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Abstract: The use of ultraviolet radiation (UV) technology for the crosslinking of acrylic pressure-
sensitive adhesives (PSA) is the one of various crosslinking methods, being the alternative to the
conventional crosslinking process of solvent-based acrylic systems. It also requires a photoinitiator to
absorb the impinging UV and induce photocrosslinking. As previously mentioned, a photoinitiator
is one of the important and necessary components in UV-inducted crosslinking of acrylic pressure-
sensitive adhesives. The activity of multifunctional conventional saturated photoinitiators of type I
and type II, especially benzophenone-based in the photoreactive UV-crosslinkable acrylic PSA was
described. The effect of the multifunctional type-II photoinitiators on the acrylic PSA, such as tack,
peel adhesion and shear strength were summarized.

Keywords: pressure-sensitive adhesives; multifunctional photoinitiators; UV-crosslinking

1. Introduction

The market for UV technology has been growing in the last years. A significant reason
for this technology growth is its unique process characteristics, which allow UV-coating
to be applied on virtually any substrates. UV technologies have also found their place in
the production of acrylic PSAs. UV-crosslinked acrylic pressure-sensitive adhesives are
made by UV-irradiation of the layer of base adhesive containing crosslinkable compounds,
coated onto the carrier film [1].

UV-crosslinking technique represents a major advance in the development of the
adhesive and self-adhesive coating industries [2–10]. The photoinitiator plays a key role
in UV-crosslinkable systems by generating the reactive species, free radicals, which will
initiate the crosslinking of photoreactive adhesives. Through its concentration controls
directly both the crosslinking rate and the penetration of the UV radiation, and therefore
the cure depth [11–16]. The efficiency of radical photoinitiators is dependent on a strong
absorbance of the UV-radiation emitted by the UV-lamp, a short lifetime of the excited states
to avoid quenching by atmospheric oxygen, a fast photolysis and bleaching, which generate
the free radicals, a high reactivity of the free radicals evolved toward the monomer function,
a good solubility of the photoinitiator in the formulation and the formation of non-colored
and odorless photoproducts [15,17–22]. In the case of saturated acrylic pressure-sensitive
adhesives, the photogeneration of initiator radicals by α-cleavage photoinitiators (PhI)
or H-abstraction photoinitiators (PhII) is followed by reaction with the acrylic chain to
produce a new radical that reacts with a neighboring acrylic chain [23]. This group of
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substances consists of saturated photoinitiators, which contain at least two photoreactive
structures in the molecule and form crosslinkage with the pressure-sensitive adhesives by
UV radiation [24]. It is possible to obtain so-called migration-free photoinitiators by specific
constructions e.g., from multifunctional benzophenones. The UV-crosslinking mechanism
of acrylic PSAs containing photoreactive multifunctional benzophenone derivatives has
been thoroughly investigated and is presented schematically (Figure 1).
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During UV exposure of the intermolecular benzophenone derivatives, H-abstractor
structures are excited and react with the neighboring C–H positions of the polymer
sidechains. UV-crosslinkable acrylic pressure-sensitive adhesives possess excellent ox-
idation resistance that allows working without inert gas atmosphere.

The target of this work was to evaluate the activity of novel multifunctional photoini-
tiators of two types (α-cleavage and H-abstractor) on the properties of crosslinked acrylic
PSAs. Although the use of similar photoinitiators is described in the literature, it must be
remembered that for products with specific performance characteristics, both the use of
an appropriate photoinitiator and the composition of the base adhesive that undergoes
crosslinking are important. Here, there are a huge number of possible combinations of
acrylate adhesive composition and selected photoinitiators that can lead to a crosslinked
pressure-sensitive adhesive of the desired strength. A new and original element of the
presented research is the use of photoinitiators never described before. Furthermore, the
composition of the base adhesive undergoing crosslinking was significantly different from
that previously reported in the literature. In addition to 2-EHA and MA, it also contained a
high proportion of BA, with typical AA content not exceeding 5 wt.%. Due to the growing
demand for new efficient cross-linking photoinitiators in various branches of adhesives
and coatings production, it is expedient to study the performance of new cross-linking
systems, especially for the pressure-sensitive adhesive industry.

2. Materials and Methods

Various experiments were carried out to study the influence of different multifunc-
tional photoinitiators type I (α-cleavage) and type II (H-abstractors) on the main per-
formance of solvent-based acrylic pressure-sensitive adhesives (PSA), such as tack, peel
adhesion (adhesion) and shear strength (cohesion). The base weight of the adhesive layer
covering the polyester foil was 60 g/m2.

The influence of the crosslinking agents or crosslinking methods is usually determined
in relation to the reaction time and to the concentration versus adhesion properties, consid-
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ering the following properties: tack, adhesion, and cohesion. These mentioned properties
were determined by standard A.F.E.R.A. (Association des Fabricants Europeens de Rubans
Auto-Adhesifs) procedures. Exact details can be found in AFERA 4015 (tack), AFERA
4001 (peel adhesion) and AFERA 4012 (shear strength). Administrative address: 60, rue
Auber-94408, Vitry Sur Seine Cedex, France.

The tests were carried out using tensile testing machine Zwick/Roell Z-25 (ZwickRoell
GmbH & Co. KG, Ulm, Germany) and our own constructed machine for evaluation of
shear strength due to AFERA 4012 standard (based on a programmable laboratory dryer
with sample panels, appropriate sensors, computer and recording software).

The tack of pressure sensitive adhesives is a property of an adhesive that occurs upon
brief contact of a test material with a standard surface and represents the force required to
de-bond a sample from that surface. The tack test method due to AFERA 4015 is simple
and requires common tensile testing machine. The strip of tested material (carrier tape
coated with PSA) with dimensions of 1 × 7 inches is folded to clamp its ends in the jaws
of testing machine. Then the loop formed is contacted with horizontal clean steel plate
(without applying additional pressing force), and the force required to separate the loop
from the plate is measured.

The peel adhesion is the force required to separate a PSA coated strip of carrier tape
from a standard test plate with constant rate speed of removal and at a specific angle of
removal. The AFERA 4001 peel adhesion test is carried out with strip of tested material
(carrier tape coated with PSA) with dimensions of 1 × 5 inches, bonded firmly with
additional pressing force (2 kg rubber roller) to the clean steel plate. The plate and the
free end of the strip are clamped in the jaws of testing machine to provide 180◦ angle of
removal. Then the force required to peel off the tape from the plate is measured.

The shear strength is the measure of the cohesiveness (internal strength) of an adhesive.
According to the AFERA 4012 standard, the method consists in measuring the force
necessary to shear the sample of PSA layer, acting in a direction parallel to the surface of
the contact. The measurement is carried out in temp. 20 ◦C (5–90 N of the load) and 70 ◦C
(5–40 N of the load). Adhesive-coated strip is applied from one end to clean steel panel
(1 × 1 inch of contact area), and free end of the strip is loaded with a force of different
hanging weight for given time (4 h).

The amount of solid materials was determined by weight after drying, the residual of
monomers were measured with gas chromatograph Unicam 610, J&W DB-1 column, FID
detector and integrator Unicam 4815.

The molecular weight studies were performed with a liquid chromatograph LaChrom
system: RI Detector L-7490 and LaChrom UV Detector L-7400 from Merck Hitachi, equipped
with a PLgel 106 Å column from Hewlett Packard.

The evaluated photoreactive pressure-sensitive adhesives were crosslinked using
ultraviolet light lamp Aktiprint-mini 18-2 from Technigraf Company (Grävenwiesbach-
Hundstadt, Hessen, Germany) and the UV-exposure can be measured using an integrating
radiometer DynachemTM Model 500, available from Dynachem Corporation (Caronno
Varesino, Italy).

2.1. Basic Acrylic PSA

The following experiments were conducted using standard solvent-based acrylic PSA
synthesized from 40 wt.% of 2-ethylhexyl acrylate, 30 wt.% of butyl acrylate, 25 wt.% of
methyl acrylate and 5 wt.% of acrylic acid in the organic solvent ethyl acetate at the boil-
ing point temperature about 77 ◦C at presence of 0.1 wt.% 2,2′-azo-bis-diisobutyronitrile
(AIBN), according to monomers mixture concentration, used as thermal initiator to start
radical polymerization. All starting materials such as acrylate monomers, solvent and
AIBN were available from BASF (Germany). All investigated multifunctional photoinitia-
tors type I and type II were technical grade and were synthesized at UTP University of
Science and Technology, Faculty of Chemical Technology and Engineering, Department of
Organic Chemistry.
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The final synthesized solvent-based basic acrylic PSA was characterized by the follow-
ing significant properties:

Amount of solid materials 50 wt.%
Viscosity 10.3 Pa·s
Concentration of residual monomers <0.2 wt.%
Weight average molecular weight MW 621,000 Da
Number average molecular weight Mn 214,000 Da
Polydispersity Pd = MW/Mn 2.90

2.2. Investigated Photoinitiators Type I (α-Cleavage) and Type II (H-Abstractors)

Examples of the tested type I and type II multifunctional photoinitiators are pre-
sented in Table 1, which were tested as photoreactive crosslinking agents for solvent-based
acrylic PSA without tertiary amine co-initiators. This class forms at least two photoreac-
tive structures in the polymer molecule and forms crosslinkage with the polymer chains
via ultraviolet radiation. The most typical direction, however, is in the development of
multifunctional benzophenones.

Table 1. Multifunctional photoinitiators of type I and type II used for UV-crosslinking of acrylic PSAs.

Photoinitiator Chemical Formula Chemical Name

BPMCM
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3. Results and Discussion

The UV-crosslinking effect of the examined multifunctional photoinitiators of type I
and type II used with a concentration between 0.2 to 3.0 wt.%) in basic acrylic PSAs, on tack,
peel adhesion and shear strength, using 100 mJ/cm2 UV dose after 3 min UV exposure, is
presented in Figures 2–4.

UV-crosslinked acrylic pressure-sensitive adhesives containing multifunctional satu-
rated photoinitiators shows different tack (Figure 2) and peel adhesion (Figure 3) profiles
depending on the concentration and the kind of photoinitiator. Figures 2 and 3 give typ-
ical examples, decrease of tack with increase of photoinitiator amount and a maximum
of peel adhesion for small amount of photoinitiator ranging between 0.4 and 0.8 wt.%.
The multifunctional H-abstractors are efficient photoinitiators, although less compared to
multifunctional photocleavable derivatives. The best peel adhesion was activated by the
application of the trifunctional H-abstractor tris-benzophenyloxy phosphineoxide (TBPO)
and the bifunctional butanediol-1,4-bis-benzophenoxy formiate (BBBF). The abbreviation
pcf means partially cohesive failure, and cf means cohesive failure.
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acrylic PSA.

The resistance to creep in a shear strength test (Figure 4) increases with the elevation of
the saturated multifunctional photoinitiator′s concentration. The best shear strength values
of UV-crosslinked acrylic PSAs were observed by using multifunctional hydrogen atom
abstractors. The best shear strength at 20 ◦C and at 70 ◦C occurred with the H-abstractors
like tris-benzophenyloxy phosphineoxide (TBPO) and butanediol-1,4-bis-benzophenoxy
formiate (BBBF).

The best balance between the main performance of UV-crosslinked acrylic PSAs,
reflected the combination of tack, peel adhesion and shear strength, in the investigated
adhesive layer can be achieved with 0.4 to 1.2 wt.% of tris-benzophenyloxy phosphineox-
ide (TBPO).

Further trials, as to UV-crosslinkable acrylic PSAs containing the best multifunctional
type II photoinitiator tris-benzophenyloxy phosphineoxide (TBPO) in selected amounts
between 0.4 to 1.2 wt.%, were conducted with different UV-crosslinking windows and by
using UV doses up to 250 mJ/cm2. The experimental results of these investigations are
presented in Figures 5–10.

Polymers 2021, 13, x FOR PEER REVIEW 7 of 12 
 

 

Further trials, as to UV‐crosslinkable acrylic PSAs containing the best multifunctional 
type II photoinitiator tris‐benzophenyloxy phosphineoxide (TBPO) in selected amounts 
between 0.4 to 1.2 wt.%, were conducted with different UV‐crosslinking windows and by 
using UV doses up to 250 mJ/cm2. The experimental results of these investigations are 
presented in Figures 5–10. 

 
Figure 5. Tack versus UV‐crosslinking time for the use of tris‐benzophenyloxy phosphineoxide 
(TBPO). 

As in the previous trials, the tack of UV‐crosslinked acrylic pressure‐sensitive adhe‐
sives will decrease with increasing of the concentration multifunctional H‐abstractor 
TBPO and with increasing UV‐crosslinking time. The highest tack values were noticeable 
for un‐crosslinked adhesives with partially cohesive failure. 

As can be seen in Figure 6, it is very difficult to predict the maximum peel adhesion 
range for UV‐crosslinked adhesives containing 0.6 wt.% and 0.4 wt.% tris‐benzo‐
phenyloxy phosphineoxide (TBPO) at a UV‐crosslinking time of 2 min, because the phys‐
ical properties of the PSA, such as peel adhesion, are also affected by other factors, like 
chemical architecture of the polymer side chain and an amount of free radicals from mul‐
tifunctional hydrogen atom abstractors. For higher concentrations of TBPO, and with a 
little bit an increase of UV‐crosslinking time above 2 min, the peel adhesion suffers a slight 
decrease. When high peel adhesion is attained at about 2 min UV exposure, when high 
peel adhesion is attained at about 2 min UV exposure, the shear strength at room temper‐
ature and at 70 °C (Figure 7) reaches a satisfactory value. The cohesion of UV‐crosslinked 
acrylic PSAs increases significantly with the UV exposure time. 

Figure 5. Tack versus UV-crosslinking time for the use of tris-benzophenyloxy phosphineox-
ide (TBPO).



Polymers 2021, 13, 4413 7 of 11
Polymers 2021, 13, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 6. Peel adhesion versus UV‐crosslinking time for the use of tris‐benzophenyloxy phos‐
phineoxide (TBPO). 

 
Figure 7. Shear strength versus UV‐crosslinking time for the use of tris‐benzophenyloxy phos‐
phineoxide (TBPO). 

Figure 8 presents the results for the tack, and Figure 9 presents the results for the peel 
adhesion of UV‐crosslinked acrylic PSAs in relation to UV dose applied. It is well known 
that higher ultraviolet doses negatively influence the tack and favorably change the peel 
adhesion, in an area between 50 and 150 mJ/cm2. Moreover, the shear strength (Figure 10) 
increases significantly. Very close adhesive values are obtained for peel adhesion of 
acrylic PSAs containing 0.4 to 0.8 wt.% of tris‐benzophenyloxy phosphineoxide (TBPO). 
Such results are difficult to be interpreted. 

Figure 6. Peel adhesion versus UV-crosslinking time for the use of tris-benzophenyloxy phosphi-
neoxide (TBPO).

Polymers 2021, 13, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 6. Peel adhesion versus UV‐crosslinking time for the use of tris‐benzophenyloxy phos‐
phineoxide (TBPO). 

 
Figure 7. Shear strength versus UV‐crosslinking time for the use of tris‐benzophenyloxy phos‐
phineoxide (TBPO). 

Figure 8 presents the results for the tack, and Figure 9 presents the results for the peel 
adhesion of UV‐crosslinked acrylic PSAs in relation to UV dose applied. It is well known 
that higher ultraviolet doses negatively influence the tack and favorably change the peel 
adhesion, in an area between 50 and 150 mJ/cm2. Moreover, the shear strength (Figure 10) 
increases significantly. Very close adhesive values are obtained for peel adhesion of 
acrylic PSAs containing 0.4 to 0.8 wt.% of tris‐benzophenyloxy phosphineoxide (TBPO). 
Such results are difficult to be interpreted. 

Figure 7. Shear strength versus UV-crosslinking time for the use of tris-benzophenyloxy phosphi-
neoxide (TBPO).

Polymers 2021, 13, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 8. Tack versus UV dose for the use of tris‐benzophenyloxy phosphineoxide (TBPO). 

 
Figure 9. Peel adhesion versus UV dose for the use of tris‐benzophenyloxy phosphineoxide (TBPO). 

Figure 8. Tack versus UV dose for the use of tris-benzophenyloxy phosphineoxide (TBPO).



Polymers 2021, 13, 4413 8 of 11

Polymers 2021, 13, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 8. Tack versus UV dose for the use of tris‐benzophenyloxy phosphineoxide (TBPO). 

 
Figure 9. Peel adhesion versus UV dose for the use of tris‐benzophenyloxy phosphineoxide (TBPO). Figure 9. Peel adhesion versus UV dose for the use of tris-benzophenyloxy phosphineoxide (TBPO).

Polymers 2021, 13, x FOR PEER REVIEW 10 of 12 
 

 

 
Figure 10. Shear strength versus UV dose for the use of tris‐benzophenyloxy phosphineoxide 
(TBPO). 

Figure 10 shows the effect on the shear strength of pressure‐sensitive adhesives con‐
taining various amounts of the three‐functional type II photoinitiator tris‐benzophenyloxy 
phosphineoxide (TBPO), at different radiation doses from a UV lamp. 

As can be seen in Figure 10, from the shear strength results at 20 °C and 70 °C for 
variable UV doses, the most efficient curing of acrylic adhesive will be observed for PSAs 
having 1.2 wt.% TBPO and crosslinked with 250 mJ/cm2 ultraviolet exposure. The meas‐
ured shear strength values at 70 °C were relatively low. 

The increase of the shear strength can be explained by the increase of the internal 
structure stability of adhesive layer. The main influence on this stability is the crosslinking 
density of the polymer [10,15]. Relation between shear strength of any PSA and concen‐
tration of crosslinking agent and/or UV dose is generally typical for every type of cross‐
linked PSAs [25]. It is similar with the general dependence that with increasing crosslink‐
ing density and shear strength, peel adhesion and tack decrease. These dependencies can 
be observed in the results of many researchers, regardless of the adhesive components 
and crosslinking agents used [26]. 

Comparing the presented results of research on completely new photoinitiators with 
the current research on crosslinking of relatively similar acrylate PSAs [27–29], a signifi‐
cant increase in all three performance parameters can be noticed. However, it should be 
noticed that it is not always possible to directly compare the results, especially since the 
properties of the adhesive are influenced not only by the method and effect of crosslink‐
ing, but first by the composition of the base adhesive [30]. 

Summarizing the results of this chapter it can be concluded that the search for new 
multifunctional photoinitiators of type I and type II is worthwhile. The results of perfor‐
mance of adhesives crosslinked with them are very promising, especially since a better 
balance of the properties (tack‐adhesion‐cohesion) is achieved as in the case of previously 
described photoinitiators [31]. 

Multifunctional H‐abstractors, based on benzophenone derivatives, brought a better 
performance (like their photocleavable photoinitiator equivalents) because they had the 
potential to produce two or more different radical initiating species. UV‐crosslinkable 
acrylic pressure‐sensitive adhesives containing one‐ or multifunctional hydrogen atom 
abstractors can pave the way for manufacturing pressure‐sensitive adhesives with opti‐
mum performance properties. 

Figure 10. Shear strength versus UV dose for the use of tris-benzophenyloxy phosphineoxide (TBPO).

As in the previous trials, the tack of UV-crosslinked acrylic pressure-sensitive adhe-
sives will decrease with increasing of the concentration multifunctional H-abstractor TBPO
and with increasing UV-crosslinking time. The highest tack values were noticeable for
un-crosslinked adhesives with partially cohesive failure.

As can be seen in Figure 6, it is very difficult to predict the maximum peel adhesion
range for UV-crosslinked adhesives containing 0.6 wt.% and 0.4 wt.% tris-benzophenyloxy
phosphineoxide (TBPO) at a UV-crosslinking time of 2 min, because the physical prop-
erties of the PSA, such as peel adhesion, are also affected by other factors, like chemical
architecture of the polymer side chain and an amount of free radicals from multifunctional
hydrogen atom abstractors. For higher concentrations of TBPO, and with a little bit an
increase of UV-crosslinking time above 2 min, the peel adhesion suffers a slight decrease.
When high peel adhesion is attained at about 2 min UV exposure, when high peel adhesion
is attained at about 2 min UV exposure, the shear strength at room temperature and at
70 ◦C (Figure 7) reaches a satisfactory value. The cohesion of UV-crosslinked acrylic PSAs
increases significantly with the UV exposure time.

Figure 8 presents the results for the tack, and Figure 9 presents the results for the peel
adhesion of UV-crosslinked acrylic PSAs in relation to UV dose applied. It is well known
that higher ultraviolet doses negatively influence the tack and favorably change the peel
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adhesion, in an area between 50 and 150 mJ/cm2. Moreover, the shear strength (Figure 10)
increases significantly. Very close adhesive values are obtained for peel adhesion of acrylic
PSAs containing 0.4 to 0.8 wt.% of tris-benzophenyloxy phosphineoxide (TBPO). Such
results are difficult to be interpreted.

Figure 10 shows the effect on the shear strength of pressure-sensitive adhesives con-
taining various amounts of the three-functional type II photoinitiator tris-benzophenyloxy
phosphineoxide (TBPO), at different radiation doses from a UV lamp.

As can be seen in Figure 10, from the shear strength results at 20 ◦C and 70 ◦C
for variable UV doses, the most efficient curing of acrylic adhesive will be observed for
PSAs having 1.2 wt.% TBPO and crosslinked with 250 mJ/cm2 ultraviolet exposure. The
measured shear strength values at 70 ◦C were relatively low.

The increase of the shear strength can be explained by the increase of the internal
structure stability of adhesive layer. The main influence on this stability is the crosslinking
density of the polymer [10,15]. Relation between shear strength of any PSA and concentra-
tion of crosslinking agent and/or UV dose is generally typical for every type of crosslinked
PSAs [25]. It is similar with the general dependence that with increasing crosslinking
density and shear strength, peel adhesion and tack decrease. These dependencies can be
observed in the results of many researchers, regardless of the adhesive components and
crosslinking agents used [26].

Comparing the presented results of research on completely new photoinitiators with
the current research on crosslinking of relatively similar acrylate PSAs [27–29], a significant
increase in all three performance parameters can be noticed. However, it should be noticed
that it is not always possible to directly compare the results, especially since the properties
of the adhesive are influenced not only by the method and effect of crosslinking, but first
by the composition of the base adhesive [30].

Summarizing the results of this chapter it can be concluded that the search for new
multifunctional photoinitiators of type I and type II is worthwhile. The results of perfor-
mance of adhesives crosslinked with them are very promising, especially since a better
balance of the properties (tack-adhesion-cohesion) is achieved as in the case of previously
described photoinitiators [31].

Multifunctional H-abstractors, based on benzophenone derivatives, brought a better
performance (like their photocleavable photoinitiator equivalents) because they had the
potential to produce two or more different radical initiating species. UV-crosslinkable
acrylic pressure-sensitive adhesives containing one- or multifunctional hydrogen atom
abstractors can pave the way for manufacturing pressure-sensitive adhesives with optimum
performance properties.

4. Conclusions

The following conclusions are derived from the experiments carried out with multi-
functional intermolecular hydrogen atom abstraction type II photoinitiators:

• There is a clear dependence of shear strength of UV-crosslinked acrylic PSA on pho-
toinitiator concentration.

• The increase of the photoinitiator concentration reduces the tack of UV-crosslinked
acrylic adhesives, the peel adhesion reaches the maximum at about 0.6 wt.% of type II
photoinitiator of tris-benzophenyloxy phosphineoxide (TBPO).

• From the examined multifunctional hydrogen atom abstractors, the best performances
were noticed in the case of the type II photoinitiator of tris-benzophenyloxy phos-
phineoxide (TBPO). Comparative studies between the UV-crosslinked acrylic PSA
containing the selected photoinitiators type II and TBPO showed a little superiority
of the UV-crosslinkable basic self-adhesive containing tris-benzophenyloxy phosphi-
neoxide.

• The UV-crosslinkable acrylic PSA containing TBPO can be used for manufacturing of
self-adhesive materials in form of mounting tapes, masking tapes or wide range of
sign and marking films.
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18. Czech, Z.; Kabatc, J.; Ragańska, P.; Jurek, K. 2-Methylbenzothiazolium derivatives as cationic photoreactive crosslinker for
acrylic pressure-sensitive adhesives containing oxirane groups from glycidyl methacrylate. Int. J. Adhes. Adhes. 2018, 80,
39–42. [CrossRef]

19. Benedek, I. Pressure-Sensitive Adhesives and Applications, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2004.
20. Park, S.H.; Lee, T.H.; Park, Y.I.; Noh, S.M.; Kim, J.C. Effect of the n -butyl acrylate/2-ethylhexyl acrylate weight ratio on the

performances of waterborne core–shell PSAs. J. Ind. Eng. Chem. 2017, 53, 111–118. [CrossRef]
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