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Abstract: By solving the time-dependent power flow equation, we present a novel approach for
evaluating the bandwidth in a multimode step-index polymer photonic crystal fiber (SI PPCF) with a
solid core. The bandwidth of such fiber is determined for various layouts of air holes and widths
of Gaussian launch beam distribution. We found that the lower the NA of SI PPCF, the larger the
bandwidth. The smaller launch beam leads to a higher bandwidth for short fibers. The influence of
the width of the launch beam distribution on bandwidth lessens as the fiber length increases. The
bandwidth tends to its launch independent value at a particular fiber length. This length denotes
the onset of the steady state distribution (SSD). This information is useful for multimode SI PPCF
applications in telecommunications and optical fiber sensing applications.

Keywords: photonic crystal fiber; PMMA fiber; step-index fiber; power flow equation; bandwidth

1. Introduction

Selective stacking and chemical doping of materials have historically been employed
for fabrication of optical fibers with different refractive-index (RI) distributions. Another
method is to use a micro-structured pattern of very small holes that runs the length of the
“holey” or PCFs. A PCF can have a solid core part and a holey cladding part, as shown
in Figure 1. The hole pattern lowers the effective RI of the cladding, allowing the fiber to
direct light. By selecting the hole pattern in the cladding throughout the design phase, the
RI profile of the fiber can be modified. A variety of different micro-structured patterns
of the PCF allows a broad versatility to modify its profile at the design stage [1–7]. A
single-mode PCF has been produced for operation in a wide wavelength range [2]. The
hollow core of a PCF, on the other hand, is also possible [8–13]. PCFs have been used in a
variety of applications, including dispersion [14–16], supercontinuum production [17–19],
birefringence [20], optofluidics [21], wavelength conversion [22,23] and sensing [24,25]. A
typical numerical aperture of PCFs is NA = 0.5–0.6 [26–30]. With high NA PCFs, lensless
beam focusing with the outstanding resolution has been recorded [31].

PCF propagation characteristics are influenced by differential mode attenuation, mode
coupling, and modal dispersion. Light scattering in multimode optical fibers transfers
power from one mode to another due to intrinsic perturbations, which causes mode
coupling. Until recently, commercial simulation software packages were not designed
for multimode PCFs. This deficiency is addressed in this paper for the first time, to our
knowledge, by numerically solving the time-dependent power flow equation. The mode
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coupling properties of SI PPCF, and hence bandwidth, are affected by the parametric
variance of the width of the launch beam distribution and the size of air holes. For three
distinct widths of the launch beam distribution and sizes of air holes in the cladding, we
estimated bandwidth in multimode SI PPCF (Poly(methyl methacrylate) or PMMA optical
fibers) with solid core. The holes in the cladding are arranged in a triangular pattern with a
uniform pitch (see Figure 1).
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2. Design of SI PPCF

The SI PPCF is designed with air holes of uniform diameter in the cladding, which
become a regular triangular lattice. The desirable effective RI is achieved by choosing the
size (d) and pitch (Λ) of the cladding layer (Figure 1). The solid core region has the highest
RI n0.

3. Time-dependent Power Flow Equation

The following time-dependent power flow equation [32] describes the time-dependent
power flow for multimode optical fibers:

∂p(θ, z, t)
∂z

+ τ(θ)
∂p(θ, z, t)

∂t
= −α(θ)P(θ, z, t) +

1
θ

∂

∂θ

[
D(θ)

∂p(θ, z, t)
∂θ

]
(1)

where t is time; p(θ, z, t) is the distribution of power over angle, space, and time; τ(θ) is
mode delay per unit length; D(θ) is the mode-dependent coupling coefficient (usually
assumed constant [32,33]); and α(θ) = α0 + αd(θ) is the modal attenuation, where α0
represents conventional losses due to absorption and scattering. Except near cutoff, the
attenuation is uniform α(θ) = α0 (0 ≤ θ ≤ θm) [33] (it appears in the solution as the
multiplication factor exp(–α0z) which also does not depend on θ). Therefore, α(θ) need not
be accounted for when solving (1). In this paper for the first time, to our knowledge, by
numerically solving the time-dependent power flow equation (1) we obtain bandwidth of
the multimode SI PPCF.

4. Numerical Results and Discussion

For multimode solid-core SI PPCF, the bandwidth was examined for varying widths
of launch beam distribution. For PCFs with air holes in a triangular lattice, the effective
parameter V is given as:

V =
2π

λ
ae f f

√
n2

0 − n2
f sm (2)

where n0 is the RI of the core. The effective RI of the cladding part n f sm is the effective
RI of fundamental space-filling mode in the triangular hole lattice, and ae f f = Λ/

√
3 [34].
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The effective RI of the cladding n1 = n f sm can be obtained from equation (2), using the
following equation [35]:

V
(

λ

Λ
,

d
Λ

)
= A1 +

A2

1 + A3 exp(A4λ/Λ)
(3)

with the fitting parameters Ai (i = 1 to 4):

Ai = ai0 + ai1

(
d
Λ

)bi1

+ ai2

(
d
Λ

)bi2

+ ai3

(
d
Λ

)bi3

(4)

where the coefficients ai0 to ai3 and bi1 to bi3 (i = 1 to 4) are shown in Table 1.

Table 1. Fitting coefficients in Equation (4).

i = 1 i = 2 i = 3 i = 4

0.54808 0.71041 0.16904 −1.52736
ai1 5.00401 9.73491 1.85765 1.06745
ai2 −10.43248 47.41496 18.96849 1.93229
ai3 8.22992 −437.50962 −42.4318 3.89
bi1 5 1.8 1.7 −0.84
bi2 7 7.32 10 1.02
bi3 9 22.8 14 13.4

Figure 2 depicts the cladding’s effective RI n1 ≡ n f sm as a function of λ/Λ, for
Λ = 3 µm and for three values of d. Relevant values of the structural parameters of the
analyzed multimode SI PPCF are summarized in Table 2, for λ = 645 nm.
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Table 2. Effective RI of the cladding n1, relative RI difference ∆ = (n0 − n1)/n0, where n1 = 1.492,
and the critical angle θm for varied d (air hole diameter) at 645 nm wavelength.

d (µm) 1.0 1.5 2.0

n1 1.4844 1.4757 1.4458

∆ = (n0 − n1)/n0 0.673673 0.677645 0.691611

θm (deg) 5.79 8.48 14.28

For the multimode SI PPCF with RI of the core n0 = 1.492, core diameter
2a = 0.980 mm, and optical fiber diameter b = 1 mm, we solved the time-dependent power
flow Equation (1) using a finite-difference method, assuming D = 1.649× 10−4 rad2/m
and α0 = 0.22 dB/m [35,36]. We looked at impact of the diameters of air holes in the
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cladding of d = 1, 1.5, and 2 µm (i.e., the influence of NA of the fiber) and width of the
launch beam distribution with (FWHM)z=0 = 1◦, 5◦, and 10◦ on the bandwidth. A de-
tailed explanation of the numerical solution of the time-dependent power flow equation
(1) is given in our previous work [37]. As illustration, Figure 3 shows the evolution of
the bandwidth with fiber length calculated for three Gaussian launch beam distributions
with (FWHM)z=0 = 1◦, 5◦, and 10◦ for the case with d = 1 µm (n1 = 1.4844) (Figure 3a),
d = 1.5 µm (n1 = 1.4757) (Figure 3b) and d = 2 µm (n1 = 1.4458) (Figure 3c). Figure 3 shows
that the lower NA (larger n1, smaller d), the higher bandwidth is obtained. In the case of
the narrowest Gaussian launch beam, the highest bandwidth is observed at short optical
fiber lengths. This is due to the guiding modes’ modal dispersion being reduced due to
the narrower launch beam. The influence of the width of the launch beam distribution
on bandwidth lessens as fiber length increases. Because mode coupling causes energy
redistribution between guiding modes, the initial modal excitation (the FWHM of the
launched beam) has a reduced impact on bandwidth for longer fibers. Figure 3 shows
how bandwidth drops linearly for short lengths before switching to a 1/z1/2 functional
dependence. This switch, and equilibrium mode distribution, occur at shorter optical fiber
lengths for the wider Gaussian launch beam and lower NA. For (FWHM)z=0 = 1◦ this
length is Lc ' 5 m for n1 = 1.4844, Lc ' 12.5 m for n1 = 1.4757 and Lc'41 m for n1 = 1.4458.
For (FWHM)z=0 = 5◦ this length is Lc ' 4.5 m for n1 = 1.4844, Lc ' 11 m for n1 = 1.4757 and
Lc ' 39 m for n1 = 1.4458. For (FWHM)z=0 = 10◦ this length is Lc ' 2.5 m for n1 = 1.4844,
Lc ' 9 m for n1 = 1.4757 and Lc ' 33 m for n1 = 1.4458 [36]. One can see that the shorter the
length Lc results in the faster bandwidth improvement. The bandwidth tends to its launch
independent value at a particular fiber length. This length denotes the onset of the SSD. It
is worth noting that the proposed method for calculation of bandwidth in multimode SI
PPCF can also be employed for multimode step-index silica PCFs.
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5. Conclusions

By numerically solving the time-dependent power flow equation, we proposed a
novel approach for evaluating the bandwidth in a multimode SI PPCF with a solid core and
triangular air-hole lattice in the cladding. We showed that the lower the NA, the higher the
bandwidth. The narrower Gaussian launch beam leads in increased bandwidth for short
optical fibers. The influence of the width of the launch beam distribution on bandwidth
lessens as fiber length increases. The bandwidth tends to its launch-independent value at a
particular fiber length. This length denotes the onset of the steady state distribution. These
customizable parameters allow for additional variety in the construction of multimode
photonic crystal fibers. By changing the interplay between the material and geometrical
dispersions, such design freedom in adjusting structural elements of the optical fiber for
dispersion management.
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