ous effects [115,116]. In general, thermoplastic polymer-based products are often fabricated
using conventional molding methods, such as injection-molding, rotational-molding, ex-
trusion, and compression molding. However, it is not suitable for manufacturing large
composites structures for the limitation of processing technologies. With the development
of prepreg technology and novel processing techniques such as automated tape laying
(ATL) [34,117–120], it is possible to make large thermoplastic composites structures and
composites tanks [5,7]. Although thermoplastics have attracted researchers’ attention
for their excellent mechanical properties, lack of a curing stage, less hazardous chemi-
cal compositions and improved recycling convenience, the reports about the cryogenic
performance of thermoplastics and their composites are rare. Hence, in this section, the
research and application development on the cryogenic performance of neat thermoplastic
and modified thermoplastic polymeric are discussed, respectively. Despite there are many
challenges for cryogenic application, we think the research on the cryogenic performance
of thermoplastic polymer and its composites will become a meaningful work in the future.

3.1. The Cryogenic Performance of Pristine Thermoplastic Polymer

Among all kinds of thermoplastic polymers, the high-performance engineering ther-
moplastic polymers are widely applied in various extreme environments for their excellent
strength, fracture toughness, weatherability and processability. To date, the reports about
the cryogenic performance of thermoplastic and their composites are mainly focused on
the high-performance thermoplastic polymer.

In 1990, Ahlborn et al. studied the mechanical performance of CF reinforced PPEK
and PC composites at cryogenic temperature (5 K and 77 K) [121]. The result demonstrated
that the tensile strength and interlaminar shear strength of CF/PEEK composites are better
than those of CF/PC composites. Although the interlaminar shear strength of the CF/PC
composites was lower, it still performed better than conventional EP-based composites.
Besides, the author concluded that the high cryogenic fracture strain of some advanced
thermoplastics was beneficial for the tensile fracture strength of fiber-reinforced polymer
composites. PEEK has been demonstrated to have superior mechanical properties, wear
resistance, chemical resistance, and flame-retardant property, which has attracted some
deep researches on the cryogenic performance of PEEK-based composites [122]. In 2001,
NASA supported a project that involved the fabrication of a PEEK composite cryogenic
fuel line for use on future reusable launch vehicles [123]. Fabrication of the fuel line was
done with ADC Acquisition Company’s proprietary in-situ thermoplastic fiber placement
equipment. Flanagan et al. investigated the permeability of four different CF/PEEK com-
posites manufactured using autoclave after cryogenic cycling [124]. The results show that
the permeability of CF/PEEK composites (2.3∼5.2 ×10−17mol/smPa) manufactured by
the autoclave process was low enough to make it a suitable material choice for cryogenic
storage. The schematic of the test setup used for the permeability of composites is shown
in Figure 9a. For all samples, cryogenic cycling had little effect on the leak rate of CF/PEEK
composites unless cycling caused micro-cracks of the matrix. After cryogenic cycling treat-
ment, the quasi-isotropic laminates ([04/454/1354/904]s) suffered extensive micro-cracks
and short delaminations (Figure 9b) and the cross-ply laminates([04/904]2s) displayed a
number of extensive inter-ply delaminations [125]. Grogan et al. [126] studied the damage
formation and mechanical properties of automated tape-laid CF/PEEK composites under
cryogenic temperature. The damage (void and inclusion content) of tape-laid CF/PEEK
laminates were measured using 3D X-ray computed tomography (CT). Compared with
the autoclave process, the tape-laid material exhibited lower strength values, particularly
in the matrix-dominated directions, which is similar to the reference [124]. Based on the
test results and a novel numerical methodology (extended finite element method), they
developed a sub-model based on extended finite element method–cohesive zone method-
ology (XFEM-CZM) to predict intra- and inter-ply damage in an internally pressurized
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cryogenic tank. The results demonstrated that the average crack densities of the plies on
the inner surface were higher than their corresponding plies on the outer surface of the
tank. Besides, the thermal and mechanical performance of fiber-reinforced thermoplastic
polyimide composites at cryogenic temperature was studied by Karen et al. [127]. Inter-
estingly, compared to aging in an unloaded condition, the strength and stiffness of fiber
reinforced thermoplastic polyimide composites will increase regardless of laminate lay-up,
when aging the material under a constant strain condition at cryogenic temperature. Li
et al. examined the tensile and flexural properties of PES at 77 K to discuss the application
prospect of PES in the cryogenic engineering field [128,129]. The findings suggested that
the reinforced structure, prepared methods and load condition can make a significant
difference in the cryogenic performance of thermoplastic polymer composites.
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The fatigue performance of polymers can make differences in their service life when
they exposed to cryogenic and load environment for a long time. Hartwig et al. [130]
discussed the fatigue lives of PEEK and PC under different stress ratio R at 77 K. The results
demonstrate that the fatigue lives of PEEK and PC decreased when increasing the stress
ration. As shown in the formula 1, under a given stress amplitude (Sa), the mean stress
(Sm) increases with the stress ratio.

Sm = Sa(1 + R)/(1− R) (1)

The rise in mean stress indicates that the tensile part of cyclic loading increase, which
would promote the crack initiation and propagation and then decrease the fatigues lives.
However, they also found that the fatigue endurance limits of PEEK-based composites were
lower than EP-based composites. Takeda et al. [131] investigated the stress intensity factors
for several crack configurations in glass/epoxy composites with under tension at cryogenic
temperatures. The mechanical mean stress combined with the thermal load magnifies
the stress intensity factor. The correlation between stress intensity factor and fatigue
crack growth is a powerful tool for fail–safe design approaches applied to lightweight
structures [132]. In general, the higher stress intensity factor, the greater the possibility to
fracture [133,134].

In addition to mechanical properties, manufacturing costs should be taken into ac-
count. The application of high-performance thermoplastic polymers is very costly for its
high price and relatively complicated manufacturing process. Relatively cheaper thermo-
plastic materials could be an alternative solution if their performance at cryogenic tempera-
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tures is found to be satisfactory. Weiss investigated the thermal conductivity, expansion and
mechanical strength under cryogen temperature (77 K and 4 K) of acrylonitrile-butadiene-
styrene copolymer (ABS) specimens that were processed by 3D printing technology [135].
Compared with EP and high-performance thermoplastic polymer, the cryogenic mechani-
cal properties of ABS are lower. This research provides some important data to evaluate
their application prospects in the cryogenic temperature regime. Veltin investigated the
performance of fully recyclable, lightweight, low-cost, thermoplastic polypropylene (PP)
composite tapes at low temperatures and discussed the applicability of these materials
for Liquefied Natural Gas (LNG) applications [136]. At cryogenic temperature, the mi-
crocracks between the resin and the fibers due to the CTE difference is a topic of concern.
The author introduced the PP-based Single Polymer Composites (SPCs) which contain
matrix and reinforcement of the same chemical composition to minimize that issue since
the constituent components of the laminates possess the same CTE. The PP-based com-
posites have a skin-core-skin structure where the skin is a PP copolymer and the core
is a PP homopolymer. The tensile strength (77 K) of the [0/90] and [±45] laminates is
268 MPa and 37 MPa, respectively, and the corresponding failure strains are 3.9% and
6.5%. Furthermore, during the cryogenic low-velocity impact tests on all-PP tubes, the
indentation as large as 64% of the inner diameter generated during the low velocity test
at 4.88 m/s is fully recovered which demonstrated the viscoelastic nature of the PP at
such low temperature. Although the tensile and bending strength of PP-based composites
at cryogenic temperature is lower than CF/EP or CF/PEEK composites, it is hopeful to
design a structure operating at cryogenic conditions that have for its sufficient ductility
and lower cost.

3.2. The Cryogenic Performance of Modified Thermoplastic Polymer

Different from thermoset polymers, the main method to improve the mechanical,
thermal or electrical properties of thermoplastic is the physical modification method. The
introduction of nanomaterial into the polymer is an effective way to enhance its thermal and
mechanical properties. Some efforts have been made to improve the cryogenic performance
of thermoplastic polymer and its composites by adding a low loading level of nanofillers,
such as CNTs, GO and short carbon fibers (SCFs) [128,129,137–140]. Takeda et al. studied
the cryogenic tensile response of CNT-reinforced polycarbonate composites and used
the finite element simulations method to predict the elastic modulus and the stress state
within the composites [137,138]. The Young’s modulus and 0.2% offset yield strength
at 77 K increased with increasing CNTs-contents. However, with the CNTs contents
increased, at 77 K, the ultimate tensile strength and fracture strain of CNTs-reinforced
polycarbonate composites increased and then decreased. And the tensile strength (152
MPa) and fracture stain (5.18%) reached the maximum at 1.7 vol% CNTs. However,
compared with the neat polycarbonate, the enhanced effectiveness in cryogenic mechanical
property is limited. Wei et al. [139] and Takeda et al. [138] also investigated the flexural and
tensile fatigue response of CNTs reinforce polycarbonate composites. As these research
demonstrated the 2.5 wt% CNTs/polycarbonate composite at 77 K and room temperature
had a longer fatigue life than the 5.0 wt% CNTs/polycarbonate composite under the same
applied load. The addition of CNTs could improve the fatigue resistance and fatigue
lives of polycarbonate at 77 K. The local existence of CNTs agglomerates in 5.0 wt%
CNTs/polycarbonate composite led to the poor mechanical properties. Therefore, the
fatigue properties of the 5.0 wt% CNTs/polycarbonate composite is lower than 2.5 wt%
CNTs/polycarbonate composite. Meanwhile, they also found an interesting phenomenon
that although the maximum applied load at 77 K is two times higher than that at room
temperature, the fatigue lives of the composites at 77 K are similar to those at room
temperature (Figure 10). Bahçeli et al. [140] studied the cryogenic properties of CNTs
reinforced Ultra-high molecular weight polyethylene (UHMWPE) Laminated Composites.
The CNTs were added to UHMWPE by two different methods, one is by placing CNTs in the
form of buckypaper (CNT BP) during manufacturing, and the other is by producing CNTs
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reinforced high density PE films (CNT/HDPE) through the melt mixing process. Place all
of these CNTs based films were into UHMWPE piles and then fabricate different CNTs
based film enhanced UHMWPE composites via the hot-pressing technology. Although
both types of films could enhance the interlaminar shear strength of UHMWPE composites
at room temperature, only the CNTs/HDPE modified UHMWPE composites showed 3%
increase at 77 K. The addition of CNT BP into UHMWPE has shown none improvement in
interlaminar shear strength at 77 K.
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LI et al. [128,129] introduced GO, short carbon fibers (SCFs), both GO and SCFs simul-
taneously, and GO-coated SCFs into PES to get PES-based composites via the extrusion
and injection molding techniques. The preparation process of GO-coated SCFs and its
based PES composites specimens was shown in Figure 11a. Subsequently, the mechanical
properties of PES based composites at 77 K were examined. They concluded that the GO-
coated SCF/PES composites greatly enhanced cryogenic mechanical properties with the
highest values compared to other PES composites. At 77 K, the tensile and flexural strength
of 0.5 wt% GO-coated SCF/PES composite reached almost 223 MPa and 415 MPa. This
phenomenon could be explained by the high interfacial bonding between GO, GO-coated
SCF and PES (Figure 11b,c).
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4. The Research Development of the Polymer for Liquid Oxygen Application
4.1. The Acceptance-Testing Method of Materials Used in the Liquid Oxygen Environment

To the polymeric composites applied for LOX, except to meet the mechanical require-
ments, the composites used in LOX must also be chemically compatible with LOX. [5–7]
Compatibility with LOX is a relative quality determined by how readily and to what degree
a material will react with oxygen [141]. The chemical mechanism of the LOX compatibility
of polymers has been confirmed to be oxidation reactions. It is common Knowledge that
many materials burn or explode in the presence of oxygen when exposed to external stimuli
such as mechanical impact, crash, friction, or static electricity [142]. Materials that are
impact-sensitive with liquid oxygen are generally also sensitive to the reaction by other
forms of energy in the presence of oxygen. Meanwhile, the mechanical impact test is easy
to conduct and the impact energy can also be controlled. So the impact test is adopted
widely by researchers to characterize the compatibility of the material with LOX [17,143].
Since the 1950s, this test method has resulted in a large amount of data. The test equipment,
parameters and steps were standardized (ASTM D2512, ASTM G86) [9,17,142]. According
to ASTM test standard, the specimen of the material is placed at the bottom of an aluminum
cup filled with LOX, a flat-tipped steel pin resting on the specimen, and then a 10 Kg plum-
met drop from 1 m height to strike the steel pin(Figure 12a) [142,144–147]. During the
test, any explosion, burning, noticeable ash, or charring of specimen is considered as a
reaction. As shown in Figure 12b, if there are no reactions in 20 separate specimens, the
specimen could be used at the LOX environment. If only one reaction occurs in 20 separate
specimens, 40 more samples are needed to test. NO reactions happen in these 40 specimens,
this material has the ability to be used in the LOX environment. One or more reactions
occur, the material cannot be used in the LOX environment. It has been concluded that it is
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a strict “pass/fail” test that material must meet if they are to be used in the LOX system.
Based on the test standard (ASTM D2512-95), Gerzeski proposed a cascade of probabilistic
mechanisms that teams Hertzian fracture and Kinetic friction to study the mechanical im-
pact in LOX ignition threshold sensitivity testing of polymer and polymer composites [144].
A portion of the mechanical impact energy is transformed into thermal energy and a local
hot spot formed in the specimen. The local temperature of the specimen could be increased
by hundreds of degrees Celsius in a short time (1µs or less) due to the thermal energy
that transformed from mechanical impact energy [145,146]. During the mechanical impact
test, the contract surface condition between specimen and striker and the relative position
of specimen and striker may both affect the test result (Figure 12c,d) [144]. Wang et al.
used a commercial finite element analysis tool to analyze the transient fracture mode and
energy conversion process of thermoset polymer during the impact test (ASTM D2512)
qualitatively [47]. The results demonstrated that about 25% of the Kinetic energy (98J) was
transformed into sliding energy and the rest was transformed into internal energy.
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Copyright 2006 Elsevier. (b) the acceptance criteria of testing material for use in the liquid oxygen
system. (c) the contact conditions of the specimen with different surfaces, (d) the possible relative
positions of cup, specimen and striker during the mechanical impact test. Reused with permission
from Ref. [144]. Copyright 2006 American Society of Testing Materials.

4.2. Research Progress in Liquid Oxygen Compatibility of Polymers

In the beginning, researchers mainly focused on the LOX impact sensitivity of some
commercial organic material. In 1959, Clippinger and Morris [148] reported the detailed
impact Sensitivity test results of some common organic materials on exposure to LOX
conducted by the Martin Company’s Baltimore Division for the first time. According to
the report, except for the Teflon, almost all organic materials were impacted sensitively,
such as synthetic elastomers, cellulose silicone, silicate-based oils, nylons, thermo-setting
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phenolics and epoxies. Hoggatt studied the Liquid oxygen impact sensitivity of Mylar,
Kapton and Fluorinated ethylene propylene (FEP) coated Kapton polymeric film samples.
They confirmed that plain Kapton and FEP films were LOX compatible [149]. In 1967,
Clark et al. reviewed the compatibility of structural materials (metals and nonmetals) with
oxygen [141]. According to their report, nickel and copper alloys, stainless steels, aluminum
alloys, polytetrafluoroethylene (TFE) and polychlorotrifluoroethylene (CTFE) are available
for LOX use. Robinson et al. tested fiber-reinforced polymer composites compatibility with
LOX [142]. The polymers included EP, bismaleimide, polyimide, phenolic, cyanate ester,
PEEK, and fluorinated epoxy. While none of these polymer-based composites could meet
the standard mechanical impact test (ASTM D2512-95). Wang et al. investigated the LOX
compatibility of EP and cyanate ester co-cured compounds, and confirmed that improving
the anti-oxidation properties of the polymer could enhance its LOX compatibility [147].
From the above reports, it can be concluded that the better flame retardancy, the fewer
reactions of material occurred during the liquid oxygen impact sensitivity test.

It has been confirmed that the higher impact energy would result in a rapid increase
of temperature at the local surface of the specimen to form a hot spot. With the rapid
increase of temperature, a lot of relatively high activity radicals such as hydroxyl radicals
will be released on the surface of the specimen and even cause local thermal degradation
of the polymer. The high activity radicals can cause the incessant chain reaction. Thus,
the reactions (charring, noticeable ash, explosion, burning) of organic materials under the
impact test will appear [150–152]. Wu et al. analyzed the surface element compositions of
polyphenylene sulfide specimens before and after impact tests at LOX environment [150].
They found that the oxygen contents of the specimen with reaction (flash) during the
mechanical impact were higher than the specimen without flash. Consequently, it may be
concluded that increasing the polymer flame retardancy or thermal stability or both will im-
prove the LOX compatibility of the polymer [147–149]. Therefore, improving the polymer’s
flame retardancy or thermal stability or both through physical or chemical modifications
seems to be a possible way to meet the LOX environment application requirements.

Table 2 lists some modified polymer systems reported in the literature that get through
the mechanical impact LOX compatibility test. The detailed information of such material
as shown below.

Wu et al. incorporated 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
(DOPO) [151] and 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-
10-oxide (ODOPB) [152] into EP and evaluated its LOX compatibility. The DOPO and
ODOPB are two kinds of phosphorus-containing reactive flame retardants with diphenyl
structure which has high thermal stability and good oxidation resistance. In this way, the
LOX compatibility EP was synthesized successfully. During the impact test, the modified
EP would generate phosphoric oxyacid and a lot of phosphoric-oxygenic free radicals.
The existence of the acid shields the material with LOX, preventing the oxidation and
decomposition of the epoxy resin. The phosphoric-oxygenic free radicals could capture the
highly active free radicals such as hydrogen and hydroxyl radicals and then constrain the
chain reaction. From the previously published results, the type of EP and cure agent also
make an important effect on the LOX compatibility of the modified resin system [153–155].
Wu et al. reported that the liquid oxygen compatibility of the DOPO modified DGEBA
resin system was better than the DOPO modified DGEBF resin system under the same
condition [153]. Wu et al. also discussed the LOX compatibility of bromine-modified
DGEBA resin curing with different curing agents (DDM and DDS) [154,155]. According
to the impact test results, the modified EP resin curing with DDM showed good com-
patibility with LOX than curing with DDS [155]. Peng et al. introduced a DOPO-based
trisiloxane containing phosphorus and silicon compounds into the EP molecular structure
to enhance the LOX compatibility of EP resin [156]. By analyzing the surface elements of
the specimens before and after mechanical impact in the LOX environment through the
XPS method, the Si2p and Si2s signal peaks appeared obviously in the overall XPS spectra
(Figure 13a). Meanwhile, based on the XPS test result, the PO3 group in the pyrophos-
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phate and polyphosphate generated during the mechanical impact was also demonstrated
(Figure 13b). The existence of Si and P elements breaks the chain reactions caused by
oxidation reaction during the mechanical impact at LOX environment, hence improve
the LOX compatibility of the polymer. The functioned nanomaterial could improve the
flame retardancy, thermal stability and cryogenic mechanical properties of the resin system.
Mixing a certain amount of the DOPO modified nanofiller (boehmite) into pure epoxy
could also improve the liquid oxygen compatibility of the resin system [157]. Peng et al.
synthesized a phosphorous-containing benzoxazine monomer (PBA), and treated PBA
as harder to cure EP [158]. They found that the EP/benzoxazine included PBA copoly-
mer could pass the impact test (ASTM D2512-95). Due to the flame-retardant ability of
phosphorous and the thermal stability of benzoxazine [159,160], the modified polymer
mentioned above showed great potential for manufacturing the LOX composites tank for
its comprehensive performance (mechanical properties and LOX compatibility). Therefore,
it has been proven that improving the flame retardancy, thermal stability of polymer is an
effective way to enhance its LOX compatibility [150–158].
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Figure 13. (a) the XPS spectra and (b) P2p peak fitting curves of the specimen before and after mechanical impact under the
liquid oxygen environment. Reused with permission from Ref. [159]. Copyright 2016 Royal Society of Chemistry.

Table 2. The cryogenic performance of the reported materials that has the potential ability for liquid oxygen system use.

Resin System 1 Modifier 1 Contents Thermal Stability Mechanical Properties Ref.

DGEBA/DOPO/DDS DOPO 7.7 phr T(10%): 381 ◦C - [141]

DGEBA/ODOPB/DDM ODOPB 18.6 phr T(5%): 393 ◦C
T(50%): 531 ◦C

Tensile strength: 148.9 MPa
(90 K)

Tensile fracture strain:2.27%
(90 K)

KIC = 1.58 MN/m3/2 (77 K)

[152]

DGEBA/TBBPA/DDM TBBPA 20.5 phr T(5%): 365 ◦C
Tensile strength:86.37 MPa

(77 K)
KIC = 1.63 MN/m3/2 (77 K)

[154]

DGEBA/AlOOH−DOPO−GPTS/
DDM AlOOH−DOPO−GPTS 20 wt% T(5%): 367.8 ◦C

T(10%): 380.3 ◦C

Tensile strength: 126 MPa
(90 K)

Tensile fracture strain:1.57%
(90 K)

[157]

EP/PBA/BA PBA/BA 24 wt%/34.3
wt%

T(5%): 351.2 ◦C
T(50%): 533.7 ◦C - [158]

1 Abbreviations:DOPO, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide;DDS, 4,4-Diaminobisphenol sulfone; ODOPB, 10-(2,5-
dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; TBBPA, Tetrabromobisphenol A; AlOOH, boehmite; GPTS,
3-glycidoxypropyltrimethoxysilane;PBA, phosphorous-containing benzoxazine monomer;BA, bisphenol A benzoxazine.
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5. Summary and Perspectives

In this review, we have summarized the research development of polymer for cryo-
genic application. In general, compared with room temperature, at cryogenic temperature,
the strength, modulus and fracture toughness (KIC) of polymers increased. While the
impact resistance, tensile fracture strain of polymer decreased dramatically. Accordingly,
researchers utilized various methods to enhance the polymer ductility and reduce the
thermal stress of polymeric composites. As these reports demonstrated, these modification
methods are useful to enhance the cryogenic performance of polymer and polymer-based
composites. According to these studies, some functionalized polymers showing great
potential for cryogenic application, such as CNTs/EP, GO/EP and phosphoric EP and
son on. Meanwhile, for the polymer used in the LOX environment, improving the flame
retardancy, thermal stability and toughness of the polymer is an effective way to enhance
its LOX compatibility. Despite significant achievements in this field, some directions expect
to be explored shortly.

1. Compared with thermosetting or general used thermoplastic polymers, the high-
performance engineering thermoplastic polymers have more potential for cryogenic
application due to their prominent comprehensive properties (strength, toughness,
flame retardancy and recyclable performance). However, the research of high-
performance engineering plastic for cryogenic use are seldomly reported. With the
development of energy and aerospace, more attention should be paid on the study
of high-performance engineering thermoplastic and its composites for cryogenic
application.

2. The damage evolution and fracture mechanism and the LOX compatibility mechanism
of polymer and its composites at cryogenic temperature need to be studied further.
A deep understanding of the cryogenic performance of polymer and its composites
would help researchers to find more effective ways to obtain suitable material.

3. During the cryogenic performance test process of the material, several cryogenic
media such as LHe, LN2, and LOX are necessary to provide the cryogenic test envi-
ronment. Because these cryogenic liquid fluids are extremely volatile, it would take a
lot of time and liquids to test the cryogenic performance of the material. Thus, it will
be meaningful and interesting to find out the relationship between room temperature
performance and cryogenic temperature performance of polymer and its compos-
ites or construct the prediction model based on the data of the report to predict the
cryogenic performance polymer.

4. The present reports mainly focused on the effectiveness of the methods to improve
the cryogenic performance such as mechanical properties, LOX compatibility and
impermeability of polymer and its composites. However, the processability of the
modified polymer such as viscosity and pot life, which are essential for practical
applications, is not included. Future work is required to provide greater insight into
the processability of material.
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