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Abstract: Carbon Fibre Reinforced Polymers (CFRPs) are commonly used materials in manufacturing
components and products in the automotive, aerospace, and wind energy industries generating
thousands of tons of waste, thus creating a threat to the environment if not recycled. Therefore, it is
important for both academia and industry to investigate various ways of recycling this material.
However, there is an urgent need for a reliable cost predication system to assist in making informed
decisions, planning sustainable treatment, and developing pricing strategies for different waste
treatment scenarios. This research paper presents the development of a fuzzy logic-based system to
perform cost estimation of recycling processes of the CFRP. The developed system has taken into
consideration uncertainties such as the characteristics of End of Life (EoL) material including its size
and weight, its origin and diversity of existing recycling methods, and quantity of recycling waste.
Cost drivers were divided into categories such as dismantling, transportation, operation, and capital
cost. The system was developed by creating 243 fuzzy rules and three levels of fuzzy sets. Moreover,
an interactive user-friendly interface was developed to enable the user to use the system easily and
efficiently. Finally, case study results were examined to compare the whole life recycling cost of
four different recycling technologies in various scenarios of waste treatment. The developed fuzzy
logic-based system has the capability in evaluating the cost structure of CFRP recycling techniques
and take into consideration uncertainty factors. Hence, a major contribution of the developed system
is its provision of the heuristic rules that aid the decision-making process for selecting a cost-effective
recycling method. The visualisation facility of the developed system is also a useful tool in enabling
potential users to forecast the cost of the CFRP recycling techniques upfront.

Keywords: fuzzy logic; cost engineering; CFRP recycling techniques

1. Introduction

Carbon Fibre Reinforced Polymers (CFRP) were first applied in the aerospace industry
but later paved their way to other industries such as automotive, wind energy, and sports
and leisure. The wide range of applications of these materials became possible due to
their mechanical and chemical properties such as strength, elasticity, and lightweight.
The global demand for carbon fibres (CF) is predicted to reach almost 200,000 tons in
2022 [1]. Materials used for aircraft components and wind turbine blades have about
25–50 years of useful life and then need to be disposed of. The current disposing methods
are predominantly landfilling and incineration [2]. However, considering the increasing
trend of composite materials and products manufacturing, rising environmental awareness,
and legislative requirements, sustainable disposal methods require urgent attention.
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Sustainability-related challenges arising from CFRP disposal such as landfill satura-
tion, environmental pollution, and economic waste are becoming a significant problem
around the world [3]. However, at present, only developed countries are introducing and
implementing legal standards related to end-of-life disposal of CFRP waste [4]. More-
over, recycling mechanisms at a commercial scale are only available in a few countries
such as the USA, Italy, UK, and Japan [5]. At present, the respective industries related
stakeholders still tend to hesitate in utilizing recycled materials and neglect recycling as
an end-of-life treatment [6]. However, close collaboration and information dissemination
is required to promote CFRP recycling solutions to make them attractive to both waste
holders and manufacturers.

There are limited research efforts on the economic and environmental feasibility of
CFRP recycling. The main challenge is that there is a lack of enough data to develop cost
estimation of CFRP recycling. Vo Dong et al. [7] studied lifecycle-based cost estimation
of CFRP recycling pathways. However, the authors make several assumptions and do
not consider other factors including the end of life (EoL) waste parameters, transporta-
tion, and dismantling. This indicates that the output results do not consider underlying
uncertainty factors pertinent to recycling operations.

The financial feasibility of CFRP recycling depends on many input variables which
are unique for every recycling method. The most commonly used recycling methods
are mechanical, thermal (pyrolysis), and chemical (solvolysis) processes [8–12]. These
methods have their own cost drivers which are associated with certain levels of uncertainty
such as utilities and initial investments [13]. The prior research within the scope of this
project included the exploration of cost drivers, challenges in estimating their uncertainties,
and building cost estimation framework for recycling CFRPs [14–16]. This study adopted
fuzzy logic to address the uncertainty factors in the cost estimation process of recycling
CFRPs. The fuzzy set theory allows approximating the exact value based on predefined
linguistic variables and fuzzy rules [17].

A fuzzy logic approach is appropriate when the data is not enough for constructing
cost-estimating relationships (CERs) using regular approaches [18]. CERs are mathematical
models to predict cost of a product or service using an established relationship with
independent variables. The parameters which define the characteristics of the process are
called cost drivers [19]. The cost drivers are linked to cost via CERs. The application of
fuzzy logic for estimating the cost in various industrial processes and consumer products
settings was found suitable due to its relatively simple nature not requiring complex
mathematical models [19]. Historically, the initial fuzzy logic cost estimation models were
developed at the end of the 20th century as shown in the work of Wiehn et al. [20] in which
incineration plant cost with uncertain elements were modelled and expressed linguistically.
Another work by Chansaad et al. [21] solved the problem of uncertainty of paint loss
by developing a fuzzy logic-based cost estimation method for painting products with
different geometric parameters. However, there were no studies found associated directly
with estimating cost of recycling by implementing fuzzy elements. There are several
works that were specifically related to recycling. For example, Phillis et al. [22] developed
a method to assess material recyclability with the help of a multistage fuzzy inference
process. The complex system with multistage inputs derives a measure of recyclability for
any material based on available data. Another work by Keivanpour et al. [23] proposed
a fuzzy logic-based system to assess the economic feasibility of end-of-life vehicle (ELV)
dismantling under uncertain conditions. The authors were able to incorporate uncertainty
and typically considered as uniform details of ELVs such as size, complexity, differences in
models, and design to conduct a more accurate cost-benefit analysis of the process. Some
key works studied the financial feasibility of CFRP recycling processes [7,24–26]; however,
none of them dealt with the uncertainty in the estimation by implementing fuzzy values.

The above literature indicated that there are no research efforts in predicting cost of
recycling CFRP. It is also apparent that previous research studies did not take uncertainties
of various stages of the CFRP recycling into consideration. Therefore, a fuzzy logic-based



Polymers 2021, 13, 4370 3 of 17

cost modelling system is presented in this paper. Cost of different CFRP recycling methods
were compared with the currently applied landfilling charges to evaluate the financial
attractiveness of recycling.

2. CFRP Recycling Cost Structure

This study proposed a framework for assessing cost of CFRP recycling considering the
uncertainties inherent to the recycling process. The uncertainty factors associated with the
recycling process were used as input parameters to a multistage fuzzy inference process.
This process calculates the total cost of the recycling process based on selected parameters.
The recycling processes considered in this work include mechanical recycling, pyrolysis,
fluidized bed process (FBP), and solvolysis in supercritical water.

The input parameters in the developed system were divided into two categories.
The first category of input parameters consists of data on the CFRP waste (weight, size,
labour intensity), transportation distance, annual quantity required to recycle. The second
category includes recycling technique-dependent parameters such as utility consumption
levels, capital cost requirements. These parameters were converted to fuzzy sets and were
processed in fuzzy inference engines represented in Figure 1. It is important to note that
the inference system is multistage: first-stage inputs for intermediate inference engines
are distance between the CFRP waste and recycling factory, waste weight and size, labour
requirement, factory utilities and maintenance plan. Whereas second-stage inputs capital
cost, annual quantity, transportation, dismantling, and operational cost are defined as
inputs directly passing to output cost inference engine. Finally, the final output cost is
converted to a crisp value. This section describes input cost parameters and provides a
detailed explanation of fuzzy ranges.
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Figure 1. Architecture of the overall structure of the developed cost estimation system.

2.1. Transportation Cost

Transportation cost comprises three input parameters such as distance between the
recycling site and waste source, weight, and size (volume) of the transported waste parts.
The weight and size of the CFRP waste vary from industry to industry, e.g., automotive
composite parts and aircraft CFRP elements [27,28]. Therefore, the range of weights is
defined within each industry. For example, in the wind energy industry, the average
capacity of wind turbines worldwide is 1.39 MW, while each 1 kW corresponds to 10 kg
of rotor blade weight (only 6% of which is CFRP) [3,29]. Thus, the medium-range weight
for wind turbine blades (all three blades) is estimated to be around 13,900 kg (for all three
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blades). The wind turbine with 1.39 MW capacity is assumed to have 30 m long turbine
blade with 50 m3 of volume [30]. Based on the weight and size of the waste, it is then
decided how many trucks or other modes of transport are needed to transport it to the
recycling site. For example, in Ireland, the wind turbine blade waste is cut into 1.5 m2 sized
pieces and loaded by 6–8 tones to a lorry [31]. The range of the volumes is defined based
on the necessity of size reduction of the waste before transportation. Depending on the
required weight and volume capacity of transport, ranges were split into low, medium,
and high ranges in the proposed system. The low range corresponds to standard capacity
of small trucks, whereas medium range corresponds to trucks with long trailers.

Transportation distance is a key parameter of uncertainty for transportation cost as
it is difficult to define the exact location of facilities during cost estimation. It is assumed
that the low range does not exceed 200 km, whereas the medium range for transportation
is expected to be between 150 and 400 km. Membership functions for transportation and
dismantling cost input are described in Table 1. The levels and table format are constructed
based on the work developed by [32].

Table 1. Membership functions of input variables for transportation and dismantling cost.

Input Variable Level Range

Low 0–200
Transportation distance (km) Medium 150–400

High 350–2000

Low 1000–12,600
Weight (Wind Turbine blades) (kg) Medium 12,000–16,000

High 15,400–30,000

Low 0.1–10
Volume (m3) Medium 8–50

High 45–200

Low 4–40
Labour intensity (manhours) Medium 38–70

High 68–160

2.2. Dismantling Cost

Dismantling is needed to separate and collect the waste before its size reduction at the
recycling plant. The end-of-life waste from wind blades or aircraft components contains
different materials other than CFRP such as metals, foams and adhesive, and steel [33].
These materials need to be separated from recyclable composite structures. In this study,
it is assumed that this phase is dependent on two input variables such as the volume
of waste, and labour intensity. Moreover, the dismantling cost is not universal for each
industry. For example, dismantling wind turbines is relatively cheaper than cars or aircrafts
(see Table 2). However, dismantling is labour and cost-intensive process that is usually
neglected in the cost estimation of CFRP recycling.

Table 2. Dismantling cost in different industries.

Industry Cost (EUR/kg) References

Aerospace 0.54 [34]
Automotive 1.53 [24]

Wind turbine 0.42 [35]

It was almost impossible to estimate dismantling cost using general rules for all types
of shapes and forms of CFRP waste. For this purpose, the ranges were defined based on
reported cost amongst different industries.
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2.3. Operational Cost

Operational cost is incurred during the day-to-day running of a recycling facility which
is dependent on the chosen technique and its maintenance procedures [36]. In this study,
it is assumed that operational cost depends on the energy consumption and maintenance
cost of the chosen recycling technique [7]. It is evident that the mechanical recycling option
has the lowest operational cost, whereas thermal and chemical methods are more expensive.
The variation of the energy consumption of recycling techniques is a major uncertainty
factor. Table 3 represents the recycling technique and reported energy consumption levels.

Table 3. Energy consumption levels of different recycling techniques.

Recycling Technique Energy Consumption (MJ/kg) References

Mechanical recycling 0.27 (150 kg/h)
2.03 (10 kg/h) [37]

Pyrolysis 2.8
30

[38]
[39]

Fluidized bed process 6 (at 12 kg/h·m2 feed rate) [40]
Solvolysis 63–91 [41,42]

The membership functions for energy consumption levels were constructed around the
values reported from the literature. The fuzzy ranges for maintenance cost (M) are defined
in the same way as for capital cost since it is a common practice that the maintenance cost
of any equipment depends on its initial investments [25].

2.4. Capital Cost

The investment cost for comparison between recycling techniques are listed in Table 4.
The reported cost was adjusted to the current period using the Chemical Engineering
Plant Cost Index (CEPCI) of 2020, which was then transformed to a recycling capacity rate
(1000 tons/year) using the six-tenths rule. The formula for calculating the final cost used
for the input table is shown below [25]:

Cd = Cr(
d
r
)

0.6 I2020

Ii
(1)

where, Cd—capital cost of a plant for a capacity ton per year; Cr—reference capital cost of a
plant from the literature; r—indicated capacity in the literature (tons/year); d—planned
annual capacity (tons/year); I2020—CEPCI index in 2020; Ii —CEPCI index for the year of a
reference plant.

The values were normalized linearly using the MAX method, which has the formula
below [43]:

nij =
rij

rmax
(2)

where, nij—normalized value; rij—corresponding value in the matrix; rmax—the maximum
value in the column.
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Table 4. Capital investments for recycling techniques.

Technique Capital Investment
According to the Literature

Adjusted Capital Cost
Up-to-Date

Capital Cost at a Capacity
of 1000 Tons/Year Normalized Values

Pyrolysis 10,000,000 EUR for a capacity
of avg. 50,000 tons per year [7]

10,188,034 EUR for a capacity
of avg. 50,000 tons per year 974,335 EUR 0.16

Mechanical
200,000 EUR for a capacity of

4000 tons per year [44]
(only shredder)

425,714 EUR for a capacity of
4000 tons per year (a hammer

miller included)
185,303 EUR 0.03

Fluidized bed 4,100,000 EUR for a capacity of
1000 tons per year [25]

4,379,211 EUR for a capacity of
1000 tons per year 4,379,211 EUR 0.72

Supercritical Water 5,770,000 EUR for a capacity of
150 kg per hour [45]

6,065,115 EUR for a capacity of
150 kg per hour 6,065,115 EUR 1

2.5. Fuzzy Ranges

The fuzzy ranges for linguistic expressions were constructed by allowing certain
deviations from the reported values from the literature. The LOW range, for example, cor-
responds to −25% to −10% deviation from the provided parameter, whereas the MEDIUM
range includes the deviation of 15% from the average. The HIGH range corresponds to
10% to 25% above the reported parameter. The ranges and their corresponding percentage
deviations were presented in Figure 2. For instance, if the reported cost of dismantling in
the aerospace industry is 0.54 EUR per kg, then the HIGH range for dismantling would
be 0.594–0.675 EUR per kg. This rule does not indicate utility cost as the upper and lower
limits were provided by the literature. Their ranges were defined by equally dividing the
difference between upper and lower limits.
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Figure 2. Adopted fuzzy ranges and corresponding deviations from the reported value.

The output cost ranges were defined by adjusting them according to outputs of other
studies [7,24,25]. For output cost ranges, it was decided to construct four ranges that would
extend the possible outcomes based on provided rules mention in Section 3.2. Figure 3
represents ranges for constructing output cost.
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For solvolysis in supercritical water technique (SCW), the range widths are narrower
due to its already elevated reported cost. The VERY HIGH range for this technique is
limited by +50% above the reported cost. The final values defining the matrix of output
cost are represented in Table 5.
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Table 5. Recycling techniques and fuzzy ranges for output cost.

Output (Level 2) Level MECHANICAL PYROLYSIS FBP SCW

Cost

LOW 1 1.3 1.6 2.1 1.7 2.2 14 16.8
MEDIUM 1.2 1.8 1.8 2.8 2 2.9 15.9 21.5

HIGH 1.6 2.2 2.5 3.5 2.7 3.7 20.6 23.4
VERY HIGH 2.1 3.5 3.2 5.5 3.4 5.9 22.5 28.1

3. Development of the Fuzzy Logic Cost Modelling System

A fuzzy logic approach is needed to address the uncertainty for unclear and ambigu-
ous conditions [22]. In the case of recycling, various uncertainty factors can affect the final
cost of recycling. For example, different energy consumption levels have been reported
within the same process, which, in turn, can affect the accuracy of the final utility cost.
In this case, IF–THEN fuzzy rules are helpful to handle the situation [22]. The final cost of
the recycling process is estimated by the hierarchical structured fuzzy inference engines as
shown in Figure 1. The overall framework of the proposed fuzzy assessment is illustrated
in Figure 4. The first activity in the system development process was the identification of
the necessary input and output parameters for the proposed fuzzy-logic system.
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3.1. Fuzzification

Each inference engine computes one of the main five components of the final cost such
as transportation, dismantling, operational, and capital cost, and annual quantity. Each
inference engine follows the heuristic rules base of IF–THEN format which comprise the
total cost at the end of the process.

Membership functions can be polygonal with the different number of hedges; however,
in the proposed model triangular and trapezoidal membership functions were used due
to their computational efficiency [46]. Moreover, membership functions were designed
in a manner that ranges overlapped on the boundaries denoting the uncertainties there.
The example of membership functions is shown in Figure 5a-d, where the x-axis shows low,
medium, and high ranges as denoted in Section 2.1, while the y-axis shows the membership
between 0 and 1. According to this triangular membership function, the system determines
the ranges of output cost that correspond to user inputs for weight, size, distance etc.
Similarly, membership functions for output cost are depicted in Figure 6a–f.
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3.2. Fuzzy Inference

IF–THEN rules are based on the direct or indirect relationships between inference
engines and principles that determine the total cost of recycling [32]. Knowledge bases
are used to determine the components of total cost from several inputs collected from
other knowledge bases. Moreover, the output of inference engines acts as inputs for other
engines, and finally, the OUTPUT cost is computed from five main components. In addition,
the first stage inputs may be used simultaneously in several inference engines, for example,
weight and size of CFRP waste are simultaneously used inputs to estimate transportation
and dismantling cost.

A fuzzy expert system is built based on heuristic rules. The rules for input/output
relationships are denoted in words or phrases, while mathematically they are expressed as
fuzzy sets. An example of IF–THEN rules used in the model are shown below:

If UTILITIES is low and MAINTENANCE cost is high, then the OPERATIONAL cost
is medium;

If TRANSPORTATION cost is low and CAPITAL cost is medium and DISMANTLING
cost is high and OPERATIONAL cost is medium, then OUTPUT cost is medium.

Mamdani’s fuzzy inference method, an embedded method in MATLAB, is applied to
estimate the “intermediate” cost. This step is followed by a defuzzification process that
translates the fuzzy values into numeric values of the total cost [32,47].

The overall number of required fuzzy rules is subject to the number of inputs for
each fuzzy set. The developed model uses several cost drivers which depend on the users’
input parameters, therefore, when a couple or more cost drivers are combined to estimate
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composite cost, the information loss might occur. To avoid high inaccuracy in the results,
more linguistic indicators were used for each category of inputs. If the inference engine
has n inputs and each having k linguistic values, e.g., low, medium, high, very high, then
there will be kn fuzzy rules for a given inference engine. Moreover, one cost driver can
have m sets of ranges for each recycling method (PYROLYSIS (P), FLUIDISED BED (FB),
SUPERCRITICAL WATER (SCW)) therefore the number of fuzzy sets for each inference
engine will be 3kn. Hence, the number of fuzzy rules used in the model to predict the total
cost of CFRP recycling using a particular method can be derived as annual quantity and
transportation cost, capital cost and dismantling cost and operational cost, which results in
243 distinct fuzzy rules (Table 6).

The system allows users to select the cost drivers and adjust the fuzzy rules for the
recycling method where the total cost is estimated. Table 6 provides the rule base for output
cost for the pyrolysis process.

Table 6. CFRP recycling output cost rules.

Rule Rk If ANNUAL
QUANTITY Is

If
TRANSPORTATION

COST Is

If CAPITAL
COST Is

If
DISMANTLING

COST Is

If
OPERATIONAL

COST Is

Then OUTPUT
COST Is

R1 low low low low low low
R2 low low low low medium low
R3 low low low low high medium
R4 low low low medium low low
R5 low low low medium medium medium
. . .

R239 high high high medium medium medium
R240 high high high medium high high
R241 high high high high low medium
R242 high high high high medium high
R243 high high high high high high

3.3. Defuzzification

Finally, the fuzzy output follows a defuzzification process where it turns into a crisp
value. Here, the inverse transformation process takes place as in the fuzzification process
crisp domain is mapped into the fuzzy domain [48].

There are many ways to perform defuzzification, for example, the centre of gravity
(COG) or the centre of sums (COS) and, the most popular, the centre of area method
(COA) [49]. COA method is also called the centroid method and it was used in this model.
COA method is the default method in MATLAB, and it calculates the centre of the area of
the fuzzy set and determines the corresponding crisp value [50].

4. System Application and Results of Fuzzy System

Prior to assessing the impact of different factors on the total cost of recycling, the out-
put costs of four recycling techniques were examined. This was done to compare the recy-
cling cost with current landfilling cost. Assuming the default parameters to be 1000 tons of
annual quantity and transportation distance to be 200 km, the comparison chart (Figure 7)
shows the output recycling cost for CFRP recycling processes.

The cost of composite materials landfilling varies from 50 to 156 EUR per ton for most
of the European countries [51]. The cost of landfilling in the UK was found to be about.
100 EUR per ton [51]. After comparing the cost, it is evident that landfilling is one of the
most attractive options and will remain so for waste handlers if no special legal regulations
are introduced. Additional incentives for recycling CFRP waste or increasing the cost of
landfilling the waste could potentially help to shift towards recycling.
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Figure 7. Comparison of recycling and landfilling cost (EUR/kg) generated by developed system.

Since the output cost ranges were predefined based on the reported cost found in the
literature, the primary objective of this work, as discussed before, was to incorporate the
uncertainty which is inherent in recycling processes. Figure 8a shows the contribution of the
annual quantity of CFRP waste on the output cost for mechanical recycling. IF–THEN rules
are constructed in a way that economy of scales applies for larger quantities which decreases
the output cost at larger quantities recycled annually. In addition, the capital cost ranges
chosen by the user also predefine the output cost which can be shown in Figure 8a. For
instance, the higher capital cost at lower annual capacities results in significantly expensive
output cost of recycling compared to lower capital cost with increased annual capacities.
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Figure 8b represents the impact of operational cost and capital cost fluctuation on the
output cost. Capital and operational cost both have significant influence on the output cost;
however, coinciding ranges of two input parameters result in extremum cost levels (yellow
and dark blue colours on the plot). Nevertheless, it is equally important to minimize capital
investments at the initial planning phases as well as operational cost in order to have the
lowest possible output cost for recycled products. Figure 8c shows the simultaneous effect
of dismantling and transportation cost on output recycling cost. Not surprisingly, the same
trend is noticeable: the extremums of low and high output cost are achievable only when
operational and capital cost ranges coincide, e.g., output cost reach their lower range only
when both parameters are at their lower ranges.

The same charts with different inputs can be constructed by the system to determine
the output cost of recycling at different levels of inputs or for other inference engines,
i.e., transportation cost, dismantling cost. For instance, Figure 9 represents the relation
of distance and weight of transported waste to the transportation cost. The further the
distance between CFRP waste and recycling plant, the higher transportation coefficient will
be applied for cost estimation which is illustrated by a yellow slope. For smaller weights
up to one ton, the transportation coefficient shows low values, whereas larger weights
leads to remarkably expensive transportation cost.
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Figure 10 shows labour intensity, volume (size), weight, and their effect on disman-
tling cost for recycling CFRPs. Labour intensity is a critical factor that notably increases
dismantling cost as illustrated in Figure 10a. For instance, cutting wind turbine blades
during decommissioning is very labour-intensive process requiring special equipment
such as wire saws set up on a vehicle [52]. As shown in Figure 10b, lighter components
result in lower dismantling cost. However, it is clear from both charts that the major
defining factor for dismantling cost is a labour intensity. Starting above 50 manhours for a
component to be dismantled, dismantling cost is at its high range regardless the weight of
a component. The more labour force requires for product disassembling the more it will
lead to cost increase.

As the primary purpose of this model is to leverage uncertainty factors and determine
the output cost of recycling CFRP waste, the final form of inputs and their variation is
presented in slider form to easily adjust parameters for the user. The colour bar of the
output cost shows in which range (low to very high) it is located. For instance, the red
colour represents the middle range of output cost, whereas the yellow colour corresponds
to the high range. The user interface for selecting input parameters is depicted in Figure 11.
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To assess the developed fuzzy logic system with its rules, different case scenarios were
tested for its sensitivity to simultaneous variation of inputs. Table 7 demonstrates eight
random cases with different inputs for recycling techniques.
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Table 7. Different case scenarios and predicted output cost for recycling CFRPs.

CASE
No.

INPUTS
OUTPUT Cost (EUR/kg)

Recycling Technique Parameters Waste Characteristics

Capital Cost Maintenance Utility Level Weight, kg Size, m3 Labour Intensity,
Manhours Distance, km Annual Quantity, tons Mechanical Pyrolysis FB SCW

1 MEDIUM LOW LOW 100 10 5 250 1500 1.15 1.7807 1.88 18.6992
2 MEDIUM LOW LOW 50 1 10 200 1500 1.3 1.7751 1.8748 15.0128
3 LOW MEDIUM LOW 2500 50 80 500 2900 1.5 2.3227 2.4501 18.6998
4 MEDIUM MEDIUM LOW 1200 2 40 1000 1500 1.5 2.3281 2.4502 18.6996
5 HIGH MEDIUM LOW 500 50 70 100 500 1.9 2.5768 3.2 21.9997
6 HIGH HIGH MEDIUM 1500 5 30 1500 1250 1.5 2.3248 3.55 22
7 HIGH HIGH HIGH 4000 8 70 1000 500 2.8 4.5398 4.8242 24.6484
8 HIGH HIGH HIGH 4000 15 80 1000 2250 2.53 4.0954 4.2743 24.3502

All the input parameters including the technique-dependent inputs and waste char-
acteristics were adjusted and tested for different results. The ranges for technique-based
inputs are indicated and chosen values are the average values within the chosen range.
For instance, MEDIUM capital cost value for mechanical recycling is 0.032 (see Table 4).
In addition, different maintenance and utility consumption levels were chosen to see the
effect of operating cost. Overall, the fuzzy rules allow yielding results that incorporate
all uncertainty factors considered in this work. The results demonstrate that the system
is dependent on all inputs and the change in any input may affect the result. However,
several statements could describe the behaviour of the whole fuzzy system and indicate
points advised to be elaborated upon:

1. As the weight of five main inputs (Q, CC, TC, OC, and DC (see Figure 1 for notation))
for the output cost is equal (based on developed rules), the change of two or more of
these inputs has a significant impact. For example, it is evident that the higher capital
cost in combination with the higher operational cost (Maintenance + Utility) lead to
the resultant highest cost.

2. Single inputs (CC, Q) without the first-level inputs have the highest effect on the
output cost. This is clear from cases 7 and 8, where the increased annual quantity
with similar other inputs decreased the output cost to almost 10%.

3. Other input parameters for dismantling and transportation cost acting together be-
come a cost-increasing factor. For instance, comparing cases 2 and 3, even though
capital cost were lower for case 2 than for case 3, the increased input parameters for
waste characteristics (labour intensity and size) yielded results of more expensive
output cost. Labour-intensive large waste components require additional cost for
dismantling and transportation.

4. The accuracy of the system’s results is dependent on the chosen ranges for output
cost and input parameters. The availability of data and expert knowledge is a critical
factor for the correct implementation of the model. Ranges for output cost should be
adjusted for the chosen market and country.

It should be noted that the values considered in this study may not depict the precise
values in the current recycling market. The study’s limitations are inherent in fuzzy logic’s
nature, which is a dependency on the expert knowledge and provided inputs. All cases
considered are hypothetical and input values were extracted from the literature. Never-
theless, from this work, it is clear that single-point estimates are not capable of expressing
the actual recycling cost for composite materials with their different characteristics and
process parameters. The methodology developed in this study shows that the fuzzy logic
approach is capable of working with these uncertainties.

5. Conclusions

The aim of this study was to develop a fuzzy logic-based system to estimate the
recycling cost of CFRP waste taking into consideration all relevant uncertainties and in-
accuracies. Recycling processes such as mechanical recycling, pyrolysis, fluidized bed
process, and supercritical water were included in this work. The cost estimation system
has employed heuristic rules in the form of IF–THEN rule. By applying the fuzzy theory,
the ranges were constructed for imprecise cost drivers of recycling processes, and the
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Mamdani’s fuzzy inference system was implemented in MATLAB. The ranges developed
are unique for every recycling method and CFRP waste origin. The fuzzy sets were con-
structed at the whole CFRP recycling cost structure including transportation, dismantling,
operational, and capital cost. It is found that the uncertainty in capital cost, the planned
annual capacity, and operational cost may result in considerable deviations of the final
output cost of recycling. Transportation and dismantling cost as well at the same extent
may affect the final cost of CFRP waste treatment. Moving towards the commercialization
trend of CFRP recycling, stakeholders of CFRP market may find these results important.
Specifically, the proposed methodology can be useful for end-of-life waste holders or recy-
cling investors to evaluate the effects of uncertain elements in the cost structure of recycling
and make informed decisions in the field. The study addresses the research gap amongst
studies on cost modelling of recycling CFRP waste by considering waste parameters and
quantifying the impacts of uncertainties in recycling processes. The illustrative case sce-
narios and a user-friendly interface helps managers to answer what-if scenarios promptly
without requiring any deep quantitative knowledge. Future studies could explore this
issue by investigating possible applications of recycled CFRPs in specific industries and
their economic feasibility.
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