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Abstract: A burn mark is a sort of serious surface defect on injection-molded parts. In some cases, it
can be difficult to reduce the burn marks by traditional methods. In this study, external gas-assisted
injection molding (EGAIM) was introduced to reduce the burn marks, as EGAIM has been reported
to reduce the holding pressure. The parts with different severities of burn marks were produced by
EGAIM and conventional injection molding (CIM) with the same molding parameters but different
gas parameters. The burn marks were quantified by an image processing method and the quantitative
method was introduced to discuss the influence of the gas parameters on burn marks. The results
show that the burn marks can be eliminated by EGAIM without changing the structure of the part
or the mold, and the severity of the burn marks changed from 4.98% with CIM to 0% with EGAIM.
Additionally, the gas delay time is the most important gas parameter affecting the burn marks.

Keywords: burn mark; EGAIM; image processing; quantitative method; gas parameters

1. Introduction

Injection molding is one of the most important mass production methods of plastic
parts [1–3]. However, some defects commonly appear in injection-molded parts, such
as flashes [4], warpage [5], weld lines [6], burn marks [7], sink marks [8], etc. Of the
aforementioned defects, a burn mark is a kind of surface defect that shows a dark or black
character in certain places on the part surface. This defect affects the appearance and
mechanical properties of the molded parts greatly.

The influence of mold structure and molding parameters on the burn marks has been
studied [9–11]. Yao et al. [9] proposed an automated design methodology to minimize
the burn marks by optimizing the mold design, and the burn marks were eliminated
with the optimized gate location. Mesgaran et al. [10] modified the mold structure to
eliminate burn marks. The burn marks decreased with the modified mold. However, it
is not always possible to modify the gate location or mold structure of injection molds.
Fukushima et al. [11] investigated the influence of molding parameters on the burn marks
and found that the burn marks decreased with a decrease in injection speed within a certain
range. It provides guidance for reducing the burn marks, but it does not always work in
the molding of all parts. Therefore, it is important to find a possible method of reducing
the burn marks.

The burn marks are caused by high local temperatures of a polymer, usually due to the
high pressure of trapped air in the mold cavity [11,12]. External gas-assisted injection mold-
ing (EGAIM) has been reported to reduce the holding pressure in the mold cavity [13–15],
which will perhaps reduce the pressure at the air-trapped positions and hence reduce the
burn marks.
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EGAIM is more complicated than conventional injection molding (CIM) because of the
introduction of gas [16]. The gas is injected between the mold wall and the molten polymer
at a specific point in time (named the gas delay time) after filling with molten polymer,
the gas will be maintained at a certain pressure (named the gas pressure) until a certain
time (named the gas packing time) [15,17]. EGAIM compensates for the shrinkage of the
polymer during the holding process better than that in conventional injection molding.
EGAIM has been reported to mold thick-walled parts and uneven-thickness parts as it can
compensate for the shrinkage and thus reduce the shrinkage [13], sink marks [16], ghost
marks [17] etc. Additionally, the parts with higher surface quality can be molded and more
materials can be saved with EGAIM.

In this study, EGAIM was introduced as a possible method to reduce the burn marks
and the influence of EGAIM on burn marks were investigated in detail. The parts with
different severities of burn marks were molded by the EGAIM and CIM processes. Images
were taken of the molded parts and they were then divided into the burnt area and non-
burnt area by image processing [18]. Thus, the burn marks were quantified by calculating
the proportion of burnt area. The quantified burn marks of parts molded by EGAIM were
compared with those by molded by CIM to see whether EGAIM is able to reduce the burn
marks. Parts were also molded by the EGAIM process under different conditions with full
factorial experiments, and quantified burn marks were also used to analyze the influence
of gas parameters on the burn marks.

2. Materials and Methods
2.1. Experiment

In this study, the parts were molded by EGAIM and CIM with the same molding
parameters except the special gas parameters in EGAIM. The burn marks were investigated
on the molded parts to discuss whether EGAIM is applicable for reducing burn marks. The
dimensions of the parts and locations of the gate and gas injection positions are shown in
Figure 1. Additionally, the molding parameters used in EGAIM and CIM are shown in
Table 1.
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Figure 1. Dimensions of the parts and locations of the gate and gas injection positions (unit: mm).

Table 1. The molding parameters used in EGAIM and CIM.

Melt
Temperature

(◦C)

Mold
Temperature

(◦C)

Injection
Pressure

(MPa)

Injection
Speed
(mm/s)

Holding
Pressure

(MPa)

Holding Time
(s)

Cooling Time
(s)

220 40 60 55 50 5 35
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The special gas parameters in EGAIM are the aforementioned gas pressure, gas
packing time and gas delay time. The full factorial experiment method is suitable to
design experiments to study the effects of factors comprehensively, and it was introduced
to investigate the influence of each gas parameter on burn marks. The levels of gas
parameters used in the molding experiments are shown in Table 2.

Table 2. Gas parameters and levels.

Level 1 Level 2 Level 3

Gas pressure (MPa) 5 7 9
Gas packing time (s) 10 20 30

Gas delay time (s) 0 1 2

A semi-crystalline iPP (Globalene 6331, Taiwan Polypropylene Co., Ltd., Taipei, China)
was chosen as the part material in this study. An injection molding machine (MA3800/2250,
Haitian International Holdings Ltd., Ningbo, China) was used to mold CIM and EGAIM
parts. Nitrogen with a certain gas pressure was injected into the cavity controlled by a
pressure controller (C8-01, Beijing Chn-Top Machinery Group Co., Ltd., Beijing, China).

2.2. Evaluation of Burn Marks

The parts with burn marks were photographed and the images were processed by an
image processing method [18] designed to evaluate the burn marks of molded parts. The
proportion of burnt area over the area of the whole part area was taken as the quantified
index of burn marks in this paper.

The molded parts were put on clean backgrounds and the images were photographed
on the surface with burn marks by a camera under stable light. The backgrounds were
removed and the part images with burn marks were binarized according to [19–21] for
calculating the proportion of burnt area.

In the binarization, a threshold was set to divide pixels in the image into black and
white pixels, where black pixels exist only in the burnt area and white pixels exist only in
the non-burnt area. The threshold was determined by the OTSU method [21]. The black
and white pixels were converted by Python program, where the black pixels are the pixels
with a gray level lower than the threshold and white pixels are the pixels with the gray
level higher than the threshold. The number of black and total pixels in the binarized
images are counted by the Python program, and the proportion of the burnt area εb can be
calculated by Equation (1):

εb =
n1

n
(1)

where n1 is the number of black pixels in the binarized image, and n is the number of pixels
in the binarized image.

2.3. Regression Analysis

Regression analysis is a useful method to investigate the relationships between vari-
ables [22–24] and it was introduced to quantify the influence of gas parameters on burn
marks in this study. A model was established by stepwise regression analysis in Minitab to
describe the relationship between the gas parameters and burn marks. The significance
level was set to 0.05 and the goodness of fit was evaluated by the value of coefficient of
determination, R2 and adjusted R2, R2

adjust.

3. Results and Discussion
3.1. Quantification of Burn Marks

In this study, the burn marks appear at the final filling position, usually on the sides of
the corner farthest from the injection gate. Additionally, the side with the length of 150 mm
was marked as the long side and the one with the length of 100 mm was marked as the
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short side, as shown in Figure 2. The images were photographed on the long side and the
short side, and image processing was performed on the images.
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Figure 2. One of molded parts.

The burn marks are very obvious on the parts molded by CIM. The image processing
was performed on the CIM parts, and the images of the main steps during image processing
are shown in Figure 3. The total pixels and black pixels in Figure 3c were counted by the
Python program, and the proportions of burnt area were calculated on the long side and
short side of the part, marked as εl and εs, respectively. The proportion of burnt area in
part ε was defined as the proportion of burnt area on the sides with burn marks, namely
the proportion of black pixels out of total pixels in the binary images. The ε values were
calculated by Equation (2) in this study:

ε =
3 × ε l + 2 × εs

5
(2)

ε = 4.98% for the parts molded by CIM with the molding parameters shown in Table 1.
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Burn marks are invisible in many parts molded by EGAIM, and one of the parts was
selected to quantify the burn marks by image processing. This part was molded with a gas
pressure of 7 MPa, gas packing time of 30 s, and gas delay time of 0 s. Images of the main
processing steps of the molded part are shown in Figure 4. Additionally, the proportion of
burnt area is 0 in this part with invisible burn marks.
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Figure 4. Images of the main steps during the image processing of a part molded by EGAIM: (a) photographed images;
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In Figure 3, the black area in the binary images, shown in Figure 3c, is basically
the same as the burnt area on the parts shown in Figure 3a. Additionally, in Figure
4, the burnt area on the part is invisible and the black area in the binary images is also
invisible. Therefore, the binarization is effective when comparing the part images with the
binary images.

The proportions of burnt area in the two aforementioned parts are very different from
each other in terms of the severity of the burn marks. Thus, the proportion of burnt area is
an effective quantifiable index to evaluate the burn marks.

3.2. Reduction in Burn Marks by EGAIM

To discuss whether EGAIM is effective at reducing burn marks, the severities of burn
marks in parts molded by EGAIM were compared with those molded by CIM. The EGAIM
and CIM parts were molded with the same molding parameters as shown in Table 1, except
the gas parameters used in EGAIM were different. The gas parameters were set by full
factorial experiments with levels as shown in Table 2. The severities of burn marks were
quantified by the aforementioned image processing method. The severities of burn marks
of parts molded by EGAIM, with detailed gas parameters are listed in Table 3.

The proportions of burnt area in the parts molded by EGAIM are all lower than the
4.98% burn rate observed in CIM, as shown in Table 3. Therefore, EGAIM is an effective
method to reduce burn marks, as we predicted in the introduction. The severity of burn
marks varied very much with different gas parameters. To discuss the reduction in burn
marks by EGAIM more comprehensively, the reduction percentages of burn marks are
ranked from lowest to highest according to the data listed in Table 3, as shown in Figure 5.
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Table 3. The detailed gas parameters and severities of burn marks of parts molded by EGAIM.

No. Gas Pressure
(MPa)

Gas Packing Time
(s)

Gas Delay Time
(s)

Severity of Burn Marks
(%)

1 9 30 2 3.57
2 5 30 0 0
3 9 20 2 3.61
4 5 30 1 4.79
5 9 20 1 3.11
6 7 10 0 0
7 7 20 0 0
8 7 30 2 3.99
9 5 10 1 4.08

10 9 30 0 0
11 9 10 1 2.14
12 9 10 0 0
13 5 20 0 0
14 5 20 1 3.83
15 5 30 2 4.76
16 7 20 2 4.03
17 7 10 2 4.07
18 5 10 2 4.22
19 7 10 1 3.56
20 5 20 2 4.03
21 9 30 1 3.14
22 9 10 2 3.44
23 9 20 0 0
24 5 10 0 0
25 7 20 1 4.01
26 7 30 1 3.94
27 7 30 0 0
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In one third of the experiments, the burn marks were completely invisible on the
molded part. The burn marks were eliminated by EGAIM with the given gas parameters
in those experiments. More than half of the experiments show reduction percentages
from 15 to 40%, and the lowest reduction percentage is about 4%, appearing in only two
experiments. The burn marks were reduced to a certain degree by EGAIM.
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3.3. Influence of Gas Parameters on Burn Marks

The reduction in burn marks varied very much with different gas parameters, as
discussed in Section 3.2. Thus, it is necessary to investigate the influence of gas parameters
on the reduction in burn marks. Three-dimensional bar plots were created to show the
influence of gas pressure and gas delay time on burn marks with different gas packing
times, and a scatter plot was used to show the influence of gas packing time on burn marks,
as shown in Figures 6 and 7.

Figure 6 clearly shows that the burn marks are reduced to 0 when the gas delay time
is 0 s. A gas delay time of 0 s means that the gas is injected between the cavity surface
and molded part at the end of the filling immediately. The sooner the gas is injected, the
sooner it will reduce the holding pressure, and thus this significantly reduces the severity
of the burn marks within this study. In addition, the severities of burn marks decrease
gradually with an increase in gas pressure from 5 MPa to 9 MPa. Compared with lower
gas pressure, higher gas pressure reduces the holding pressure more, reducing burn marks
more significantly.

In Figure 7, the dots correspond to the severities of burn marks of parts molded by
EGAIM with different gas parameters, and the dashed line corresponds to the severity
of the burn marks of parts molded by CIM. The influence of gas packing time on burn
marks cannot be observed clearly in Figure 7. It will be discussed specifically in the
following section.
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3.4. Regression Analysis for the Gas Parameters and Burn Marks

A stepwise regression analysis was introduced to establish the model of the relation-
ship between gas parameters and burn marks. The regression model is shown in Table 4
and the main effect plot for burn marks is shown in Figure 8.

Table 4. Regression model between gas parameters and burn marks.

The Model Established in Minitab p-Value F-Value R2 R2
adjust

Severity of burn marks = 0.393 − 0.0865 Gas pressure + 0.0047 Gas packing
time + 5.957 Gas delay time + 0.00026 Gas packing time × Gas packing time −
1.638 Gas delay time × Gas delay time − 0.0996 Gas pressure × Gas delay time

1.1 × 10−14 122.16 97.34% 96.55%
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According to the F-distribution table, F0.05(6,20) = 2.6. Additionally, Table 4 shows
that F = 122.16 > F0.05(6,20), indicating the model is significant at a significance level of
0.05. Additionally, the values of R2 and R2

adjust are 97.34% and 96.55%, respectively, which
are close to 1. The goodness of fit for this model is much higher than the goodness of fit
reported in the literature with regression analyses [16,24–26]. Thus, the model accurately
describes the relationship between the gas parameters and burn marks, and it is acceptable
to discuss in more detail based on the result of regression analysis, as shown in Figure 8.
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Figure 8 shows that the gas delay time is the most important parameter of the gas
parameters influencing the burn marks, followed by the gas pressure, and the gas packing
time is the least important gas parameter influencing the burn marks. The burn marks can
be greatly reduced by adjusting the gas delay time, whereas they can be slightly reduced
by adjusting the gas pressure and gas packing time.

4. Conclusions

In this study, EGAIM was introduced to reduce burn marks and the influence of gas
parameters on burn marks was studied. The parts were molded by CIM and EGAIM, and
different severities of burn marks appeared on the molded parts. The severities of burn
marks were quantified by the image processing method. The quantified burn marks of
parts molded by EGAIM were compared with those molded by CIM and were used to
discuss the influence of the gas parameters on burn marks. The following conclusions can
be drawn:

(1) EGAIM is an applicable process to reduce burn marks in injection molding without
changing the structure of the part or the mold. The proportions of burnt area in
parts molded by EGAIM were all lower than the 4.98% that was found for those
molded by CIM, and the burn marks could be eliminated by EGAIM with reasonable
gas parameters.

(2) The burn marks were quantified into specific values by the quantitative method
proposed in this paper, and this provides a possible method for evaluating other
visible defects in injection-molded parts.

(3) Different gas parameters play different roles in reducing burn marks. The most
important gas parameter is gas delay time. The burn marks were eliminated when
the gas delay time was 0 s and varied slightly with changes in gas pressure and gas
packing time.
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