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Abstract: A simple and hands-on one-step process has been implemented to fabricate polymer-tem-

plated hydrophobic nanostructures as hydrogen gas sensing platforms. Topographic measurements 

have confirmed irregular hills and dips of various dimensions that are responsible for creating air 

bubble pockets that satisfy the Cassie–Baxter state of hydrophobicity. High-resolution field-emis-

sion scanning electron microscopy (FESEM) has revealed double-layer structures consisting of fine 

microscopic flower-like structures of nanoscale petals on the top of base nanostructures. Wetting 

contact angle (WCA) measurements further revealed the contact angle to be ~142.0° ± 10.0°. Such 

hydrophobic nanostructures were expected to provide a platform for gas-sensing materials of a 

higher surface area. From this direction, a very thin layer of palladium, ca. 100 nm of thickness, was 

sputtered. Thereafter, further topographic and WCA measurements were carried out. FESEM mi-

crographs revealed that microscopic flower-like structures of nanoscale petals remained intact. A 

sessile drop test reconfirmed a WCA of as high as ~130.0° ± 10.0°. Due to the inherent features of 

hydrophobic nanostructures, a wider surface area was expected that can be useful for higher target 

gas adsorption sites. In this context, a customized sensing facility was set up, and H2 gas sensing 

performance was carried out. The surface nanostructures were found to be very stable and durable 

over the course of a year and beyond. A polymer-based hydrophobic gas-sensing platform as in-

vestigated in this study will play a dual role in hydrophobicity as well as superior gas-sensing char-

acteristics. 
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1. Introduction 

Gas sensing, particularly hydrogen (H2) gas sensing, has become very crucial due to 

its renascence as a new and alternative energy in modern life [1–3]. H2 is an important 

energy carrier that is going to be complementary to current electricity very soon [4,5]. A 

persistence challenge is being carried out to incorporate H2 as fuel for “zero-emissions” 

vehicles, to heat accommodations and workplaces and fuel aircrafts, amongst many other 

applications [6–8]. Therefore, not only is an efficient and sensitive sensing platform ur-

gently needed for the safe deployment of all H2-based applications, but also multifunc-

tional capabilities are required to deal with extreme and critical environmental conditions. 

Most H2 gas sensors, particularly used in industries and workplaces, are not suitable for 

advanced and sophisticated applications. The sensor needs to be smart, durable and of 

multitasking capacity [9–11]. The fabrication and realization of multifunctional sensing 

platforms have been exciting and hot areas of research in both academia and industry, 

including healthcare sectors and environmental protection [12,13]. There is an enticing 

and ever-growing interest in devising a sensing platform capable of hydrophobic and 
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non-adhesive characteristics [14–16]. Such platforms facilitate water droplets dropped 

onto them, rolling them off automatically with a small tilt angle. In the process of rolling 

off, contaminants and dust are also carried away, and thus the sensing surfaces become 

ready to detect the target gas [17,18]. However, developing an artificial hydrophobic sens-

ing surface is not that straightforward, and it requires a smooth and fine strategy so that 

the surface becomes stable, durable and capable of reconciling with the surrounding en-

vironment [19–22]. Most of the time, a hydrophobic surface is achieved by following the 

improvised Cassie–Baxter model that confirms a double-layer roughness wherein there 

should be nanoscale roughness on the top of the microscale structures [23–25]. Although 

such double-layer structures have great potential in a wide range of applications, includ-

ing self-cleaning, anti-fouling, anti-corrosion and oil–water separation, the top nanostruc-

tures decay over time under extreme environmental conditions [26,27].  

A wide range of organic and inorganic materials are used as base substrates to 

achieve hydrophobic sensing surfaces [28–30]. Polymers, particularly polycarbonate (bi-

sphenol A polycarbonate: 2,2-bis(p-hydroxyphenyl)-propane, PC), are one of the interest-

ing base materials that have been studied extensively and therefore used in a wide variety 

of applications [31–34]. Due to low-cost, high durability, low modulus of elasticity and 

high transparency, PC has been useful in optoelectronic and microelectronic applications 

[35–37]. PC is an industrially attractive soft polymer material that is being extracted as a 

by-product from oil and gas refineries through industrial-scale and low-cost processes 

[33,38]. However, one finds that such PC can be further reinforced by including hydro-

phobic characteristics, which are a key element in many applications that require a self-

cleaning property. It is well-acknowledged that the effectiveness of hydrophobicity is 

demonstrated by the Cassie–Baxter model, although the same model indicates that a 

higher surface area is required for many surface-enhanced applications, such as molecule 

detection and sensing [39–41]. For multifunctional devices, particularly hydrophobic gas-

sensing platforms, using PC as the base materials is industrially viable and one of the 

promising candidates. To the best of our knowledge, a PC-templated hydrophobic gas-

sensing platform has not been reported so far. Mazen and his group have demonstrated 

and devised a transparent hydrophobic PC as a self-cleaning surface for PV panels in-

stalled in a dusty environment [42]. Yilbas and his team have developed a generic process 

to copy the micro/nanoscale structure of hydrophobic PC by polydimethylsiloxane 

(PDMS) that showed a higher wetting contact angle (WCA) and transparency [43]. Jhang 

and his group developed hydrophobic microchannels in PC that enabled the valve-free 

sequential injection of multiple liquids [44]. Most of the methods used in achieving such 

hydrophobic PC were associated with multiple treatments, apart from the requirement of 

skilled hands and the usage of specialized reagents. 

Here in this study, we have reported a simple and inexpensive one-step process to 

fabricate polymer-templated hydrophobic nanostructures for a H2 sensing application. A 

hydrophobic PC fabricated by a wet chemical treatment was decorated with palladium 

(Pd) by high vacuum sputtering technique. High-resolution field-emission scanning elec-

tron microscopy (FESEM) revealed double-layer structures consisting of fine microscopic 

flower-like structures of nanoscale petals on the top of base nanostructures. Sessile drop 

tests confirmed a WCA of the treated PC as high as 142°± 10.0°, whereas the WCA of pris-

tine PC was estimated to be ~83°± 10.0°. The as-fabricated polymer-based nanostructures 

were transferred to an automatic sputtering chamber for Pd sputtering and decorated the 

treated PC with Pd. Sessile drop tests were carried out once again to evaluate the WCA. 

It was noted that the Pd-decorated treated PC exhibited a relatively high WCA of ~130°± 

10.0°. A customized setup was built to carry out the sensing characteristics of the Pd-dec-

orated treated PC. Such a generic strategy is indispensable to explore new routes of mul-

tifunctional sensing platforms that are particularly important in extreme environmental 

conditions. 
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2. Materials and Methods 

Commercially available PC sheet (1 mm × 1 mm × 1.6 mm) was cut into pieces (2.5 

cm × 2.5 cm × 1.6 mm) and treated with 2-propanone (CH3–CO–CH3) under controlled lab 

conditions. The sample was washed copiously with deionized (DI) water. A transparent 

pristine PC specimen was found to turn opaque after the treatment. The treated PC was 

left under a fluorescent light of 30 W for 10 min. and then transferred to an automatic 

sputtering coater (model #NSC 4000; NANO-MASTER Inc., Austin, TX, USA) for Pd dec-

oration, as shown in Figure 1. Inset (i)–(iii) of Figure 1a represents CCD images of pristine 

PC, treated PC and Pd-decorated treated PC. High purity Pd (99.999%) target was pur-

chased from Semiconductor Wafer Inc. and used as received without any modification. 

Pre-sputtering for cleaning the target was carried out for 1 min. Plasma was generated by 

direct current (DC) magnetron power of 30 W for 20 s, keeping the chamber background 

pressure as low as 3.5 × 10−6 Torr in Ar gas flow of 80 SCCM. The target-to-substrate dis-

tance was fixed at 10 cm. 

Initial assessment of surface topography and roughness was carried out by using a 

3D optical microscope (model #Meiji Techno MX7100; Meiji, Illinois, USA). A Dektak pro-

filometer (mode #BrukerXT; Bruker, MA, USA) was used to explore the microscopic sur-

face structure of the treated specimen. Topographic confirmation and in-depth morphol-

ogy of treated specimens were carried out using high-resolution FESEM (model #LYRA3; 

TESCAN, Brno, Czech Republic). WCA measurements were carried out using a goniom-

eter (model #DM 501; Kyowa Interface Science Co. Ltd., Saitama, Japan) through sessile 

drop tests. DI water was used in the sessile drop experiments, and the droplet volume 

was controlled with an automatic dispensing system. The images of the droplets were 

taken one second after deposition of the water droplet on the surface. A customized gas 

chamber, Linkam stage (Model HFS-600E-PB4; Linkam Scientific Instruments, Wakefield, 

UK), was used to incorporate air and H2-balanced nitrogen (1% H2, 99% N2) sequentially 

at room temperature. Two mass flow controllers (MFCs) connected with an external XPH-

100 power hub supply were utilized to control the flow of H2. The sensing measurements 

were performed through a resistivity measurement approach at room temperature. It is 

well-acknowledged that resistivity defines the ability of the materials to resist the charge 

flow, whereas the charge carriers available in the vicinity depend on the adsorption of 

target gas molecules on sensing materials.  

 

Figure 1. (a) A free-hand schematic for fabricating a multifunctional sensing platform; inset (i)-(iii): CCD images of pristine 

PC, treated PC and Pd-decorated treated PC; (b) customized H2-sensing setup used in this study. 
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3. Results and Discussion 

A quick screening of the treated sample was carried out using 3D optical microscopy, 

as shown in Figure 2a. Since the optical microscope was using infinity-corrected optics for 

reflected light observation, it facilitated the acquisition of long-range line scans, as shown 

in Figure 2b,c. Figure 2b,c represent long-range line scans along the horizontal and vertical 

axes, respectively, as shown in Figure 2a. Zoom-in views as marked by a black dashed 

rectangle in Figure 2b,c were shown in inset (i) and inset (ii) of Figure 2a, respectively. The 

insets in Figure 2a provided an impression without further details that the treated surface 

of PC had a microscale roughness. Further details of the surface topography were ob-

tained by the Dektak profilometer. Figure 2d displays the 2D mapping of the treated sur-

face, indicating the step height of the nanostructure as traced by the stylus. Line scans 

along the white horizontal and vertical lines, as marked in Figure 2d, were shown in Fig-

ure 2f,g, respectively. The hills and dips were visible in both line scans. The maximum 

and minimum step height along the horizontal line scan were found to be ~7 µm and ~−22 

µm, respectively. In the case of the line scan along the vertical axis, such hills and dips 

were found to be ~11 µm and ~−23 µm, respectively. A 3D mapping of the same scan as 

shown in Figure 2d was acquired and shown in Figure 2e. The islands-like view and the 

abovementioned height profiles indicated that the surface topography of the treated spec-

imen was indeed of microscopic structures. 

 

Figure 2. (a) Large area 3D optical microscopic image of treated PC; (b,c) line profiles along the horizontal and vertical 

axis as marked by black arrows in Figure 2a, respectively; (d) 2D image of the same extracted from surface profilometer; 

(e) 3D mapping of the same area confirming hills and dips; (f,g) line profiles along the horizontal and vertical axis as 

marked by black arrows in Figure 2d, respectively. 

To validate and reconfirm the inherent characteristics of a hydrophobic surface, one 

needs to go through nanoscale micrographs similar to those captured by high-resolution 

FESEM as shown in Figure 3. Figure 3a represents a low-resolution FESEM micrograph 

confirming fine nanostructures on the top of base nanostructures. A high-resolution 

FESEM as shown in Figure 3b revealed that the fine nanostructures on the top of base 

structures were indeed something similar to nanoflowers that consisted of petals of dif-

ferent sizes and shapes. An individual nanoflower as marked by “A” in Figure 3b was 

shown in the inset of Figure 3a. A further zoomed-in view of a small area as marked by 

the black square in Figure 3b was displayed in Figure 3c. Seven nanoflowers of different 

sizes as shown in Figure 3c were observed on the top of base nanostructures. A 3D hawk-

eye view of the same area as marked by the black square in Figure 3b was presented in 
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Figure 3d. As mentioned earlier, nanoflowers were observed on the top of base nanostruc-

tures. As a result, there were two different layers of nanostructures, one at the base and 

the other at the top, and thus a combination of these two nanostructures indeed was re-

sponsible for making the ultimate surface hydrophobic. A line profile along the white 

dashed line marked as “1” across the base nanostructure was shown in Figure 3e. A fur-

ther zoomed-in view of a small section of this line profile as marked by the white dashed 

rectangle was shown as an inset of Figure 3e. On the other hand, the line profile along the 

white dashed line marked as “2” across the nanoflower structure was shown in Figure 3f. 

The sharp hills observed therein corresponded to the petals of the nanoflowers. Hence, it 

was speculated that such double layers of the nanostructure would provide enough void 

to satisfy the Cassie and Baxter state and facilitate hydrophobicity of the treated specimen. 

 

Figure 3. (a) FESEM micrograph of treated PC; inset (i): an individual flower as marked by the white arrow; inset (ii): 

zoomed-in view of the base nanostructure; (b) high-resolution FESEM image indicating several flowers on the top of pri-

mary PC nanostructure; (c) a zoomed-in view of the selected area as marked by a black square in Figure 3b; (d) hawk-eye 

view of the same area as shown in Figure 3c; (e,f) line profiles along the white dotted lines marked by “1” and “2” within 

Figure 3b, respectively. 

It is well-acknowledged that the WCA is the measure of indication of whether the 

surface is hydrophobic or hydrophilic. Conventionally, a sessile drop test is used to di-

rectly measure the contact angle and determine the preferential wetting of the substrate 

by the reference liquid. Here in this investigation, DI water was used as the reference liq-

uid, and the volume was controlled by an automatic dispenser. Figure 4a–c represents 

water droplet images of pristine PC, treated PC and Pd-decorated treated PC, respec-

tively. The corresponding average WCA of pristine PC was estimated to be 83° ± 10.0°, as 

shown in Figure 4a. A further zoomed-in view of the contact region as marked by the 



Polymers 2021, 13, 4470 6 of 10 
 

 

green dashed square in Figure 4a is shown in Figure 4d. The lower part of Figure 4d rep-

resents the mirror region of the droplet on the pristine PC. It was visible clearly enough, 

as the pristine PC was noted to be highly transparent. Once the specimen was treated, the 

sessile drop test confirmed the WCA of the treated PC to be as high as ~142° ± 10.0°, as 

shown in Figure 4b. As explained earlier, high-resolution FESEM revealed a double layer 

of nanostructures wherein fine nanoflower-like structures were observed on the top of 

base nanostructures. Such a combination of nanostructures indeed facilitated enough 

voids to yield the top surface being hydrophobic. A zoomed-in view of the contact region 

as marked by the green dashed square in Figure 4b is shown in Figure 4e, reconfirming a 

high WCA of the same value. The mirror region of the droplet on the treated PC is shown 

in the lower part of Figure 4e. The mirror image of the treated specimen was found to be 

blurred, as the transparency of the same specimen dropped substantially. However, the 

WCA of the Pd-decorated treated PC was still higher compared to that observed in the 

pristine PC, but it was a bit lower than that observed in the treated PC. Figure 4c displays 

water droplet images of Pd-decorated treated PC along with the estimated average WCA 

of ~130° ± 10.0°. A zoomed-in view of the contact region as marked by the green dashed 

square in Figure 4c is shown in Figure 4f, and the lower part of the same image represents 

the mirror region of the droplet on the Pd-decorated treated PC. 

 

Figure 4. (a–c) Optical images defining the wetting contact angle of pristine PC, treated PC and Pd-decorated treated PC, 

respectively; (d–f) zoomed-in views of the contact site of pristine PC, treated PC and Pd-decorated treated PC, respectively. 

As explained earlier, the H2 sensing measurements were investigated through a spe-

cial test chamber (Linkam chamber, Model HFS-600E-PB4). This gas chamber was con-

nected to the temperature controller, cooling system and two MFCs using an external 

power hub supply to introduce an appropriate amount of H2. The H2 concentration in the 

Linkam chamber was varied by mixing the test gas (1% H2 balanced with N2) and dry air. 

The dynamic response of the Pd-decorated treated PC for H2 gas concentrations of 0.05%, 

0.1%, 0.2% and 0.5% was shown in Figure 5a. It was observed that for very low concen-

trations, such as 0.05% of H2, the response was delayed and started to show up after ~500 
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s. For the case of other intakes, such as 0.1%, 0.2|% and 0.5% of H2 concentrations, the 

responses were observed starting from ~300 s, as shown in Figure 5a. However, the re-

sponse characteristics from each intake of H2 concentrations were found to be different. 

The rising gradients of the dynamic responses for 0.05%, 0.1%, 0.2% and 0.5% of H2 con-

centrations were estimated to be 0.16 (delayed), 0.16, 0.36 and 2.05, respectively.  

 

Figure 5. (a) Dynamic response of the sensor to different H2 gas concentrations (0.5%, 0.1%, 0.2% and 0.5%) at room tem-

perature; (b) response time of the same system; (c) sensitivity of the same system. 

The response time of the gas sensor is one of the crucial parameters that defines the 

speed of response of a particular gas sensor. Conventionally, it is measured by the time 

taken for a sensor to reach 90% of the final indication of saturation. Figure 5b depicts the 

response time of the specimen in this investigation. It was observed that the intake of H2 

concentrations of 0.05%, 0.1%, 0.2% and 0.5% took a response time of 718, 294, 305 and 315 

s, respectively. 

Sensitivity is another crucial characteristic that indicates how efficiently the target 

gas can be detected by the sensor. The sensitivity of a gas sensor is defined as: 

����������� (%) =
�� − ��

��
× 100  (1)

where Ra and Rg are the resistance of the sensor in air and target gas, respectively. The 

electrical resistance of the sensors with and without H2 was measured by an Agilent 

B1500A semiconductor device analyzer (SDA). The sensitivity of the fabricated sensors 

was calculated within 0.05%–0.5 of H2. 

Figure 5c depicts the sensitivity of the specimen in this investigation for different 

intakes of H2 concentrations. It was found that the sensitivities for Pd-decorated treated 

PC at room temperature at 0.05%, 0.1%, 0.2% and 0.5% H2 concentrations were 7%, 8%, 

16% and 77%, respectively. It is noteworthy that the change in electrical resistance (i.e., 

sensitivity) and the response time increased with increasing concentrations of H2. 

4. Conclusions 

A one-step and low-cost process is one of the prerequisites for an industrial-scale 

production line. In this context, a simple and inexpensive generic route was reported to 

achieve polymer-templated hydrophobic nanostructures as H2 gas sensing platforms. 

Double-layer micro and nanostructures of PC were generated that contributed a vital role 

toward satisfying the Cassie–Baxter state and yielded a hydrophobic surface with a WCA 

as high as ~142.0° ± 10.0°. Although preliminary topographic investigations through a 3D 

optical microscope and Dektak profilometer indicated irregular hills and dips of various 

dimensions that were responsible for creating air bubble pockets therein, an in-depth sur-

face topography was investigated by high-resolution FESEM. Interestingly, it was noticed 

that fine microscopic flower-like structures of nanoscale petals were populated on the top 
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of base nanostructures. The surface nanostructures were found to be very stable and du-

rable over the course of a year and beyond. Such nano-flowers decorated with Pd-sensing 

materials exhibited a relatively high WCA and facilitated a high surface area for adsorbing 

the target gas simultaneously. A sessile drop test confirmed the WCA of the Pd-decorated 

hydrophobic PC to be as high as ~130.0° ± 10.0°. A lab-built sensing setup was employed 

to carry out sensing activity of the Pd-decorated hydrophobic PC for H2 gas concentra-

tions of 0.05%, 0.1%, 0.2% and 0.5% at room temperature, and the corresponding sensitiv-

ity and response time were evaluated. 
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