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Abstract: Polyureas (PURs) are a competitive polymer to their analogs, polyurethanes (PUs). Whereas
PUs’ main functional group is carbamate (urethane), PURs contain urea. In this revision, a comprehen-
sive overview of PUR properties, from synthesis to technical applications, is displayed. Preparative
routes that can be used to obtain PURs using diisocianates or harmless reagents such as CO2 and
NH3 are explained, and aterials, urea monomers and PURs are discussed; PUR copolymers are
included in this discussion as well. Bulk to soft components of PUR, as well as porous materials and
meso, micro or nanomaterials are evaluated. Topics of this paper include the general properties of
aliphatic and aromatic PUR, followed by practical synthetic pathways, catalyst uses, aggregation,
sol–gel formation and mechanical aspects.

Keywords: polyureas; urea polymers; symptons

1. Introduction

Polyureas (PURs) are a group of polymers which contain the urea group as the
main feature of their monomers, while polyurethanes (PUs) present carbamates as their
functional group. Polyureas have applications in the fields of construction, new materials
and several others, from health to technical fields [1].

Initial studies of polyurethanes (PUs) were carried out by Otto Bayer in 1947 [2]. These
structures were compared with a series of aliphatic polyamides. Nowadays, polyureas
(PURs) and polyurethanes (PUs) are used in a broad range of applications [3]. Their broad
sets of properties, namely high durability and strong resistance to atmospheric, chemical,
and biological factors, mean these materials have a broad range of applications [1].

The requirements for environment- and health-safe polymers are: (a) the products
must undergo facile hydrolysis to create small compounds, (b) degradation products must
be nontoxic, and (c) they must be biocompatible. The most commonly used biodegradable
polymers include polyesters, polyamides, polyethers, PURs and PUs. PURs have not
been widely studied as biodegradable polymers, but one biodegradable PUR containing
trehalose residues in the main chain was synthesized by Kurita et al. [4]; PURs based on
L-lysine have also been studied [5].

Polyureas for use in technical applications were derived from the reaction of an
isocyanate component and a synthetic resin blend component with a “free” amine group.
Polyureas can exhibit a wide range of overall properties based on the volume fraction of its
components and the mixing procedure [6,7].

There are many possible uses for PURs, and they are also the best choice of material for
certain specific applications. Applications for PURs include coatings for truck bed liners as
well as coatings of pipelines due to their high durability and resistance to waterproofness [8].
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There is also wide range of cushioning/impact applications, especially in athletic footwear
and protective body/headgear systems [9], such as greases forming a thicker low-speed
film [10] and porous adsorbents such as those obtained with polyamine—modified PUR
used for the batch adsorption of Cu2+, Ni2+ and Pb2+. Porous polymer materials have the
advantages of low densities, large specific surface areas, adjustable pore sizes and easy
functionalization by a variety of groups, including amino, carboxyl, hydroxyl and thiols
and so on, which aid their use in applications [11].

Amirkhizi et al. [12] prepared PURs to be used as a protective layer to increase
the survivability of structures under extreme conditions such as impact, blasts, ballistic
penetration, etc. [12,13].

In medical applications, Cusco et al. 2016 [14] recently developed a new drug delivery
system for cancer chemotherapy based on PUR/PU nanocapsules that might protect the
medicine from premature activation and specifically release it in tumor cells [14,15].

Lin (2016) proved that a porous PUR monolith is an effective new type of adsorbent
(which has highly porous three-dimensional scaffolds with a well-interconnected meso-
pores and macroporous structure) for water purification that can be prepared by a reaction
between only toluene diisocyanate monomer and water vapor (Figure 1). The monolith
has a continuous interconnected network structure. From the SEM image at 5000× am-
plification (Figure 1), it is clear to see that the monolith has a skeletal structure, which is
composed of fiber-like clusters [16].
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Currently, two important PUR commercial niches are the automotive and construction
industries, with familiar finished products such as bumpers, fascias, waterproofing linings,
thermal insulation materials, industrial flooring and sports facilities [17]. PURs are often
used as coatings for large surface area projects, such as secondary containments, manhole
and tunnel coatings, tank liners and truck bed liners [18].

This revision presents a synopsis regarding PURs in relation to their main applica-
tions, synthetic aspects, synergy with catalysts and main properties, such as mechanical
properties, supramolecular association and gel formation.

2. Polyureas

PURs may be classified as hetero chain macromolecules which contain urea groups
in their chain. Although the chemistry and technology of PURs are of recent origin, the
chemistry of urea and urea derivatives dates back over 100 years [2]. Linear PURs are in
general thermoplastic materials made via the condensation of isocianates with aliphatic
or aromatic amines. PUR made with aliphatic amines exhibit a difference of 50 to 100 ◦C
between melting points and the beginning of decomposition. Accordingly, they are used
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for castings. On the other hand, PURs containing aromatic structures melt near their
decomposition temperatures [19].

Polymers which only have urea moiety for interchain interaction have the intrinsic
ability to form multiple donor–acceptor bonds based on urea H bonding linkage; thus,
linear PUR H-bonds stabilize intermolecular interactions. The resulting polymer contains
highly crystalline hard segments and urea–urea interactions, conferring the polymers with
low solubility in most common solvents and sparse solubility in aprotic dipolar solvents,
such as dimethylformamide (DMF), dimethylacetamide (DMAc) or N -methyl-pyrrolidone
(NMP) [20].

The properties of PURs can be attributed to their chemical composition and the micro-
phase structures. The interactions among the chains via hydrogen bonding contribute a
lot to the aggregation of hard segments into hard domains [21]. Hydrogen bonds in PUR
make it more flexible than materials such as epoxy or PU. When stress is applied to the
cured material, the hydrogen bonds break, while the covalent polymer bonds remain intact.
When the stress is removed, the hydrogen bonds reform to prevent damages [22].

Solvent choice remains critical for maintaining a homogeneous reaction and avoiding
viscosity increases upon PUR formation, a critical problem for large-scale PUR produc-
tion. For example, studying non-segmented poly(dimethyl siloxane) (PDMS)—containing
PU from a simple addition of co-monomers, a noticeable change in viscosity as molecu-
lar weight increases was noticed [23]. Segmented PUR employs a monomeric diamine
chain extender and produces PUR with distinct properties in comparison to their non-
segmented analogs. Segmented PDMS-PUR synthesis traditionally requires binary solvent
mixtures [23], which are usually applied to synthetic elastomers.

The hard domains of PURs are reversible physical cross-links, which play a critical role
in their physical properties. Despite the reversible physical cross-links in PURs, chemical
cross-linking agents can be added to improve basic structural frameworks for PURs, leading
to the enhancement of the mechanical properties and resistance to solvents [21].

Isocyanates can be synthesized in many ways (Figure 2). The Curtius, Hoffman, and
Lossen rearrangements can involve nitrene as an intermediate but are not useful for large-
scale operations (Figure 2). The use of azides, on the other hand, is hazardous, and the
utility of the Hoffman and Lossen rearrangements is limited to the preparation of aliphatic
isocyanates. Alternatively, tertiarybutyl hypochloride could be used for nonaqueous
Hoffman rearrangements, but the costs of this option are impracticable [24].
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rangements. From reference [24].

The most common method of producing isocyanates is “the phosgene route” (Figure 3).
This technique consists of a reaction between an amine and phosgene [25]. Although
harmful, the use of phosgene and phosgene substitutes is still the traditional method for
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the formation of symmetrical PURs in the industry. In the case of unsymmetrical PURs, the
efficiency is joined with the competitive formation of the symmetrical products. In recent
years, toxic and unstable reagents, such as phosgene and isolated isocyanides, ruled non
safe in many policies, shall be substituted for cleaner and inherently safer alternatives [26].
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A very attractive alternative is the replacement of phosgene by carbon dioxide. The
mechanism of this transformation passes through iminophosphoranes, which can react with
CO2 to generate isocyanates. This reaction is compatible with a large number of groups,
and therefore, has various synthetic uses that and can be exploited for the preparation
of heterocyclic compounds. Isocyanate derivatives have been obtained by this approach
in good yields. However, to obtain high-purity products, it is necessary to avoid the
traditional triphenylphosphine [28].

3. Synthesis of Polyureas

Polyurea chemistry is a relatively new synthetic process but is similar to the one used
for the synthesis of polyurethanes. For PUs, the catalyst used determines the properties
of the polymers which are manufactured by a polyaddition reaction between di- or poly-
isocyanates and two or multi-functional polyols [29]. Due to the high nucleophilicity
of amines over that of hydroxyl groups (alcohols), PURs do not require a catalyst as is
required for PUs [30].

As presented by Molinos [31], the reaction of primary amines and CO2 to form
the respective ammonium carboxylate facilitates the subsequent reaction to yield iso-
cyanates. As the conversion of CO2 to isocyanates is endothermic (∆HR = +58 kJ/mol and
∆GR = +51 kJ/mol) and this reaction lacks a proper catalyst, in addition to the high reactiv-
ity of the isocyanate towards several products such as urea, isocyanurate and carboiimides,
this process is very unlikely (Figure 4) [31].

In general, the reactivity toward isocyanates of alcohol polymers is greater than that
of monomers; hence, with increasing alcohol concentration, the relative concentration of
the former is augmented, and consequently, the overall reaction process is enhanced [32].
Satchell (1988) showed that under 8 × 10−1 M, ethanol is only in monomeric form and
the loss of reactivity is important. They considered the fact that monomeric alcohols are
1000 times less reactive than trimer forms. The authors conjectured that the lack of reactivity
in the concentration range (2 × 10−1–2 × 10−4 M) is due to a loss of catalytic effect (due to
a lack of nucleophile polymers) in addition to low isocyanate reactivity [33]. However, as



Polymers 2021, 13, 4393 5 of 44

a consequence, the addition of the isocyanate, the alcohol and amine moiety took place,
resulting in bis-urea or bis-urethane compounds b and c, shown in Figure 5 [34].
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Reagents and conditions: (i) 1-Octylamine/N,N′-dimethylformamide/130 ◦C; (ii) 1-octanol/N,N′-
dimethylformamide/130 ◦C. From reference [34].

The topic of stained PURs has received very little academic attention. These oligomers
are amorphous in nature and they are a colored powder. They have low thermal stability.
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Due to the urea groups, they can be compatible with thermoplastics and can easily form
colored articles, even when processed at high temperatures [35]. All the polyureas based
on azo disperse dyes of the type AAB were prepared as follows, from reference [19]: “To an
ice cooled solution of azo disperse dye sample (0.01 moles) in dry tetrahydrofuran (50 mL) a solution
of hexamethylene diisocyanate (0.01 mole) in 50 mL dry tetrahydrofuran was added gradually with
constant stirring. The colloidal suspension which formed immediately was then stirred at room
temperature for an hour”. The resultant mixture was refluxed for 2 h, and then filtered off
and dried (95% yields) (Figure 6) [19].
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Synthetic or natural polymers that contain labile groups or bonds (hydrolysis or
enzyme digestion) are called biodegradable polymers. Although synthetic polymers
have some obvious advantages over their natural counterparts, these polymers are quite
expensive and therefore cannot be used in the commercial-scale production of coated urea
yet [36].

Urea is seldom used as start material in the preparation of polyurea, but Lu et al.,
2016 prepared a series of novel polyurea-coated urea (PCUR) fertilizers using polyurea
synthesized by the reaction of isocyanates with liquid urea as the main coating material.
The granulated urea was firstly heated and changed into a liquid urea (LU). Then, LU,
polymethylene polyphenyl isocyanate (PAPI) and (or) modifier were mixed uniformly to
obtain the coating liquid. Then, a measured amount of the coating liquid was sprayed
and the final polyurea-coated urea (PCU) was obtained. These products were denoted as
PN (PUR via LU and PAPI), by including: an amino-coated PNA, ethylene glycol PNE,
diethylene glycol PNG, and PNX; the others were PCUR coated. Figure 7 shows the FTIR
spectra of urea, PN and PNG. Peak assignments are taken from reference [37]: (a) urea,
(Figure 7c): the presence of absorption peaks at 3344, 3447 and 1157 cm−1 are attributed
to the stretching vibration of N–H bonds. The peaks in the region of 1629–1680 cm−1 are
attributed to the C=O stretching bond of urea. The absorption peak for urea observed at
1460 cm−1 represents the stretching vibration of the C–N bond (Figure 7c); (b) PN: the
absorption peak observed at 3329 cm−1 represents the stretching vibration of the N–H
bond, the peak at about 1675 cm−1 is due to the stretching vibration of the C=O bond
(Figure 7b), the 2255 cm−1 peak reflects the stretching vibration from the –N=C=O bond,
and finally, the absorption peaks at around 1596 and 1526 cm−1 might be associated with
δN–H bonding. The results in spectra a and b demonstrated the occurrence of the chemical
reactions between the N–H of LU and NCO groups of PAPI and the formation of PU;
(c) PNG: peaks for PNG observed at 3292, 1531 and 1713 cm−1 correspond to the stretching
vibrations of N–H, δN–H and C=O bonds, respectively (Figure 7a). In addition to these
peaks, comparison with the FTIR spectra of PN, the FTIR spectra of PNG shows that new
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absorption peaks appearing at 2951–2899, 1418, and 1072 cm−1 can be assigned to νC–H,
δC–H, and νC–O–C of diethylene glycol, respectively, indicating the existence of diethylene
glycol in PNG (Figure 7) [37].
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The general methodology for PCUR synthesis starts by heating urea particles to
50–70 ◦C in a rotary drum. The coating liquid is sprayed uniformly onto the surfaces
of urea particles in the rotary drum and cured for approximately 5 min to produce the
polyurethane coating materials [38].

The common synthetic approach to the creation of hyper-branched polymers is based
on the polymerization of AB2 e (or ABm) monomers possessing complementary a and b
functionalities (e.g., hydroxyl and carboxylic acid groups). Hyper-branched polyurethane
(PUR) dispersions were developed in three steps, based on two-generation hyper-branched
polyester, isophorone diisocyanate (IPDI) and Bis MPA (Figure 8) [39].

Later, hyper-branched poly(ether-urethane)s were reported; the methodology in-
volved azide-type monomers. Hyper-branched polyurea and poly(urethane-urea) are also
reported via relatively simpler methods, but they are fully hard segmented. More recently,
segmented poly (urethane–urea) elastomers via the A2 plus B3 approach using convention-
ally prepared polyurethane prepolymers and commercially available triamines as A2 and
B3 monomers were reported [39,40]. A potential useful poly(ether-urea) polymer that has
an ether group is still unavailable. This is due to the lack of an appropriate monomer that
would require: (i) a nucleophilic substitution reaction for ether formation and (ii) functional
group transformation leading to a highly reactive isocyanate group or its intermediate in
addition to the protection and deprotection of counter functional groups. In one study,
the synthesis and characterization of the first example of hyper-branched poly(ether-urea)
with aryl-aryl-ether and aryl-alky-ether connectivity and hyper-branched poly(aryl-ether-
urea) copolymer was reported. Synthetic methodology involves the formation of blocked
isocyanate and azide groups and does not involve a protection–deprotection strategy for a
counter functional group, that is, for amine (Figures 9 and 10) [41].
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Fiber structures presented by polymers usually require regular chain monomer struc-
tures. Accordingly, as described by Li [42], they used 2 mol of 4,4-Diphenylmethane
diisocyanate (MDI) with 1 mol of diamine to form NCO-terminated prepolymer (step 1 in
Figure 11). In the second step, different mole ratios of aromatic/aliphatic diamine were
used to form pure aromatic polyurea, aliphatic polyurea and their co-polymers, as shown
in steps 2, 3 and 4 (Figure 11) [42].

The monomer composition of their samples is listed in Table 1 [42].
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Table 1. Monomer compositions and the intrinsic viscosity of the polyurea samples. From reference [42].

Sample
Monomer

MDI (g)
(M1)

m-PDA (g)
(M2)

1,6-HDA (g)
(M3)

Mole Ratio of
M1:M2:M3 [η] (dL/g)

a 5.0 2.16 0.00 2:2:0 0.62

b 5.0 1.62 0.58 2:1.5:0.5 0.63

c 5.0 1.08 1.16 2:1.0:1.0 0.90

d 5.0 0.54 1.74 2:0.5:1.5 0.33

e 5.0 0.00 2.32 2:0:2 0.23

Polyurethanes and polyureas have versatile material properties. Compared with PUs,
PURs can have stronger inter-molecular interactions between PU chains. Urea moieties
also have more stability than carbamic groups. Polyurethanes and polyureas can be rigid,
semi-rigid or flexible depending on the monomers and the polymer microstructures. Their
industrial preparations are based on isocyanate chemistry, where the isocyanates are reacted
with diol or diamine functional groups, respectively [43].

Locatelli et al., 2015 presented the following recipe for the preparation of polyurea
nanoparticles: 4,4′-MDI, poly(PO/EO) monoamine and diamines were dissolved sepa-
rately in toluene (10% wt). The 4,4′-MDI and bisaniline solutions were prepared at 100 ◦C
and 40 ◦C, respectively, and then allowed to cool down to room temperature. The other
solutions were prepared at room temperature. The polyether–polyurea–polyether nanopar-
ticles (PNPs) were synthesized via a two-step reaction. First, the polyether monoamine and
the diamines (poly(PO/EO)) solution was added drop by drop to the 4,4′-MDI solution
with stirring. During the second step, the diamine solution was also added drop wise to the
resulting solution, with stirring as well. The reactant had a mole ratio of 1: 1 between the
NCO from the 4,4′-MDI and the NH2 from the poly(PO/EO) monoamine and the diamines.
A diamine/monoamine molar NH2 ratio of 40 (i.e., diamine/monoamine molar ratio of
20) was used in their work [44]. Following this, a slight excess of diamine was added
(0.1% mol) to ensure the complete reaction of the NCO groups. The final polyurea PNP
suspensions were stored at room temperature [44].

Hirai (1999) prepared semiconductor nanoparticle–PUR composites using reverse
micellar systems via in situ diisocyanate polymerization. As compared to semiconductor
nanoparticles in reverse micelles and also CdS nanoparticles surface-modified with thiols,
PUR and polythiourethane composites are attractive for use in photocatalysts [45].

Field-effect transistors (FETs) are simple devices composed of three contacts (source,
drain and gate), a dielectric layer and a semiconducting layer. FETs essentially act as
electronic valves by modulating the semiconductor channel conductance via the gate
field [46]. A modified PUR with a pyridyl group was prepared for a FET device. Un-
doped poly(pyridylureas) are considered semiconductors (σ = 10−9 (Ω cm)−1), but af-
ter doping with I2, the electrical conductivity increases by several orders of magnitude
(σ = 10−7 (Ω cm)−1). Poly(pyridylureas) and poly(pyridylthioureas) were obtained by
reacting phosgene or thiophosgene with 2,6-diaminopyridine, using pyridine or THF as
the solvent, according to the reaction below (Figure 12) [47].

Polymers 2021, 13, x FOR PEER REVIEW 11 of 48 
 

 

rately in toluene (10% wt). The 4,4′-MDI and bisaniline solutions were prepared at 100 °C 
and 40 °C, respectively, and then allowed to cool down to room temperature. The other 
solutions were prepared at room temperature. The polyether–polyurea–polyether na-
noparticles (PNPs) were synthesized via a two-step reaction. First, the polyether mon-
oamine and the diamines (poly(PO/EO)) solution was added drop by drop to the 
4,4′-MDI solution with stirring. During the second step, the diamine solution was also 
added drop wise to the resulting solution, with stirring as well. The reactant had a mole 
ratio of 1: 1 between the NCO from the 4,4′-MDI and the NH2 from the poly(PO/EO) 
monoamine and the diamines. A diamine/monoamine molar NH2 ratio of 40 (i.e., dia-
mine/monoamine molar ratio of 20) was used in their work [44]. Following this, a slight 
excess of diamine was added (0.1% mol) to ensure the complete reaction of the NCO 
groups. The final polyurea PNP suspensions were stored at room temperature [44]. 

Hirai (1999) prepared semiconductor nanoparticle–PUR composites using reverse 
micellar systems via in situ diisocyanate polymerization. As compared to semiconductor 
nanoparticles in reverse micelles and also CdS nanoparticles surface-modified with thi-
ols, PUR and polythiourethane composites are attractive for use in photocatalysts [45]. 

Field-effect transistors (FETs) are simple devices composed of three contacts (source, 
drain and gate), a dielectric layer and a semiconducting layer. FETs essentially act as 
electronic valves by modulating the semiconductor channel conductance via the gate 
field [46]. A modified PUR with a pyridyl group was prepared for a FET device. Un-
doped poly(pyridylureas) are considered semiconductors (σ = 10−9 (Ω cm)−1), but after 
doping with I2, the electrical conductivity increases by several orders of magnitude (σ = 
10−7 (Ω cm)−1). Poly(pyridylureas) and poly(pyridylthioureas) were obtained by reacting 
phosgene or thiophosgene with 2,6-diaminopyridine, using pyridine or THF as the sol-
vent, according to the reaction below (Figure 12) [47]. 

 
Figure 12. Synthesis of poly(pyridilureas) and poly(piridilthioureas). From reference [47]. 

A detailed recipe for this FET-like PU-Pyridyl and poly(pyridylthioureas) is found 
in reference [47]. 

Xue-Lian (2008) [42] synthesized polyurea samples in two stages, so that the se-
quence structure of the chain could be controlled more regularly. In the first step, 2 mol of 
MDI reacted with 1 mol of diamine to form NCO-terminated prepolymer, as shown in 
step 1 (Figure 11). In the second step, different mole ratios of aromatic/aliphatic diamine 
were used to form pure aromatic polyurea, aliphatic polyurea and their co-polymers, as 
shown in steps 2, 3 and 4 (Figure 11). The Tg of the polyurea samples were measured by 
DSC and analyzed by the Fox model (Equation (1)). Figure 4 shows that the Tg of pure 
aromatic polyurea is 132 °C, whereas pure aliphatic polyurea is 101 °C. The glass transi-
tion temperatures of co-polyurea samples decrease with the increase in 
1,6-diaminohexane (1,6-HDA) content. The Tg data of co-polyurea samples are shown in 
Figure 13 [42]. 

Figure 12. Synthesis of poly(pyridilureas) and poly(piridilthioureas). From reference [47].



Polymers 2021, 13, 4393 11 of 44

A detailed recipe for this FET-like PU-Pyridyl and poly(pyridylthioureas) is found in
reference [47].

Xue-Lian (2008) [42] synthesized polyurea samples in two stages, so that the sequence
structure of the chain could be controlled more regularly. In the first step, 2 mol of
MDI reacted with 1 mol of diamine to form NCO-terminated prepolymer, as shown in
step 1 (Figure 11). In the second step, different mole ratios of aromatic/aliphatic diamine
were used to form pure aromatic polyurea, aliphatic polyurea and their co-polymers, as
shown in steps 2, 3 and 4 (Figure 11). The Tg of the polyurea samples were measured by
DSC and analyzed by the Fox model (Equation (1)). Figure 4 shows that the Tg of pure
aromatic polyurea is 132 ◦C, whereas pure aliphatic polyurea is 101 ◦C. The glass transition
temperatures of co-polyurea samples decrease with the increase in 1,6-diaminohexane
(1,6-HDA) content. The Tg data of co-polyurea samples are shown in Figure 13 [42].

1
Tg

=
1−W2

Tg,1
+

W2

Tg,2
(1)

where Tg,1, Tg,2 and Tg are the glass transition temperatures of pure aromatic W2polyurea,
pure aliphatic polyurea and the co-polyurea, respectively. W2 is the weight fraction of the
aliphatic polyurea component in the co-polymer. In the case of pure aromatic polyurea,
the thermal degradation temperature is 290 ◦C, whereas the thermal degradation temper-
ature of pure aromatic polyurea is 357 ◦C. On the other hand, the thermal degradation
temperatures of the co-polyurea samples decrease significantly to 250–260 ◦C, indicating
that the incorporation of the 1,6-HDA segment significantly reduced the thermal stability
of co-polyureas. According to the Freeman–Carroll equation (Equation (2)), the thermal
degradation activation energy of the polyurea samples can be estimated from the data
of initial thermal degradation of the samples, where Ed is the thermal degradation acti-
vation energy, α is the weight loss fraction, R is the gas constant, and T is the absolute
temperature [42].

∆ ln(dα/dt)
∆ ln(1− α)

= − Ed
2.303R

× ∆(1/T)
∆ ln(1− α)

+ n (2)

Comparative TGA of EDA-based polyurea microcapsules with metribuzin as a core is
shown in Figure 14. Metribuzin is a known herbicide, the encapsulation of which would
bring potential uses in health and environment fields. The compositional analysis of
microcapsules in terms of percentage was carried out using TGA data and the calculation
of derivative weight loss [48].
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Pure metribuzinon was analyzed via TGA, and it was found that the loss in weight
started at 140 ◦C and finished at about 280◦C in a single stage (Figure 14A). The TGA
thermogram of microcapsules showed weight loss in two steps, with a rise in temperature
(i.e., 140–310 ◦C, 310–630 ◦C) (Figure 14B). The first substantial weight loss (approximately
58%) in microcapsules was observed at about 140–310 ◦C and was attributed to loss due to
the hydrophobic core material along with solvent (xylene). The second stage of weight loss
was due to shell wall degradation of EDA-based polyurea microcapsules and was found to
be about 40% in the temperature range of 310–630 ◦C. The thermal stability of polyurea
was extended up to 300–350 ◦C, which is higher than the phenol formaldehyde and urea
formaldehyde shell microcapsules with thermal stabilities around 280 ◦C [49].

Polyureas, which have good thermal stability, chemical resistance and good mechan-
ical properties, can be exploited as matrices for high-performance advanced composite
materials, as membranes for gas separation and as coatings. A synthetic electro-active
polyurea that revealed valuable electro-chromic performance with a high contrast value,
moderate switching times, acceptable coloration efficiency and excellent stability was
prepared by Chao’s group [50].

Electrochemical cyclic voltammetry (CV) is widely used to characterize the redox
properties of electro-active polymers, as in the study by Yeh et al., 2013 [51]; their polymer
was characterized by CV using a typical three-electrode electrochemical cell. Figure 15
shows the CV curve of the electro-active polyurea (EPU), a three-pair redox peak (272,
499, and 638 mV), which is different from the typical two-pair redox peaks (350 and
800 mV). Four different oxidation states are shown in Figure 15. CV measurements of
EPU measured in aqueous H2SO4 (1.0 M) at a scan rate of 50 mVs−1 of EPU can be
observed and attributed to: Leucoemeraldine base (LB), emeraldine base I (one quinoid
ring in oligoaniline segment, EBI), emeraldine base II (two quinoid rings in oligoaniline
segment, EBII) and pernigraniline base (PNB). For the CV curve of EPU, the first oxidation
peak corresponded to the transition from LB to EBI, the second peak corresponded to the
transition from EBI to EBII and the third peak corresponded to the transition from EBII to
the PNB form [51].

The synthesis of polyureas usually requires highly toxic polyisocyanates, which are
derived from even more toxic phosgene materials. It would be an appreciable strategy
if CO2 could be used as a starting material to replace the toxic polyisocyanates in the
production of PUs (Figure 16) [18].

However, this route has been barely investigated since the first patent in 1951, except
for the investigations of Yamazaki and Rokicki in the 1970–1980s. They used stoichiometric
catalysts, such as diphenyl phosphate, phosphorus chlorides or N-acylphosphoramidites,
in pyridine or acetonitrile medium. Herein, a new process for the synthesis of PURs from
diamines and CO2 without the use of any catalyst or solvent is included [18].
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Shang (2012) [48] describes that in preliminary study, hexamethylenediamine (HDA)
was selected as a model substrate to test this protocol. The CP/MAS13C NMR spectrum of
the solid product, which was produced from the reaction of HDA and CO2 in the absence
of a catalyst, showed a characterization peak at 159.7 ppm, indicating the formation of
carbonyl in the urea linkage. Furthermore, the structure of the solid product was also
characterized by FTIR spectroscopic analyses (Figure 17).

The peaks at 1618 and 1577 cm−1 are assigned to the amide I (C=O) and amide II
(CO–N–H), respectively, a clear indication of the formation of the urea moiety. Interestingly,
the vibration of C=O and N–H observed at 1618 and 3329 cm−1, respectively, suggests that
the solid product was made with ordered H bonding, as indicated in Figure 17b. From these
data, it could be proposed that the solid product based on HDA and CO2 has a PU structure
with the urea linkage and is connected by the ordered H bonding, as schematically shown
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in Figure 18. Accordingly, the polyurea derivative (denoted as polyurea-HDA) could be
successfully produced from the reaction of HDA and CO2 in the absence of a catalyst [48].
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The use of NMR in the study of PURs is difficult due to their low solubility in most
common solvents due to the presence of hydrogen bonds between their chains [52]. An
alternative study displayed in Figure 19 shows the 1H-NMR spectra of polyurea samples.
In this study, detailed assignments are presented. in aromatic polyurea, (a) a strong signal
at 3.8 ppm (1) corresponds to the protons of methylene linked with a phenyl ring of MDI
(methylene hydrogen, labeled 1 in the top of the spectra and 1 as well in the urea monomer),
whereas the transitions at 7.0–7.6 ppm (4, 6 and 8) are associated with the phenyl ring
protons of MDI and m-phenylenediamine (m-PDA) (aromatic hydrogen labeled 4, 6 and 8
in the top of the figure and 4, 6 and 8 in the monomer molecule). Further, the peaks at 8.5
and 8.7 ppm (2 and 3) correspond to the associated aromatic urea group protons (hydrogen
atoms labeled 2 and 3 in the top and bottom of the figure). In the case of aliphatic polyurea
(e), the resonance peaks associated with the phenyl ring of MDI are still in the range of
7.0–7.6 ppm, while those resonance peaks associated with the urea group shift to 8.4 and
8.8 ppm (9 and 10). The protons of methylene on the 1,6-diaminohexane (1,6-HDA) unit
resonate at around 1.2–1.5 ppm (11 and 12). In the case of co-polyurea samples (b–d),
there are three proton peaks at 8.3, 8.5 and 8.8 ppm, respectively. This is because the urea
linkages in the co-polyurea are in three different modes. It can also be found that the proton
resonance of methylene on the 1,6-HDA unit becomes stronger as the content of 1,6-HDA
increases. Data from reference [42].
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Oligomers have a special molecular structure and limited molecular mass constituted
of a set of similar or different units that are repeatedly connected with each other. Sharzae-
hee (2020) prepared water-soluble oligomers synthesized using urea, phosphorous acid
and sulfamic acid in various molar ratios in melt conditions at a maximum temperature of
150 ◦C, while the evolved gas was removed by a condenser [53].

Urea oligomers can be successfully prepared in a one-pot reaction. Although chro-
matography is necessary to separate these oligomers, this route is rapid and has advantages
over the multi-step method that uses protection groups. The trimer and tetramer are the
most active oligomers. As shown in Figure 20, when 3 is reacted in excess, this approach
successfully yields dimers, trimers and tetramers, as well as a fraction containing pentamers
through to octamers [54].
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Figure 20. Synthesis of urea oligomers. From reference [54].

As depicted in Figure 21, the polymerization of oligomeric PDMS diamines, urea and
the optional 1,3,-bis(3-aminopropyl)tetramethyldisiloxane (BATS) yielded non-segmented
(poly (PDMS-co-urea)) and segmented copolymers (poly(PDMS1.7kU)x-copoly(BATSU)y).
Given the absence of an appropriate solvent, these reactions were conducted above the
melting point of urea (133–135 ◦C). In contraposition, urea decomposes above 150 ◦C into
ammonia and isocyanic acid, which reacts with primary amines and forms the desired
1,3-dialkylurea linkages in the absence of isocyanates. Therefore, care must be taken to
avoid side product formation, which in the context of linear polyureas includes urea biurets,
1,1-dialkylurea or imidazolidone cycles. This only includes the use of primary amines, a
stoichiometric excess of diamine vs. urea and temperatures in excess of 200 ◦C [23].
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Recently, electroactive polymers incorporated with aniline oligomers have attracted
research attention because of their superior properties, such as good solubility, mechanical
strength and the ability to form film-conjugated oligoaniline through polycondensation
or oxidative coupling polymerization. These copolymers contain well-defined conju-
gated segments and also provide an opportunity to present a clearer understanding about
the structure–property relationships and the conducting mechanism of conjugated poly-
mers [51]. The synthetic routes for the preparation of oligoaniline, EPU is shown in
Figure 22, taken from reference [51].
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New pyridine-containing diisocyanates were synthesized. Substituted pyridine con-
taining diacids (DA1–3) were synthesized using the modified Chichibabin pyridine syn-
thesis via the reaction of 4-methylacetophenone with substituted benzaldehydes and the
subsequent oxidation of resultant dimethyl compounds [55], as shown in Figure 23.

In their work, Tamami and Koohmareh [55] synthesized the diacids and then con-
verted them to the corresponding 4-aryl2,6-bis(4-isocyanatophenyl)pyridines (DIC1−3)
by Weinstock modification of Curtius rearrangement using triethylamine, ethylchlorofor-
mate and active sodium azide reagents. The intermediate diacylazides were subjected
to thermal decomposition in dry benzene at reflux temperature to yield the diisocyanate
monomers [55].

Attempts to synthesize new types of thermally stable polyureas such as phosphorus-
containing and heterocyclic polyureas to obtain different properties have been reported [56].
This particular study is concerned with the synthesis of 4-(4-dimethylaminophenyl)-1,2,4-
triazolidine-3,5-dione (DAPTD) as a new heterocyclic monomer and its polymerization
reaction with commercially available diisocyanates [56].

3.1. Monomer Synthesis

A comprehensive route of the heterocyclic monomer DAPTD was synthesized in five
steps, starting from 4- dimethylaminobenzoic acid 1. The synthesis of acyl azide 2 was
prepared by “one-pot” Weinstock modification of the Curtius’ reaction. In this example,
the isolation of intermediate was not required, and the acyl azide was obtained in a
comparatively purer form and in good yield. Next, the acyl azide was subjected to thermal
decomposition in dry toluene (reflux temperature) to yield isocyanate 3. Subsequently,
this isocyanate was reacted with ethyl carbazate and semicarbazide 4 was obtained in a
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quantitative yield. The cyclization of compound 4 with sodium ethoxide gave new urazole
6 (Figure 24) [56].
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The purity of monomer 6 was checked by TLC. Their 1 H-NMR spectrum was also
correct. The structure of urazole 6 was also confirmed by IR, UV–vis, fluorimetric, mass
spectra and elemental analysis, taken from reference [56].

3.2. Polymerization Reactions

Once the monomer 6 as a model compound was obtained in high yield and purity,
it become attractive to develop new photoactive polyureas. Thus, hexamethylene di-
isocyanate (HMDI) 8, IPDI 9 and toluene-2,4-diisocyanate (TDI) 10 were selected. The
polymerization reaction of monomer 6 with these diisocyanates was performed under con-
ventional solution polymerization techniques as well as high temperature in the presence of
different catalysts PU1-PU3 (Figure 25). Following reference [56], the polymerization reac-
tion of 6 with HMDI was carried out with two different methods. In method I, the reaction
mixture was heated gradually from room temperature to 85 ◦C in the presence of pyridine,
dibutyltin dilaurate and triethylamine. The resulting polyureas, PU1A-PU1C, have good
inherent viscosity and high yield. In method II, the reaction mixture was refluxed up for 1,
3 and 6 min in DMAc [56].
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The resulting polyureas, PU1D-PU1H, have high yield and good inherent viscosity in
comparison with method I [56].

3.3. Synthesis of Monomers

As starting materials for the preparation of diisocyanates, the stable diamino dihy-
drochlorides of the dianhydrohexitols with all three possible configurations (d-gluco 4, lido
5, d-manno 6) were prepared according to known procedures (Scheme 1) (Figure 26) [57].

Phosgene was used to transform the diamino compounds into the diisocyanates. This
phosgenation procedure was performed in two steps, combining cold and hot phosgenation
conditions. Firstly, anhydrous phosgene was added in two equimolar excess to a cooled
suspension of the corresponding diamino dihydrochloride 4, 5 and 6 in anhydrous toluene
(cold phosgenation). The reactions were monitored using IR spectrometry. The interme-
diates, probably mixtures of dicarbamic acid dichloride and dicarbamic acid dichloride
dihydrochloride, were refluxed to give the corresponding diisocyanate (hot phosgenation).
Under these conditions, the formation of polyureas as a side reaction could be avoided.
A simple filtration step with charcoal afforded the diisocyanates dianhydrohexitols with
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d-gluco (7), lido (8) and d-manno configuration (10) as analytically pure materials. The
yields of the phosgenation were dependent on the stereochemistry of the dianhydrohexitols.
In contrast to the yields which were obtained by nucleophilic substitution reactions at
the hydroxy groups at the positions 2 and 5, the addition of phosgene proceeded better
when the amino groups were orientated out of the molecular plane (exo configuration).
Consequently, the synthesis of the l-ido (exo, exo)-configurated diisocyanate 8 gave the
highest yields, the synthesis of the d-gluco (exo, endo) 7 diisocyanate gave a 64% yield,
whereas the stereochemically unfavored d-manno (endo, endo) configuration 10 only gave
a moderate yield, 41%. Alternatively, we used diphosgene for the formation of diiso-
cyanates in order to avoid the application of pure phosgene. It is known that diphosgene
gave high yields only when aromatic amines and activated aliphatic amines were treated.
By reaction of the l-ido configurated diamino compound 5 with three molar equivalents
of diphosgene in anhydrous dioxane under the same conditions used for the phosgene
reaction, the corresponding crude diisocyanate 8 had to be purified by distillation and was
isolated in only 5% yield. Additionally, we synthesized one dithioisocyanate derivative
of the dianhydrohexitols to explore the reactivity of the sulfur-containing monomer. For
the stereochemical reasons already described, the l-ido-configurated diamino compound
5 was reacted with thiophosgene to give the dithioisocyanato compound 9 in 93% yield.
The reaction was monitored using IR spectrometry and no formation of poly(thiourea) was
observed. Impurities were removed so that analytically pure compounds were obtained.
The diisocyanate 7, 8 and 10 were treated with selected aliphatic and aromatic monomers
in the polyaddition procedure described. As petrochemically derived monomers, one diol
derivative (1,4-butanediol), one dithiol derivative (1,4-butanedithiol), one aliphatic diamine
derivative (1,4-diaminobutane) and one aromatic diamino monomer (1,3-diaminobenzene)
were used as monomers. Furthermore, as dianhydrohexitol monomers, the diol 1,4:3,6-
dianhydro-d-sorbitol (1) and the diamino compound 2,5- diamino-2,5-dideoxy-1,4:3,6-
dianhydro-d-sorbitol (4) were selected for polyaddition (Figures 27–29) [57].
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The polyaddition reaction with 1,4-butanediol and the corresponding diisocyanates
7, 8 and 10 afforded the polyurethanes 15 with l-ido, 23 with d-gluco and 26 with d-
manno configuration. With 1,4-butanedithiol, the l-ido-configurated poly(thio-urethane) 11
was accessible. 1,4-Diaminobutane was reacted to give the l-ido polyurea 13. Using 1,3-
diaminobenzene, polyureas of l-ido (17), d-gluco (24) and d-manno (27) configuration were
prepared. The polyaddition of 7 with 1,4:3,6-dianhydrosorbitol (1) as monomer compound
led to polyurethane 19 with a heterocyclic backbone completely derived from carbohy-
drate material. The corresponding polyureas of l-ido (21), d-gluco (25) and d-manno (28)
configurations were obtained by the polyaddition of the corresponding diisocyanates 7, 8
and 10 with 2,5-diamino-2,5-dideoxy1,4:3,6-dianhydro-d-sorbitol (4). In addition to this,
the polyaddition reactions with the described aliphatic and aromatic monomers were
performed using the l-ido dithioisocyanate 9. The corresponding polymers containing
thiourethane (16, 20), thiourea (14, 18, 22) or dithiourea linkages (12) were accessible
straightforwardly. The reactivity and yields were similar to those reported for diisocyanate
8 [57].
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3.4. Synthesis of Polymers

The novel diisocyanato monomers 7, 8 and 10 and the dithiocyanato compound
9 were subjected to polymerization. As a polymerization technique, the polyaddition
procedure was performed. As polyaddition catalysts, various Lewis bases (tertiary amines,
i.e., 1,4-diazabicyclo-[2.2.0]octane or triethylamine) as well as Lewis acids (especially
tin organic compounds) have been used [17–19]. The mechanism of the catalysis is not
completely understood, which means that for every polyaddition, the best suitable catalyst
and solvent system has to be screened. For most polyaddition reactions, dibutyltindilaurate
was used. As a solvent, N,N-dimethylacetamide (DMAc) was preferred. With other
aprotic polar solvents such as N,N-dimethylformamide (DMF) or dimethyl sulfoxide
(DMSO), no precipitation of the polymer was observed, but gel-formation was observed.
Advantageously, following the polyaddition procedure, polymers were obtained in good
to almost quantitative yields. Similarly to the stereochemical effects during the addition
reaction of phosgene to the corresponding diaminodianhydrohexitols, the stereochemistry
of the monomers has an influence on the polymer yield. The higher the number of exo-
configurated isocyanato groups present, the higher the yield of the polyadducts was. The
polyaddition reaction of the l-ido compound 8 and 9 proceeded quantitatively; the d-gluco
diisocyanate 7 gave a yield of 90%, whereas the yield dropped to 80% when the d-manno
diisocyanate 10 was reacted. Moreover, the poly adducts in monomer synthesis were free
of any inclusions of monomers, water or other inclusions [57].

The synthesis of selected PURs was accomplished as presented in reference [58].
“Polyurea 1—The peptide TFA.H-Leu-Tyr-.Jeffamine-Tyr-LeuH.TFA (1 mmol, 1.18 g)

and TEA (4 mmol, 4 g) were dissolved in 4 mL of dry DMF. To the mixture was added
hexamethylene diisocyanate 0.16 mL (1 mmol, 0.18 g). After about 1 min, the viscosity
raised sharply, and to avoid it more DMF (~4 mL) was added to assure mixing and stirring.
The polymerization reaction was maintained at room temperature for 72 h. The reaction
mixture was poured into distilled water and a white precipitate was obtained and filtered
out. The precipitate was washed with chloroform and dried in a vacuum oven yielding
0.8 g (59%) of white fibrous polymer” [58].

“Polyurea 2—The peptide TFA.H-Leu-Tyr-,Jeffamine-Tyr-LeuH.TFA (1 mmol, 1.18 g)
and TEA (4 mmol, 4 g) were dissolved in DMF (10 mL)and methylenedi-p-phenyl diiso-
cyanate (pMDI) (1 mmol, 0.25 g) was added. The mixture was kept at room temperature
for 24 h. To ensure the polymerization, more MDI (0.2 mmol, 0.05 g) was added to the
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mixture and proceeded for 48 h; the product was similar as that of Polyurea 1. The reaction
yielded 1.0 g (70%) of fibrous white solid” [58].

“Polyurea 3—To a solution of monomer 2 (1.00 mmol, 0.74 g) and triethylamine
(2.2 mmol, 0.31 mL) in NMP (2.7 mL), a solution of hexamethylene diisocyanate 0.16 mL
(1 mmol, 0.18 g) in chloroform (2 mL) was added with the purge of argon. The reaction
proceeded overnight at room temperature. The viscous brownish sample was poured
into a beaker containing about 1 L of distilled water and the product was precipitated.
The polymer was washed in water, methanol, and acetone, and then dried in a vacuum
(Figures 29–31)” [58].
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The synthesis of polyureas is attractive, as it avoids the use of toxic and reactive
diisocyanates, such as MDI or toluene diisocyanate (TDI) (Figure 32) [48].

Microwave irradiation could be an alternative method used to synthesize polyureas;
however, the necessity of solvents with high boiling points, such as dimethylacetamide or
dichlorobenzene, becomes an additional health and environmental barrier [59].

However, in a non-isocyanate route (NIR) to polyurea, the approach based on MDI-
biscarbamates seems promising because no high-temperature condition is required through
trans-esterification or trans-ureation. In an initial NIR process development, the trans-
ureation of 4,4′-DM-MDC and 4,4′-DP-MDC was carried out by mixing the same equivalent
of polyetherdiamines, such as 1,8-diamino-3,6-dioxaoctane (DADO), at 160 ◦C in the
absence of a solvent and catalyst [17]. During the melt-polymerization, methanol or phenol
was flushed out from the reaction mixture by continuous purging with a nitrogen stream
under reduced pressure. Powdered Polyurea [4,4′-DM-MDC/DADO]melt/160, (P-1),
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were isolated after 60 min of reaction, and GPC analyses suggested that P-1 had M.W.
of 6000~7000 kDa. These M.W.s indicated a low degree of polymerization that could be
attributed in part to the poor mixing between high melting biscarbamates and diamines
and the high viscosity of resulting polyurea. On the other hand, if melt-polymerization was
carried out at temperatures higher than 200 ◦C to reduce the product viscosities, Polyurea
[4,4′-DM-MDC/DADO] melt/200 turned dark rapidly due to degradation and oxidation,
and the molecular weights also did not increase. Thus, directly mixing biscarbamates and
diamines by melt-polymerization failed to yield high molecular weight polyureas [17].
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In 1999, Thavonekham [49] found a facile transureation method of N-phenyl phenyl-
carbamates with N,N′-di-butyl amine as solvent, and showed that the urea product could
be prepared in high yield. It was observed that solvents with high polarity or high solubility
parameters were the most efficient, and DMSO was found to be the best solvent among
those tested [49]. In this study, trans-ureations of both biscarbamates with 2-aminoethanol
in DMSO were carried out at 80 ◦C as in the model reaction study before their new
polyurea synthesis. The result confirms the high yield (94%) of 4,4′-diphenylmethanebis-
[(2-hydroxyethyl)urea], (DPMHU), which could be isolated in a short reaction time from
4,4′-DP-MDC (60 min). Conversely, under an identical condition, transureation of 4,4′-
DM-MDC failed to give the urea product (DPMHU), and the un-reacted 4,4′-DM-MDC
could be recovered from the mixture. These results strongly suggest that 4,4′-DP-MDC is a
more effective intermediate than 4,4′-DM-MDC for carrying out trans-ureation reactions
to make urea derivatives. The difference in reactivity between these two biscarbamates
reflects the fact that the phenoxy group of 4,4′-DP-MDC is a better leaving group than the
methoxy group of 4,4′-DM-MDC when 4,4′-DP-MDC were attacked at the carbonyl center
by nuclephilies. The use of polar solvents such as DMSO seems to further activate the ure-
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thane bond in 4,4′-DP-MDC for the easy replacement of phenol. At 80 ◦C, tetramethylene
sulfone (TMS) behaves like DMSO and also performs as the solvent for making DPMHU
(Figures 33–35) [17].
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In the polymerization of dimethyl 1,4-butylenedicarbamate (BU2) and dicarbamates
and diamino-terminated poly(propylene glycol) (PPGda), performed in the study presented
in reference [60], the concentration of the starting materials applied was ~80 wt%. The
polymerization proceeded smoothly in a short time (4 h). From the list of solvents that
dissolve BU2 (Figure 37, Table 1 from reference [60]), DEGDE is the best choice since it is
non-toxic and has a sufficiently high boiling point (180–190 ◦C) to allow the synthesis of
PUs at elevated temperatures and ambient pressure.

Dimethyl ((carbonylbis(azanediyl))bis(1,4-butylene)dicarbamate (BU3) dissolves in
DMAc, which is commonly used in the PU industry, although the solubility is not high.
Therefore, the concentration of the polymerizations involving BU3 in DMAc can only
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be as high as 20 wt%. The polymerization of dimethyl (6,13-dioxo-5,7,12,14-tetraaza1,18-
octadecylene)dicarbamate (BU4) could only be performed in NMP at a concentration of
15 wt% (Figure 36). PURs with HSs containing four urea groups have flow temperatures
(Tfl) above 200 8C, which is higher than the degradation temperature of PURs. Therefore,
in their study, the authors [60] did not focus on the investigation of the properties of the
polymer based on BU4 and PPGda, as the material cannot be melted to form films or testing
bars. The results included in Figure 37 (Table 1 from reference [60]) indicate that all the
targeted polycondensation reactions proceeded and that the average molecular weight
(Mns) of the resulting PURs is about 30 kg·mol−1. However, some of the materials have
a PDI lower than 1.70 (the theoretical value for linear step-growth polymers is 2), which
might be explained by the removal of part of the low molecular weight polymer during the
purification (by precipitation) which is required to remove the TBD [60].
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The result of Figure 37 shows that all the target polycondensation reactions were
carried out, and the number average molecular weight (Mns) of the obtained PUR is about
30 kg·mol−1. However, the PDI of some materials is lower than 1.70 (the theoretical value of
linearly increasing polymers is 2), which may be due to the removal of some low molecular
weight polymers during the purification process (through precipitation) and the deletion
of TBD [60].
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4. Catalysis Applications

A relatively recent study on catalysis applications is presented in the study of the
copper-catalyzed amidation of aryl halides with urea. A preliminary screening of lig-
ands showed that both 1,2-diaminocyclohexane and N,N0-dimethylethylenediamine af-
forded products in the coupling reactions, with the latter giving low yields. Efforts to
use other ligands such as ethylenediamine and 1,2-ethanediol were not successful. 1,2-
diaminocyclohexane was chosen as the preferred ligand for the coupling reactions. The
reaction of iodobenzene with urea in the presence of the CuI, 1,2-diaminocyclohexane
catalyst system afforded the biphenyl urea 3 with a good yield (Figure 38) [61].

Polymers 2021, 13, x FOR PEER REVIEW 31 of 48 
 

 

 
Figure 38. CuI, 1,2-diaminocyclohexane, K3PO4, DMF, 80 °C, 24 h. From reference [61]. 

An effective route for the syntheses of polyurea derivatives from diamines and CO2 
in the absence of any catalyst, which are then reacted with dialkyl carbonates to synthe-
size N-substituted dicarbamates over a MgO–ZnO catalyst, is shown in Figure 39. 

 
Figure 39. Synthesis of N-substituted dicarbamates from diakyl carbonates and polyurea derivatives based on diamines 
and CO2. From reference [48]. 

Since the polyurea derivatives and dialkyl carbonates could be successfully synthe-
sized from CO2, this process not only improves the functional group efficiency of the 
reagents, but also optimizes the utilization of CO2. In work by Shang et al. [48] the reac-
tions were carried out in a 90 mL stainless steel autoclave with a glass tube inside and 
with a magnetic stirrer. Specifically, 5 mmol PUR, 10–75 mmol dibutyl carbonate (DBC) 
and 3–15 wt% catalyst (based on the mass of charged polyurea) were charged succes-
sively into the autoclave. The reaction proceeded at 180–220 °C for 3–24 h (using a ni-
trogen atmosphere) and the vessel was cooled to room temperature. The catalyst and the 
unconverted PUR were separated by filtration and then thoroughly dried in vacuum. The 
resulting solids were weighed and the mass of catalyst was subtracted to determine the 
conversion of the PUR [48]. 

Some kinetic parameters were evaluated by Suresh’s group [62] on the study of PU 
formation via interfacial poly condensation represented by the condensation of hexa-
methylene-1,6-diamine (HDMA) present in the aqueous phase, and hexameth-
ylene-1,6-diisocyanate (HDMI) in the organic phase. This study presented good PUR 
microcapsules, shown in Figure 40, and presents details and methodology for interfacial 
PUR formation [62]. 

Figure 38. CuI, 1,2-diaminocyclohexane, K3PO4, DMF, 80 ◦C, 24 h. From reference [61].

An effective route for the syntheses of polyurea derivatives from diamines and CO2
in the absence of any catalyst, which are then reacted with dialkyl carbonates to synthesize
N-substituted dicarbamates over a MgO–ZnO catalyst, is shown in Figure 39.
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Since the polyurea derivatives and dialkyl carbonates could be successfully synthe-
sized from CO2, this process not only improves the functional group efficiency of the
reagents, but also optimizes the utilization of CO2. In work by Shang et al. [48] the reac-
tions were carried out in a 90 mL stainless steel autoclave with a glass tube inside and with
a magnetic stirrer. Specifically, 5 mmol PUR, 10–75 mmol dibutyl carbonate (DBC) and
3–15 wt% catalyst (based on the mass of charged polyurea) were charged successively into
the autoclave. The reaction proceeded at 180–220 ◦C for 3–24 h (using a nitrogen atmo-
sphere) and the vessel was cooled to room temperature. The catalyst and the unconverted
PUR were separated by filtration and then thoroughly dried in vacuum. The resulting
solids were weighed and the mass of catalyst was subtracted to determine the conversion
of the PUR [48].

Some kinetic parameters were evaluated by Suresh’s group [62] on the study of PU for-
mation via interfacial poly condensation represented by the condensation of hexamethylene-
1,6-diamine (HDMA) present in the aqueous phase, and hexamethylene-1,6-diisocyanate
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(HDMI) in the organic phase. This study presented good PUR microcapsules, shown in
Figure 40, and presents details and methodology for interfacial PUR formation [62].
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5. Sol-Gel and Supramolecular Aspects Applied in Polyureas

Over the past few decades, there has been a huge amount of research focused on
supramolecular gels, in which organic small molecules self-assemble into a wide variety
of entangled nanostructures to form a 3D network. During the self-assembly, hydrogen
bonding, π−π stacking, electrostatic interactions, dipole–dipole interactions, van der Waals
interactions, and metal-to-ligand coordination between the gelators play important roles.
Meanwhile, gelator–solvent interactions are able to subtly regulate these interactions and
thus make the gel system a good platform for the fabrication of well-defined stimuli-
responsive or smart soft materials [24,63].

The gelator molecules generally bear aromatic rings, long alkyl chains sugar, OH,
COOH amide groups and urea moieties, in which hydrogen bonding sites are plenty.
There has been burgeoning literature describing the types of gelators according to the
main driving forces for forming supramolecular gels and their corresponding assembly
architectures. Generally speaking, the structural factors of the gelators determines the
arrangement of molecules and the morphologies of gels formed through variations in these
weak interactions [24].

Different aspects, such as the elastic behavior of solids and the micro-viscous prop-
erties of fluids, makes gel a unique class of soft materials. These three-dimensional (3D)
networks include the volume of a liquid and entrap it through the surface-tension effect.
These fibrous networks may consist of covalent bonds (chemical or polymer gels) or by
noncovalent interactions (physical or supramolecular gels) [64].
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Sánchez et al., 2010 showed that organic sol–gel chemistry is a way to obtain polyureas.
In their process, the key point is the capping of amino-terminated polymers that keep these
ends with low reactivity when reacting with isocyanates. The control in the synthesis of
polyurea networks results in systems with good thermal stability, low soluble content and
more easily tunable mechanical performance with respect to conventional polyurethane,
polyurethane/polyurea networks or thermoplastic block copolymers. The position of urea,
as cross-linkers, in the hard segments and the preparation of the amino-terminated building
block play an important role in the overall elastomeric behavior [30].

Furthermore, CO2 gas released during the reaction can be used to induce the formation
of a porous structure. The overall chemical reaction process is depicted in Figure 41. Thus,
the chemical reactions between isocyanate groups and water could easily form porous
polyurea material.
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Among the most encouraging route for the creation of PURs is the use of CO2 as a
carbonyl building block to replace isocyanate. The transformation of CO2 directly with
diamine to polyurea was first reported by Yamazaki et al., where PUs were obtained from
aromatic diamines with CO2 by using a stoichiometric amount of phosphate as a catalyst.

More recently, several kinds of PURs were produced by the polymerization of di-
amine with CO2 directly in the absence of any additives, such as water soluble oligourea,
macrocyclic oligourea, thermoplastic polyurethane-ureas and PUR hydrophobic gel. The
polymerization of diamine with CO2 is a form of condensation polymerization, in which
water is produced as a by-product, leading to a relatively lower molecular weight as water
slows down the reaction kinetics [65].

Martin et al., 2016 proved that the one advantage of the transurethanization approach
is its potential to prepare a large range of polyurethanes (without hydroxyl side groups)
(Figure 42) since the isocyanate agents can be replaced by dialkyl dicarbamates [66].
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However, this technique could not be used directly to prepare cross-linked materials.
In this work, they describe an example of a solution to this bottleneck, consisting in the
preparation of new renewable non-isocyanate cross-linkable allyl-terminated polyurethanes
and polyureas (Figure 43). Allyl groups were chosen because they are easy to introduce,
thermally stable and react well under UV to prepare polymer films and coatings [66].
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Aqueous polyurethane dispersions (PUDs) with low levels of organic solvent are
an alternative to the organic-based dispersions, although these PUDs present inferior
resistance to water, surface hydrophilicity and lower mechanical strength. The modifi-
cation of PUDs with various polydimethylsiloxanes (PDMS), showing increased contact
angle and decreased tensile strength with the increase in PDMS content, have been de-
scribed [68]. When nanoclay is incorporated into polymers, a variety of properties such
as flame resistance, mechanical strength, gas barrier and thermal stability are enhanced.
The improvement in barrier properties has been reported in polyurethane/clay adhesive
nanocomposites [68].

Interfacial polymerization is an effective technique for the synthesis of condensation
polymers such as polyurea, polyurethane and polyesters. Using diisocyanate monomers
and diamines as the precursors soluble in distinct and immiscible solvents, polymerization
takes place at the liquid–liquid interface to form a polymer film. The advantages of interfa-
cial polymerization include rapid reaction rates under ambient conditions, no requirement
for reactant stoichiometric balance and a low requirement for reactant purity. The flexible
PUR derived from the interfacial polymerization finds many applications in industry, such
as encapsulation of pesticides and the micro-encapsulation of drugs and membranes [69].

The introduction of interfacial poly condensation (IP) in PUR research brought a new
set of possibilities such as the preparation of bulk polymers, micro/nano-capsules, thin-film
composite/nanocomposite membranes (TFCMs), polymer nanocomposites, the surface
modification of fibers, micro-unit operations and self-healing materials. IP processes allow
for the possibility of the rapid production of polymers (linear or cross-linked) with high
and specific molecular weight ranges under normal conditions of temperature and pressure
at/or near the interface of two immiscible phases, either liquid–liquid or gas–liquid. The
properties of polymer coats are a function of their chemical composition which controls the
film thicknesses, crystallinities, molecular weights, degree of cross-linking, mechanical and
thermal properties and so on [70].
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In the same context, spontaneous precipitation is used for the preparation of PURs
and PUs, but for PURs, their high rate of polymerization, synthetic versatility and superior
hydrogen bonding capability are advantageous [17–20,44].

The interfacial condensation (IP) model is shown schematically in Figure 44. The
un-ionized part of monomer A diffuses from the aqueous phase through the formed
polymer film and reacts with monomer B in a thin reaction zone located on the organic
side [71]. For the polyurea system, three phenomena are of importance in such a process in
reaction kinetics.
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Figure 44. Schematic showing the concentration profiles across the polymer film during IP reaction.
From reference [71].

The first is ionic equilibria in the aqueous phase, the second is the diffusion of (unpro-
tonated) m-PDA (meta-phenylene diamine) through the formed polymer film and the third
is the chemical reaction of m-PDA with TMC (trimesoyl cloride) on the organic side [72].

Using a π-conjugated urethane-based polymer and π-conjugated urea-based polymer
displayed in Figure 45, Ahner et al. compared the emission spectra of their material
compared to the π-conjugated system in solution. The emission of the urea polymer 11b
is broader and is more strongly emitting at higher wavelengths, whereas the shoulder at
415 nm is more pronounced in urethane polymer 11a. Presumably, the red shifted emission
is attributed to dimeric or trimeric aggregates of the chromophores, while the higher energy
emission is attributed to weakly interacting monomers [34].
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The complete set of reactions to form PURs includes the reactions among the oli-
gomers, as well as of the monomers with the oligomers, and results in three types of ol-
igomers of various chain lengths—amine-terminated (A), isocyanate-terminated (B), and 
amine-isocyanate-terminated (C), with general formulae as given in the table reproduced 
in Figure 47. [71]. The concentrations of the various species in solution are determined by 
the output between the rates of reactions that form and consume them, and phase sepa-
ration [71]. 

Figure 45. Schematic representation of supramolecular interactions of π-conjugated urethane-based polymer (11a) and
π-conjugated urea based polymer (11b). From reference [34].
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Time- and spectra-resolved emission spectroscopy carried out on the group data
allowed one to gain a good understanding of the IP process [34]. For films of both polymers
(Figure 45), a biexponential decay was recorded, in contrast to measurements in solution,
which fitted with a mono exponential model (Figure 46B). The biexponential decay follows
the red shift of emissions with increasing time after the absorption of light (Figure 46C).
The bathochromic shift of emission in phenylene ethynylenes are assigned to the co-
planarization of the phenyl rings [35]. In the electronic ground state, the phenyl rings
are slightly twisted toward each other, but co-planarize in the excited state, resulting in a
bathochromic shift in the emission. While the rotation occurs within tens of picoseconds
in solution, it is considerably slowed down to hundreds of picoseconds in solid matrices.
Thus, the short time constant of the emission decay, τ1, is the time constant of rotation,
while the second time constant, τ2, describes the decay of the excited, co-planarized singlet
state. For 11a, τ1 is marginally smaller than for 11b. These findings were rationalized by
taking the hydrogen bonds into account. In urea polymer 11b, the additional hydrogen
bond causes stronger intermolecular interaction, which slightly hinders the rotation of the
phenyl rings, and thus impedes the process [34].
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Figure 46. Time-resolved emission data of π-conjugated urethane-based polymer 11b (gray) recorded
after 380 nm excitation in (A) chloroform and of (B) thin films. All decay curves have been spectrally
integrated between 420 and 500 nm and normalized to their respective intensity maximum. (C) Inte-
grated time-resolved emission spectra of 11a within 1 ns after excitation (gray) and between 1 and
5 ns after excitation (light gray). From reference [34].

The complete set of reactions to form PURs includes the reactions among the oligomers,
as well as of the monomers with the oligomers, and results in three types of oligomers
of various chain lengths—amine-terminated (A), isocyanate-terminated (B), and amine-
isocyanate-terminated (C), with general formulae as given in the table reproduced in
Figure 47 [71]. The concentrations of the various species in solution are determined by
the output between the rates of reactions that form and consume them, and phase separa-
tion [71].
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Figure 47. Table copied from reference [71]. General formulae for the different oligomeric and
monomeric species that form during the reaction. The polyurea system is taken as the example here
(A-: NH2-: B-: NCO-; R:(CH2)6; R′(CH2)6). From reference [71].

The fact that the oligomers have a strong dependence on the slope of the rate of
their consumption on the organic side conditions would indicate (a) that the reaction
is on the organic side of the interface and (b) that the reaction is kinetically controlled.
Figure 48 shows the effect of the organic phase monomer (HMDI) concentration on the rate
of consumption of HMDA. In these runs, the HMDA concentration was the same, but the
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HMDI concentration was varied to vary R. With an increase in R, i.e., increase in the HMDI
concentration in the organic phase, the kinetics is seen to be accelerated [70].
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The storage of energy can be associated with Phase Change Materials (PCMs), which
can store as well as release energy from or to the surroundings during these changes. The
quantity of energy per weight of the material is so large that a lower volume is required by
the system to facilitate these energy exchanges. In addition, during the phase change, the
temperature remains nearly constant, which is beneficial for the control of the temperature
of the surroundings. In the case of interfacial polycondensation (IP) materials such as
polyurea, polyurethane, polyester, polyamide and amine resin, these can be used as shell
monomers in the interfacial polycondensation process. The core materials are made into
droplets. The capsule shell reactive monomers polymerize on the surface of the droplets.
When the initially formed oligomers are insoluble at the interface of the droplets, they grow,
and a thin monolayer membrane forms around the droplets. The polycondensation causes
the monolayer membrane to be a shell and finally leads to the formation of a microscopic
shell around the droplets [73].

In particular, urea-based compounds, due to their excellent hydrogen bonding capa-
bilities, are well known for templating the organization of the functional groups that can
result in interfacial polycondensation in sheets or lamella structures [34]. PUs synthesized
via the traditional method, polycarbonates, polyurethanes and polyamides included are
in the table from references [1,18] in Figure 49. Comparing, for example, these polymers
with the same chain structures, let us say aliphatic structures, polycarbonates are the most
flexible and have no melting temperature because there are no hydrogen bonds between
carbonate groups and no crystalline domains can be formed. With the replacement of one
oxygen atom in polycarbonates by nitrogen, the polymer changes to polyurethane and
mono dentate hydrogen bonds can be formed between urethane groups. This substitution
leads to an increase in the polarity and the crystallinity that enhances the rigidity and the
melting temperature of the polymer. After the replacement of two oxygen atoms in polycar-
bonates by nitrogen atoms, the polymer modifies polyureas and bidentate hydrogen bonds
can be formed between urea groups, leading to a higher polarity and crystallinity and then
a higher rigidity and melting temperature than those of the polyurethanes. The melting
temperature and rigidity of the PUs are also higher than those of analogous polyamides.
This phenomenon is also ascribed to PUs with two hydrogen-bonded network structures
compared with mono dentate hydrogen bonds in polyamides. The hard domains of the
PU synthesized by this method are the urea motifs, but the hard domains of the PUs from
the traditional methods are the polyisocyanate-based domains (TDI or MDI, for example),
leading to no melt state and then limiting their melt processibility [18].
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Organic Phase Change Materials (PCMs), when used for concrete or asphalt, should
present complementary chemical, physical and thermal properties with these materials,
such as an optimum operating temperature, high latent heat fusion/heat capacity, low
phase segregation, and safety to humans and the environment, but they still suffer from the
drawbacks of supercooling, low heat conductivity, large volume changes, and decomposi-
tion upon melting. To overcome these undesirable properties, some studies recommend
the esters of long chain carboxylic acids or fatty acids as promising PCM candidates in
materials applications [74]. These materials and mixtures of methyl–esters (methyl laurate,
methyl palmitate, and methyl stearate) can have a phase transition close to liquid/ice
temperatures (2 to −10 ◦C) or human comfort temperature (~20 ◦C), added to a relatively
high latent heat capacity. They further posit that the charging rate of PCM storage can be
improved by using a hermetic encapsulation method via interfacial polymerization, since
fatty acid esters are not stable in alkaline environments. A PCM must be encapsulated by
a polymeric shell to retain its shape, improve its heat exchange ability and prevent the
PCM from leaking and being decomposed during the postprocessing or phase change
process [74]. Their compound has two acidic NOH groups that can readily react with
n-propylisocyanate to give a 1:2 adduct with high yield and high purity. Thus, the com-
pound can act as a bifunctional monomer and its polymerization reaction with aliphatic
and aromatic diisocyanates gave novel polyureas that contain urazole linkages in two
dimensions. The polycondensation reaction under microwave irradiation was elected as
the best method in this work for the synthesis of polyureas [75]. In addition, their results
demonstrate that microwave heating is an efficient method (shorter reaction time and high
energy efficiency) for polycondensation reactions [75].

4-Substituted urazoles are five-membered heterocyclic compounds, displaying two
NOH acidic protons. The urazole derived from the ene reaction of triazolinediones with
alkenes and polydienes has one NOH proton, which is also very acidic. The acidity of
this proton has been measured; it has a pKa of 4.71, similar to that of acetic acid. The
compounds 1 (Figure 50) have the potential to undergo N-acylation. 4-Substituted-urazole
were converted to 1-acyl derivatives by acylation reaction with a series of carboxylic acid
anhydrides [76].

Zhang et al., 2009 [77] presented the synthetic process of microencapsulated n-octadecane
with polyurea; the formation of the micro-PCMs was implemented by interfacial poly-
condensation (IP) with the microcapsule shell fabricated on the surface of n-octadecane
droplets through polycondensation of the respective monomers. A scheme of this process
is shown in Figure 51 [77]. The mixed oil solution consisting of n-octadecane and TDI was
dispersed in an aqueous solution by using SMA as an emulsifier, leading to an oil-in-water
micro emulsion. The hydrophilic groups of the emulsifier alternatively arrange along
its hydrophobic chains, and thus are associated with the water molecules and cover the
surface of n-octadecane/TDI mixture oil droplets in an orderly fashion, with hydrophobic
chains oriented into the oil droplets and hydrophilic groups out of the oil droplets. In
addition, the other requisite monomer, amine, is dropped into the emulsion, and reacts
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with TDI. The shell-forming reaction is initiated when some of the peripheral isocyanate
groups are hydrolyzed at the oil–water interface to form amines, which in turn react with
other unhydrolyzed isocyanates. Once the amine is a nucleophilic reagent, it will react
with an isocyanate functional group to produce urea. When the initial shell is formed, the
water-soluble monomer has to diffuse across the membrane into the oil phase to react with
TDI, the oil-soluble monomer, to thicken and strengthen the shell of the microcapsules. As
a result, a urea-linked polymeric shell is formed onto the emulsified interface surrounding
n-octadecane through the reaction between the amine monomers and TDI [77].
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Uniform PU microspheres can be prepared via precipitation polymerization in H2O–
Acetonitrile mixed solvent with IPDI as the only monomer. According to reference [78], the
highest productivity level for the preparation is achieved with IPDI loading of 23 wt% and
at 50 ◦C in the mixed solvent of H2O–Acetonitrile at a mass ratio of 20/80. The productivity
of highly uniform microspheres obtained was about 22 times higher than that by free
radical precipitation polymerization, and practically doubles that previously reported on
the same polymerization carried out in H2O–acetone [78].

To prepare porous polyurea (PPUR), acetone was used in an optimized process for
the preparation of PPUR adsorbent; 90.0 g of H2O–acetone mixture at a mass ratio of 3/7
was first put into a 250 mL round bottom flask immersed in a water bath at 30 ◦C. Under
stirring at 300 r/min, 10.0 g of toluene diisocyanate (TDI) was added at a rate of 20 mL/h.
The polymerization was allowed to continue for 2 h after TDI addition was completed,
followed by drying of the polymer at 70 ◦C under vacuum to collect the powder product.
The yield of the product was 100% through repeated tests due to the step polymerization
mechanism involved, as schematized in Figure 52 [79]. To carry out the adsorption of acid
fuchsine (AF), representing waste in water, a known amount of PPU was added to a 25 mL
glass bottle, to which 20.00 mL of AF aqueous solution (V, mL) was added with known
concentration (c0, mg/mL) and pre-adjusted pH. The bottle was fixed on a reciprocating
oscillator in a 30 ◦C water bath and shaken at 120 osc/min for 4 h. The contents were
centrifuged at 12,000 r/min for 5 min to separate the PPU from the AF solution. This PPUR
is also characterized to have excellent desorption and reusability. This work demonstrates
that PPUR is an effective absorbent and an attractive candidate for the removal of anionic
dyes from wastewater [79].
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According to Liang (2009), polyurea microcapsules containing phase change materials
were prepared successfully by using interfacial polycondensation. The testing results show
that micro-PCMs’ phase change temperature is about 29 ◦C, the latent heat of fusion is
about 80 J, the particle diameter is 20–35 µm, and the particles showed a good property of
thermal periodicity. Additionally, with the dry weight analysis, it was possible to obtain a
fairly good packing rate for micro-PCMs [73].

Recent efforts have focused on developing non-isocyanate PURs (NIPUT) to replace
highly toxic diisocyanates. Mainly, two routes were described: (a) the reaction of bis-
or multicyclic carbonates with diamines, and (b) the transurethane polycondensation of
diurethanes (Figure 53). The route via transurethane polycondensation is designed to
synthesize non-isocyanate thermoplastic polyurethanes (NITPUTs), including amorphous
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or crystallizable PUT, alternating or segmented poly(amide urethane)s and non-isocyanate
thermoplastic polyureas (NI-TPUreas) [80]. These NITPUTs or NI-TPUreas are synthesized
from diurethanes prepared previously from the reaction of dimethyl carbonate, diphenyl
carbonate, or ethylene carbonate (EC), followed by diamines (DAs), and transurethane
polycondensation to synthesize NITPUT or NITPUreas. Dai et al. recently reported a
method to synthesize NI-TPUreas through the direct solution-free polycondensation of
DAs with diphenyl carbonate [80].
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Supramolecular gels are good candidates for soft, stimuli-responsive materials, as
they combine the elastic behavior of solids with the micro viscous properties of fluids. The
dynamic networks of fibers in supramolecular gels are suggestive of the cytoskeleton of a
cell and provide scaffolds to implement function. When gels are made responsive to stimuli,
these mechanical properties can be controlled. Sol–gel transitions also create opportunities
to immobilize molecules inside the gel’s cavities and to release them on demand. To
establish selective responsiveness, suitable recognition sites are required, influencing the
properties of the fiber network depending on the presence of the stimulus [64].

6. Mechanical Aspects

Copolymer polyols, that is, polyols with polymeric fillers, include: (a) conventional
copolymer polyols where the filler particles are copolymers of styrene and acrylonitrile;
(b) PHD polyols, where the filler particles are polyureas; (c) PIPA polyols, where the filler
particles are polyurethanes; and (d) epoxy dispersion polyols, where the filler particles are
cured epoxy resins. In these copolymers, the filler particles usually have an aspect ratio (Af)
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close to one, where the Af is defined as the ratio of the lengths of the longest and shortest
dimensions for ellipsoid particles. Accordingly, Af ~ 1 characterizes a particle of nearly
spherical shape, including both spheres (Af = 1) and irregular shapes with no major shape
anisotropy. It is known that in a filler where Af ~ 1 provides the least effective type of
reinforcement, the magnitude of the reinforcement is quantified by the ratio of the tensile
(Young’s) moduli of the filled and unfilled polymers. The reinforcing efficiency of filler
particles possessing a given set of mechanical properties, when incorporated in a matrix
material at a given volume fraction, rapidly increases with the increasing shape anisotropy
of the particles, and eventually, asymptotically approaches the continuous fiber limit for
prolate particles and the infinitesimally thin disk limit for oblate particles (platelets). The
reactions of urea with 1,6-hexanediamine at 150 ◦C in a polyol continuous phase in the
presence of a stabilizer for the resultant particles produce low-molecular-weight oligomers
of urea-terminated poly(1,6-hexamethyleneurea) with an Mn in the range 500–700 g moL−1.
This is assumed to involve a polymerization/precipitation mechanism in which the molec-
ular units are held together by hydrogen bonding in a macrostructure which separates
as a stable dispersed phase. This macrostructure has a spiral fiber bundle morphology, a
particle size distribution of ~1 to 10 µm and aspect ratios from 6 to 20. The urea-terminated
poly(l,6-hexamethyleneurea) particles are highly crystalline thermoplastics with a melting
point of ~270 ◦C and are only soluble in strong acids, where the macroparticles dissociate
into their molecular units. High-molecular-weight poly(1,6_hexamethyleneurea) has been
synthesized in bulk by other methods and is reported to have a melting point in the range
of 270–300 ◦C. However, urea-terminated poly(1,6-hexamethyleneurea) oligomers with
spiral fiber bundle morphologies have not been reported [81].

Amini et al., 2010 discussed the concept that the stiffness of polyurea increases signifi-
cantly when subjected to increasing pressure, and when confined polyurea is loaded in
compression, its stiffness can be enhanced by 10–20-fold [82]. This leads to polyureas with
better impedance matching steel plates, thus causing more energy to be transmitted to the
plate, and subsequently initiating the damage factors on the plate [8,82]. The mechanical
properties of PUs highly depend on temperature, pressure and the rate of deformation.
The glass transition temperature, Tg, of PU is around −50◦, which is conveniently low
compared to its standard uses temperature. Roland et al., 2007 reported stress–strain
measurements for an elastomer PU in uniaxial tension over a range of strain rates from
0.06 to 573 s−1 [83].

In parallel, Sarva et al., 2007 reported the uniaxial compression stress–strain behavior
of a representative polyurea and a representative polyurethane over a wide range of strain
rates, from 0.001 s−1 to 10,000 s−1 [84]. They compared their data to other researchers’ data
and observed that PU undergoes a transition from a rubbery-regime behavior at low rates
to a leathery-regime behavior at highest rates. Above the glass transition temperature,
polyurea has a nearly elastic volumetric response and a viscoelastic shear response at
moderate pressures and strain rates. At room temperature, PU is highly elastic, resistant to
abrasion and can undergo up to 800% elongation prior to rupture [7].

PUs exhibit unique viscoelastic properties that depend on pressure, temperature and
strain rate. Further, the micro-phase segregation of hard and soft domains in combination
with extensive hydrogen bonding allows PU-copolymers’ mechanical stiffness and tough-
ness to be chemically tailored [9]. These copolymers exhibit unique properties as a result
of their phase-separated morphology, which is due to the segregation of dissimilar blocks
being restricted under a 100 nm hard domain size. The soft segments form a continuous
matrix reinforced by the hard segments that are randomly dispersed as nanodomains.
Typically, the long and soft diamine blocks form a flexible matrix. The multifunctional
hard segment domains serve as both physical cross-links and as reinforcing fillers. High
mechanical toughness is a result of the extensive intermolecular hydrogen bonding in
polyurea hard domains [85].

Importantly, polymer nanoencapsulation may reinforce the skeletal framework to the
point where it can withstand the capillary forces exerted around the receding meniscus



Polymers 2021, 13, 4393 40 of 44

of evaporating low vapor pressure solvents (e.g., pentane), allowing it to be dried under
ambient pressure [86].

The formation process of porous PUs (HPUs) is illustrated in Figure 54. First, the
hydrolysis of naphthalene diisocyanate (NDI) leads to carbamic acid (Figure 54, step
1at) that decomposes into naphthalene diamine (NDA) and CO2 in a fast step (step 1b).
NDA is more reactive than H2O and reacts with NDI quickly, yielding polyurea (step 2).
In the process, the generated CO2 gas acts as a foaming agent and creates macropores
in the polymers. These processes have the same mechanism as in the production of
polyurethane foam in the industry. After the H2O is consumed completely, the remaining
isocyanate groups can react with urea groups on the molecular chains of polyurea at a high
temperature (150 ◦C), generating the hyper-cross-linking structure (step 3) with meso- and
micropores. Eventually, hierarchically structured porous PUs are formed [87].
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The stress–strain behavior of both polyurea and polyurethane are rate dependent [9].
While researching the high-strain rate mechanical behavior of polyurea, Roland et al.
(2007) demonstrated the influence of stoichiometry on the low strain rate response. It
was shown that a 5 to 10% variation in chemistry could lead to dramatic changes in the
mechanical properties. Increased isocyanate content resulted in increased yield stress and
decreased failure strain. The results demonstrated that increasing the amount of isocyanate
component is necessary to drive the cross-linking reaction towards completion [85].

There continues to be intense research directed toward the preparation and characteri-
zation of new organic polymeric materials for second-order nonlinear optics. Thin films of
these materials potentially could be used in optoelectronic devices because they have very
attractive mechanical and electronic properties, such as femtosecond response times, high
polarizability and processibility. These polymeric materials are also far less expensive than
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conventional nonlinear optical (NLO) inorganic materials. By the application of electric
field poling such as corona poling, the chromophores within these polymers possessing
high molecular polarizabilities can be effectively aligned to produce NLO thin films. These
films have been shown to be effective in electro-optic (E–O) modulation and second har-
monic generation (SHG). One of the greatest issues to address for poled polymeric NLO
materials is the stability of the orientation of the NLO molecules. In this paper, we describe
the synthesis and NLO properties of a side-chain polyurethane with excellent long-term
stability [88].

7. Conclusions

Polyureas constitutes a special class of polymers, as their analogs are polyurethanes.
Whereas polyurethanes have a considerable number of applications as well as a large
quantity of theoretical and practical literature, polyureas are still relatively less researched.
The variety of synthetic approaches confers to, for practical purposes, a selectable choice
that depends on available resources. It can be made from harmful reactants such as
isocyanides to atmospheric CO2 and N2 capture, or other synthetic routes. One good feature
of PURs is their more controllable synthetic processes given the difference in reactivity of
diamines towards that of dialcohols. The state-of-the-art of materials processing include
polyureas, which have applications in various fields. The presence of urea moieties in
PUs allows the formation of several types of polymer bundles and composites based on
H-bond-directed growth. This, as well several types of gelators for sol–gel processing,
is another feature of these compounds. In short, a large perspective is an attribute of
polyureas. One strong feature of the urea group is the adduct formation with strong acids
such as phosphoric and sulfuric, which creates possibilities for the use of polyureas in
transport and storage.
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