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Abstract: The rise and spread of antimicrobial resistance is creating an ever greater challenge in
wound management. Nanofibrous membranes (NFMs) incorporated with antibiotics have been
widely used to remedy bacterial wound infections owing to their versatile features. However, misuse
of antibiotics has resulted in drug resistance, and it remains a significant challenge to achieve both
high antibacterial efficiency and without causing bacterial resistance. Here, the ‘MOF-first’ strategy
was adopted, the porphyrinic metal-organic frameworks nanoparticles (PCN−224 NPs) were pre-
synthesized first, and then the composite antibacterial PCN−224 NPs @ poly (ε-caprolactone) (PM)
NFMs were fabricated via a facile co-electrospinning technology. This strategy allows large amounts
of effective MOFs to be integrated into nanofibers to effectively eliminate bacteria without bacterial
resistance and to realize a relatively fast production rate. Upon visible light (630 nm) irradiation for
30 min, the PM−25 NFMs have the best 1O2 generation performance, triggering remarkable photo-
dynamic antibacterial effects against both S. aureus, MRSA, and E. coli bacteria with survival rates of
0.13%, 1.91%, and 2.06% respectively. Considering the photodynamic antibacterial performance of the
composite nanofibrous membranes functionalized by porphyrinic MOFs, this simple approach may
provide a feasible way to use MOF materials and biological materials to construct wound dressing
with the versatility to serve as an antibacterial strategy in order to prevent bacterial resistance.

Keywords: metal-organic frameworks; photodynamic therapy; antimicrobial nanofibers; wound dressing

1. Introduction

Antibiotic-resistant bacteria (ARB) infection has become a global crisis in wound
management, which causes a delay in healing and a corresponding spike in healthcare
expenses [1–3]. The World Health Organization (WHO) estimates that if no action is taken,
the global annual cost of ARB could increase to US$100 trillion and 10 million deaths
by 2050, which is far exceeding the number of cancer-caused deaths [4–7]. To overcome the
arduous challenge of ARB infection, organic quaternary ammonium compounds [8–11], an-
timicrobial peptides [12,13], metal ions [14,15], and metal oxide nanoparticles (NPs) [16,17]
have been extensively applied as alternative bactericidal agents to combining with the
wound dressings. However, their existing shortcomings of certain cytotoxicity, material in-
stability, or even increased risk of bacterial resistance in practice cannot be ignored [18–20].
Therefore, what is vital to wound management is the development of new therapeutics
less prone to resistance.

Photodynamic therapy (PDT), an invasive approach with high spatiotemporal ac-
curacy has become an alternative weapon against ARB [21,22]. During PDT, the photo-
sensitizers (PS) enriched in the wounds can be activated by appropriate light, resulting
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in producing reactive oxygen species (ROS, i.e., 1O2, OH, O2−, and H2O2) for steriliza-
tion [23,24]. Moreover, it is essential that the bacterial cell damage induced by ROS is
non-specific, which is unlikely to result in drug resistance [25]. Unfortunately, there are dis-
advantages of PS that cannot be ignored, such as poor chemical stability, water-insolubility,
and the tendency to self-agglomeration under physiological conditions severely restricts
the capability to generate ROS, which hinders the application of PS in wound care [26].
Currently, conjugating PS with carriers has been applied as an effective countermeasure.
Metal-organic frameworks (MOFs) have been proven to be a unique nanocarrier for func-
tional agents owing to their extremely high specific surface area, plenty of porous channels,
and versatile coordinate sites [27–29]. In particular, an excellent synergistic effect on the
functionality of the resultant MOFs-PS conjugates was exhibited, the agglomeration and
self-quenching of PS have been avoided, and the photodynamic activity has been greatly
enhanced [30,31]. Encouraged by synergistic effect, current research is devoted to combin-
ing MOFs with a carrier to avoid the drawback of MOFs in pure powder forms that are not
easily enriched at the wound site [32].

Electrospun nanofibrous membranes (NFMs) offer remarkable advantages, such as
variable pore size, large specific surface area, and oxygen permeability, which promote cell
adhesion and rapid proliferation, making them suitable for MOFs immobilization [33]. Elec-
trospinning, as a versatile and affordable technology for the facile and rapid fabrication of
ultrafine polymer nanofibers, has been widely used in various fields such as advanced bat-
teries [34], wastewater purification [35–37], and biomedicine [38]. Importantly, the features
of electrospinning nanofibrous membrane structural stacking are similar to that of natural
extracellular matrix, making it suitable for wound-dressing applications. Qian et al. [39]
incorporated the ZIF-8 MOFs loaded with the PS (rose bengal, RB) into the electrospun poly
(ε-caprolactone) (PCL) nanofibrous matrix via an ‘MOF-first strategy’. Notwithstanding
that the instability of ZIF-8 may impair therapeutic effectiveness, the as-prepared dressing
still shows a good exploitation potentiality because of the features of NFMs. Until now,
there have been many different nanofiber spinning technologies developed, for instance,
Forcespinning®, a versatile technique for the production of high-throughput polymer
nanofibers [40,41]. Co-electrospinning is more suitable and practical for small-scale tests
in the lab considering the engineering challenges embracing the scalability of performing
methods and the integrated stability between MOFs and fibers are still required to be
resolved urgently.

Here, our conception of the photodynamic antibacterial wound dressings for infection
is based on the assessment of two criteria: (1) the inherent biosafety (biodegradable and
biocompatible properties) of dressings should be guaranteed, (2) the PS must be non-
agglomerated and firmly incorporated with the nanofibers at high content. The first crite-
rion is met by using the Food and Drug Administration (FDA) proven synthetic polymer—
PCL [42]. Although natural materials such as chitosan [43], BSA [44], gelatin [45,46],
zein [47], and collagen [48] also demonstrate the biodegradable and biocompatible proper-
ties, problems persist with their poor electrospinnability, fast degradation rates, and me-
chanical instability. In addition, PCL would not generate harmful acidic (lactic and glycolic
acids) degradation products such as polylactic acid and polyglycolic acids do. In order
to meet the second criteria, we used Zr-based porphyrinic MOFs (porous coordination
network−224, PCN−224) NPs as PS, which have excellent properties such as easy synthesis,
and good biocompatibility [49]. The excellent acid/alkali stability of PCN−224 NPs pro-
vides the possibility to incorporate with PCL via the co-electrospinning method (Scheme 1).
The process conditions are moderate which can be tolerated by PCL and the high-quality
MOFs can be obtained because their nucleation and growth processes can be optimized
ex-situ. Consequently, the PCL nanofibrous membranes containing PCN−224 NPs (PM)
NFMs serve as an antibacterial wound dressing that can generate 1O2 under the 630 nm
red light irradiation to attack bacteria. Such PM NFMs would be potential candidates to
quickly eliminate bacteria at the wound site while preventing the development of ARB.
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Scheme 1. Schematic diagram of the preparation of the PCL nanofibrous membranes containing
PCN−224 NPs (PM NFMs) photodynamic antibacterial NFMs.

2. Materials and Methods
2.1. Materials and Reagents

Zirconyl chloride octahydrate (ZrOCl2·8H2O, 98%), benzoic acid (≥99.5%), and
poly (ε-caprolactone) (PCL, Mn = 80,000) were purchased from Sigma-Aldrich Chemicals
(Shanghai, China). Tetrakis (4-carboxyphenyl) porphyrin (TCPP), 97%) and 2-[4-(2-hydroxyethyl)-
1-piperazinyl] ethanesulfonic acid (HEPES, 99%) were obtained from TCI (Shanghai) In-
dustrial Development Co. (Shanghai, China). N,N-dimethylformamide (DMF, 99.8%),
and 1,3-diphenylisobenzofuran (DPBF, 97%) were bought from J&K Scientific Ltd. (Bei-
jing, China). Chloroform (CHCl3, AR), and acetone (C3H6O, AR), both reagents were
provided by China National Pharmaceutical Group Corporation (Shanghai, China). A Cell
Counting Kit-8 (CCK-8) was purchased from Yeasen Biotechnology (Shanghai) Co., Ltd.
(Shanghai, China). Gram-positive Staphylococcus aureus (S. aureus, ATCC 29213), Gram-
negative Escherichia coli (E. coli, ATCC 25922), and methicillin-resistant Staphylococcus aureus
(MRSA, ATCC 43300) were obtained from Shanghai Jiachu Biological Engineering Co.,
Ltd. (Shanghai, China). Mouse fibroblast (L929) was obtained from Shanghai Cell Bank of
Chinese Academy of Sciences (Shanghai, China). All chemical reagents were purchased
and used directly without further purification.

2.2. Synthesis of PCN−224 Nanoparticles (NPs)

The synthetic procedure to obtain PCN−224 NPs was according to the solvothermal
method reported in the previously published protocol [50]. Briefly, 10 mL ZrOCl2·8H2O
solution (15 mg/mL, solvent is DMF), 20 mL TCPP solution (2.5 mg/mL, DMF) and
20 mL benzoic acid solution (70 mg/mL, DMF) were dissolved uniformly under ultrasonic
shaking, respectively. Then we added them to a 250 mL round bottom flask in sequence
and the mixed solution was stirred at 90 ◦C for 5 h in an oil bath. After the reaction,
the compound was allowed to cool to room temperature, the product was collected by
centrifugation at 12,000 rpm for 30 min and followed by washing with DMF three times to
remove unreacted substances. The final PCN−224 NPs were resuspended in fresh DMF
and stored in the dark.

2.3. Preparation of the PCL Nanofibrous Membranes Containing PCN−224 Nanoparticles (PM NFMs)

The PM NFMs were fabricated by the co-electrospinning method. Firstly, PCL was
dissolved in a mixture solvent of CHCl3 and DMF (1:1, v/v) to get a homogeneous solution
with a concentration of 15 wt%. After the PCL was completely dissolved, PCN−224 NPs
of different mass ratios were added, and the mixed solution was ultrasonic for 30 min and
then placed on a magnetic mixer for 12 h until the PCN−224 NPs were evenly dispersed
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in the spinning solution. The homogeneous polymer solutions were store in a 10 mL
syringe with a 22 G needle, followed by electrospinning at a voltage of 23 kV and feed
rate of 0.9 mL/h. The nanofibers were collected on a collector 15 cm away from the tip of
the needle. The entire electrospinning process was carried out under the temperature
and relative humidity were 22 ± 2 ◦C and 44 ± 2%, respectively. The obtained the
PCL nanofibers containing PCN−224 NPs were denoted as PM NFMs (PM−0, PM−10,
PM−25 and PM−40) based on the weight ratios of PCN−224 NPs relative to PCL (0%,
10%, 25% and 40%, w/w). The PM NFMs were vacuum-dried for 12 h at 30 ◦C to remove
the residual solvent in the fiber membrane and then protected from light.

2.4. Detection of 1O2 Formation
1O2 detection was carried out by using 1,3-diphenylisobenzofuran (DPBF) as a chemi-

cal probe [32,49,51]. Briefly, the PCN−224 NPs were incubated with 3 mL of DMF solution
with a concentration of 10 µg/mL DPBF. Then the cuvette was placed under visible light of
630 nm (100 mW/cm2) for 10 min, and the absorbance of the DPBF solution at 415 nm was
measured every 2 min. Pure DPBF solution was used as a control sample. The test for PM
NFMs is the same as PCN−224 NPs, except that the reaction medium was changed from
DMF to methanol.

2.5. Photodynamic Antibacterial Assay

Gram-negative E. coli (ATCC 25922), Gram-positive S. aureus (ATCC 29213), and MRSA
(ATCC 43300) were selected as representative strains to evaluate the photodynamic an-
tibacterial ability of PM NFMs. In short, bacterial strains were cultivated overnight in
Luria-Bertani (LB) medium with shaking at 37 ◦C. Subsequently, the concentration of
the bacterial solution was diluted to 107 CFU/mL with PBS buffer (0.1 M, pH = 7.0).
Then we drew 100 µL of bacterial solution (107 CFU/mL) to add to the prepared PM NFMs
(1 × 1 cm2), pre-cultured in the dark for 30 min, and irradiated it under visible light of
630 nm (100 mW/cm2) for 30 min. The control sample was incubated in the dark for
60 min. Afterward, 0.9 mL PBS was added to each sample, and the bacteria adhered to the
membranes were removed by sonication for 15 min. Then, the bacteria supernatant was
10-fold gradient diluted with PBS, and 100 µL of each dilution gradient was inoculated
on LB agar plates. The treated agar plate was placed in a 37 ◦C constant temperature and
humidity incubator for 18–24 h. We counted the number of colonies on the agar plate
to evaluate its photodynamic antibacterial performance. This was done for each sample
three times.

2.6. Cytotoxicity Assay

A standard CCK-8 assay was selected to evaluate the cytotoxicity of PM NFMs. First,
L929 cells were cultured in the complete medium containing 90% DMEM, 10% fetal bovine
serum, and 1% penicillin-streptomycin solution. Subsequently, the cells were inoculated
on 14 mm PM NFMs at an implantation density of 2 × 104 cells per well, the wells without
samples were used as controls, and the well plates were placed in the incubator after
inoculation was completed. After 24 h incubation, the medium was aspirated from each
well and the cells were washed three times with PBS to remove unadhered free cells. Finally,
500 µL of CCK-8 working solution was added to each well under dark conditions, and the
absorbance of the supernatant at 450 nm was measured after 3 h of incubation at 37 ◦C
incubators. This was done for each sample three times.

2.7. Characterizations

The surface morphological structures of PCN−224 NPs were characterized by field
emission-scanning electron microscopy (FE-SEM, SU-8010, Hitachi Ltd., Tokyo, Japan),
scanning/transmission electron microscopy (STEM, Talos F200S, Thermo Fisher Scientific,
Waltham, MA, USA). N2 adsorption-desorption isotherms were selected to analyze the
Brunauer–Emmett–Teller (BET) surface areas (BET, ASAP 2020, Micromeritics Co., Norcross,
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GA, USA). The crystal structure of PCN−224 NPs was analyzed by X-ray diffraction
patterns (XRD, D8 ADVANCE, Bruker, Karlsruhe, Germany). Optical properties were
tested by ultraviolet-visible spectrophotometry (UV-Vis, TU-1901, PERSEE Co., Beijing,
China), a steady-state/lifetime spectrofluorometer (QM/TM, Protein Technologies, Inc.,
Tucson, AZ, USA), and a confocal laser scanning microscope (CLSM, LSM 700, ZEISS,
Oberkochen, Germany). The chemical changes of NPs and NFMs were confirmed by a
Fourier transform infrared spectrometer (FT-IR, Spectrum Two, PerkinElmer, Waltham,
MA, USA). Thermal properties were carried out on thermogravimetric analysis (TGA,
TGA 4000, PerkinElmer, Waltham, MA, USA) at a heating rate of 15 ◦C/min, ranging from
30 ◦C to 800 ◦C.

3. Results and Discussion
3.1. Characteristics of PCN−224 NPs

In our ‘MOF-first’ strategy, MOFs should be pre-synthesized firstly and then mixed with
the polymer solution for fiber processing. As shown in Figure 1a, PCN−224 NPs consist of
the six-connected Zr6 clusters and the four carboxyl porphyrin ligand TCPPs through coordi-
nation; each Zr6 cluster bridges six TCPP ligands forming the spacious three-dimensional
nanochannel framework [52]. The morphological analysis of the pre-synthesized PCN−224 NPs
were characterized by SEM and TEM. As shown in Figure 1b,c, PCN−224 NPs present a typical
spherical appearance with an average diameter of 79.02± 0.58 nm (Figure S1) and good dis-
persity in the solution. To analyze whether the porphyrins were introduced into the frame-
works, the TEM elemental mapping of PCN−224 NPs were examined (Figures 1d and S2).
The appearance and even distribution of Zr, O, and N elements, indicating that the ex-
istence of porphyrin throughout the whole framework preliminarily [53]. Furthermore,
the calculated ratio of Zr and porphyrin in the MOF is about 3.18, which is comparable to
the ratio in the theoretical synthetic framework (by the structure of PCN−224, the theoreti-
cal ratio of Zr is 4 of that of TCPP) [53–55]. Hereafter, N2 adsorption-desorption isotherm
measurement was used to reveal the porous structure of the PCN−224 NPs. As demon-
strated in Figure 1e, the PCN−224 NPs had a BET surface area of 837.66 m2/g, and the
pore size distribution is mainly concentrated at 1.43 nm (Figure 1f). It can be seen that the
introduction of porphyrin did not sacrifice the porous features of MOFs, which would be
conducive to the efficient diffusion of 1O2 [56,57].
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Attempting to identify the crystallographic structure of pre-synthesized PCN−224 NPs,
XRD analysis was performed. As shown in Figure 2a, the characteristic diffraction peaks of
the synthesized PCN−224 NPs were in excellent agreement with the simulation pattern
at the angles of 3◦ to 20◦, proving the crystalline phase purity. The diffraction peaks of
PCN−224 NPs at 2θ = 4.46◦, 6.46◦, 7.78◦, 8.98◦, and 11.20◦ which represent the (002), (022),
(222), (004) and (224) crystal planes, respectively [58], also indicating that the porphyrin-
related inhibition effect on crystal formation was not displayed. In the FTIR spectra
(Figure 2b), the peak at 1700 cm−1 corresponds to C=O stretching band. The strong vi-
bration assigned to C=O was found in the peak of 1656 cm−1, which was owing to the
coordination with metal ions [49]. The C=C bond stretching vibration peak of benzene
and pyrrole ring appeared at 1552–1601 cm−1 [59]. Furthermore, it is essential to observe a
peak at 658 cm−1 which was owing to the Zr–OH bond vibration [49]. The XPS spectrum of
Zr 3d (Figure S3) shows that compared with the standard spectrum data (182.4 ev), the Zr
3d5/2 peak shifts 0.2 eV toward the lower binding energy. This shift indicates the charge
redistribution within Zr6 nodes in PCN−224 NPs, suggesting the successful coordination
of the carboxyl group of the porphyrin to unsaturated sites of Zr6 [60]. The successful
synthesis of PCN−224 NPs was demonstrated by the above results.
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Figure 2. (a) Powder X-ray diffraction (PXRD) patterns of PCN−224 NPs. (b) The Fourier transform
infrared (FT-IR) spectra of PCN−224 NPs and tetrakis (TCPP). (c) The ultraviolet (UV)-visible
absorption spectra of PCN−224 NPs and N,N-dimethylformamide (DMF) solvent. (The insets
showed that the corresponding photographic images of DMF solvent and PCN−224 NPs dispersed
in DMF) (d) The relative absorbance of DPBF solutions incubated with PCN−224 NPs at 415 nm as a
function of irradiation times.

3.2. Studying Activity of PCN−224 NPs

With an indication of the porphyrin introduction, the question remained as to whether
the porphyrin retained its photodynamic functionality. We thus carried out the UV-Vis
analysis to characterization PCN−224 NPs. As illustrated in Figure 2c, PCN−224 NPs
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demonstrated the main absorption peak (Soret band) at 420 nm and four weak absorption
peaks (Q bands) in a range of 500–700 nm, similar to the TCPP spectrum. The Q bands of
TCPP were indicated that the Zr ions were not coordinated to the center of the porphyrin
ligands [61]. In contrast, the Soret band of PCN−224 is significantly weaker and demon-
strates a slight redshift, which may be due to ligand-to-metal charge transfer caused by
the strong coordination of the TCPP linkers to the Zr-O clusters in the PCN−224 frame-
work [62,63]. The photoluminescence (PL) spectra show two strong emission bands of
PCN−224 NPs at about 658 nm and 721 nm under an excitation wavelength of 430 nm,
which are typical emission peaks for the transition of porphyrins from S1→S0 states, corre-
sponding to Q (0-0) and Q (0-1) transitions, respectively (Figure S4) [64,65]. This absorption
and PL spectra pattern are the well-known characteristic of the monomeric porphyrin
molecules [66]. This demonstrates the structural integrity of the porphyrin ligand in the
PCN−224 NPs framework, while showing as well that red fluorescence can be used as an
imaging label for PCN−224 NPs [49]. In addition, the PL spectrum underwent a similar
change to the UV-Vis. This may be caused by the coordination of the TCPP ligand to the
Zr6 cluster changing the molecular planarity in the porphyrin macrocycle and affecting the
distribution of the porphyrin electron density [63,67].

1O2 is the most destructive bacterial substance in ROS. To further investigate the
PDT activities of PCN−224 NPs, the generation capabilities of 1O2 from PCN−224 NPs
under a visible light lamb were measured by using the DPBF probe. As depicted in
Figures 2d and S5, the absorbance at 415 nm of pure DPBF solution displayed a slight
decrease after 10 min of irradiation. This phenomenon is due to the self-decomposition of
DPBF since it is extremely sensitive to external light [39]. By contrast, the absorbance of
the DPBF solution with the addition of PCN−224 NPs has significant decay trends in the
same conditions, demonstrating their 1O2 generation capability. These results prove the
effectiveness of the one-step synthesis route for the preparation of PCN−224 NPs, which
have important potential as a functional photosensitizer carrier and PDT agent for the
treatment of bacterial infections.

3.3. Nanofiber Fabrication with Preformed PCN−224

Co-electrospinning offers a facile route for loading MOFs in polymeric fibers. Low MOFs
loadings can facilitate the maintenance of the structural integrity of the NFMs morphology
and three-dimensional porous structure, however, there have been examples of NFMs,
that exhibit improved antibacterial and gas adsorption performance when the MOFs con-
tent in the NFMs was increased [39,68]. Meanwhile, the chemical differences between
MOFs crystals and polymers can manifest as defects (such as stability, thermal stability, etc.)
in the composite NFMs [69]. Accordingly, we use different concentrations of PCN−224 NPs
to fabricate NFMs. The surface morphology of the nanofibers after assembly with pre-
formed PCN−224 NPs was observed in Figure 3. As shown in Figure 3a–d, the surface
of neat PCL nanofibers (PM−0) was smooth, whereas after PCN−224 NPs were intro-
duced, the surface morphology of nanofibers changed obviously. Compared with pristine
PM−0 nanofibers, only a few PCN−224 NPs were sporadically distributed on the surface of
PM−10 nanofibers, which due to the lowest loading amount of PCN−224 NPs and the NPs
are mainly distributed in the fiber matrix. It is noteworthy that as the concentration of the
PCN−224 NPs increases, the NPs on the surface of the nanofibers were sharply increased,
and even formed agglomerates, resulting in the PM−25 and PM−40 nanofibers showing
a significantly rougher surface morphology. Meanwhile, it is observed that a dramatic
increase in the nanofiber diameter from 0.25 to 1.85 µm with the gradual increment in the
dosage of PCN−224 NPs (Figure 3e–h). This phenomenon may be ascribed to the enhanced
viscosity of the spinning solution with the incorporation of PCN−224 NPs, which prolongs
the relaxation time and restricts the motion of the polymer chains [32].
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Furthermore, the successful loading of PCN−224 can also be verified by the significant
color changes of PM NFMs as displayed in Figure 4a–d. The initial color of PM−0 NFMs
appears white, while the color of the NFMs with PCN−224 NPs changes into brown-red.
Comparing the FTIR spectra of PM NFMs in Figure 4e, it can be found that the asymmetric
and symmetric vibrations of CH2 at 2942 cm−1 and 2862 cm−1 were ascribed to PM−0 and
the C=C bond stretching vibration appeared at 1552–1605 cm−1, which was attributed to
the presence of PCN−224 NPs [70]. The FTIR results indicating that the PCN−224 NPs
were successfully introduced into PCL nanofibers [58,71]. The DSC results (Figure S6)
demonstrate the possible coordination interaction between Zr metal nodes and PCL car-
bonyl groups under the introduction of PCN−224 [72,73]. Nevertheless, as a PDT wound
dressing, the stable integration of PS NPs and nanofibers is the most staple requirement.
For this reason, we immersed the PM NFMs in HEPES buffer (50 mM, pH = 7.4) solution
and tested the UV-visible spectrum of the soaking solution to explore the stability of the
PM NFMs (Figure S7). The results showed that the curves of PM NFMs are completely
consistent, and no characteristic peaks of PCN−224 NPs were detected, which indicates
that no PCN−224 NPs were shed from the fibers and they are stably and firmly combined
with PCL nanofibers. In addition, the results (Figure S8) of XRD show that the PM−0 NFMs
have two diffraction peaks at 21.5◦ and 23.8◦, which are characteristic peaks of neat PCL,
corresponding to the (110) and (200) planes, respectively [74]. The PM−25 NFMs retain
the characteristic diffraction peaks of neat PCL, while the characteristic diffraction peaks
of PCN−224 appear. This indicates that the structure of PCN−224 NPs in the composite
membrane has been well preserved.

Accurate knowledge of the PCN−224 NPs loading during electrospinning is im-
portant because excess PCN−224 NPs in the polymeric solution can result in needle
clogging and instability of the jets. Therefore, the TGA test was used to determine the
actual loading of PCN−224 NPs in NFMs (Figure 4f). It can be clearly observed that the
residual mass fraction of NFMs at 800 ◦C shows an increasing trend with the increase
of PCN−224 NPs content. Subsequently, the calculation was performed according to
previous research [75,76], and it was assumed that the only substance present at 800 ◦C
is the secondary building unit (ZrO2) derived from PCN−224 NPs; the effective loading
rate of PCN−224 NPs in the NFMs was deduced by a comparison of the residual mass
fraction of ZrO2 of these NFMs. The residual mass fraction of ZrO2 in PM−10 NFMs
was about 4.48 wt%. Using this as a standard, the theoretical residual mass fractions of
PM−25 and PM−40 NFMs were 10.95 wt% and 17.52 wt%, respectively. However, the test
results showed that the actual residual mass fraction of 10.00 wt% for PM−25 NFMs and
13.32 wt% for PM−40 NFMs. It can be seen that there exist certain differences in theoretical
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and practical residuals, especially in PM−40 NFMs. This indicates that the actual loading
efficiency of PCN−224 NPs in the PM−40 NFMs is low. This phenomenon was to be antici-
pated because excessive PCN−224 NPs will form agglomerates that are unevenly dispersed
in the polymeric solution, and clog the needles during the electrospinning process, resulting
in the difficult formation and poor consistent of fibers, which can also be observed in the
above SEM images. Furthermore, the DTG curves revealed that although the introduction
of PCN−224 NPs affects the crystal structure of the PCL polymers, the thermal degradation
temperature of NFMs decreased slightly from 450 ◦C to 390 ◦C with the increase in loading
amount, but its thermostability still met the requirements of practical applications.

In addition, the tensile strengths of the PM NFMs were measured to evaluate the
influence of the PCN−224 NPs on the mechanical properties of PM NFMs. As shown in
Figure 4g, the neat PM−0 NFM showed the highest mechanical breaking elongation of
245.45% with breaking strength at 3.72 MPa. Slightly increased breaking strength (3.86 MPa)
and decreased breaking elongation (240.55%) could be observed in PM−10 NFMs. This phe-
nomenon may be due to the coordination interaction between the carbonyl group of PCL
and the Zr metal nodes of PCN−224, and the more uniform distribution of PCN−224 NPs
without forming obvious weak defects, thus improving the tensile strength of the mem-
branes to a certain extent [72,77]. After more PCN−224 NPs were introduced, the breaking
strength and breaking elongation of PM−25 and PM−40 NFMs were decreased to a large
extent. This is attributed to the agglomerate of PCN−224 NPs in the membranes to form
stress concentration centers, which increases the weak defects. Moreover, due to the
increase in PCN−224 NPs concentration, the spinnability of the nanofiber is reduced,
resulting in a decrease in the uniformity of the nanofiber [77,78].
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3.4. 1O2 Generation of PM NFMs

As a proof of concept, we also demonstrated the 1O2 generation ability of PM NFMs.
The mechanism of PM NFMs in the generation of 1O2 is summarized in Figure 5a. Under
the excitation of the laser with appropriate wavelength, PCN−224 NPs, as a new PS, can re-
act with 3O2 through energy transfer to generate cytotoxic 1O2, which can kill bacteria by
attacking the bacterial biomolecules [56]. The results of employing the sensing probe DPBF
to investigate the capacities of PM NFMs to generate 1O2 are shown in Figures5b–f and S9,
after 10 min of visible light irradiation (630 nm, 100 mW/cm2), the characteristic absorp-
tion at 410 nm of pure DPBF solution and the solution incubated with the PM−0 NFMs
decreased slightly. This phenomenon is attributed to the fact that DPBF is sensitive to light
and oxygen in the air, and produces a negligible amount of 1O2. While the characteristic ab-
sorption intensity of DPBF solution incubated with the PM−10, PM−25, and PM−40 NFMs
decreased rapidly with continuous irradiation. The relative absorbance of DPBF solutions
incubated with PM−25 and PM−40 NFMs are much smaller than that of PM−10. These
results indicate that the amount of 1O2 generated from PM NFMs is strongly associated
with the introduced content of PCN−224 NPs. It is worth noting that the 1O2 generation
capacity of PM−25 NFMs is superior to PM−40 NFMs, even though the PCN−224 loading
amount of PM−40 NFMs is higher.
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3.5. The Morphologies and Distribution of PCN−224 NPs in PM NFMs

To further clarify the morphologies and distributions of PCN−224 NPs in the nanofibers,
the CLSM images of each NFMs were measured. As shown in Figure 6a, upon 430 nm
laser excitation, the nanofibers loaded with PCN−224 NPs showed obvious red fluores-
cence, indicating that PCN−224 NPs were stably distributed in the nanofibers. The flu-
orescence images with distinct and continuous fibrous outlines were observed with the
increased PCN−224 NP content, which is consistent with the fiber diameter distribution
results. Moreover, the significant agglomerations of PCN−224 NPs can be observed on
the PM−40 NFMs compared with the fluorescence images of PM−25 and PM−10 NFMs.
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This type of morphology is typical, such that the resultant NFMs are non-uniform with
unpredictable properties, which is consistent with the results of the 1O2 generation perfor-
mance. It can be observed from Figure 6b that the red fluorescence signal of NFMs was
enhanced with the content of PCN−224 NPs increases. These results powerfully confirmed
that the distribution and amount of PCN−224 NPs in the membrane affect its ability to
generate 1O2.
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3.6. In Vitro Antibacterial Activity Assay

Gram-positive S. aureus, Gram-negative E. coli, and drug-resistant bacteria MRSA
were selected as representative strains, and the photodynamic antibacterial performance
of the PM NFMs were evaluated by the method of counting live bacteria on the plate.
Initially, the antibacterial ability of PM NFMs was visually and qualitatively evaluated
through monitoring the photos of the agar plate coated with the residual bacteria after PM
NFMs treatment (Figure 7a,c), respectively. In the dark, all membranes groups showed
densely distributed colonies on the agar plate, indicating that all the membranes had no
antibacterial activity in the darkest condition. In contrast, the membranes introduced with
PCN−224 NPs under light irradiation exhibited efficient photodynamic antibacterial effects
on S. aureus and E. coli, as indicated by the sparsely distributed bacterial colonies. Further-
more, the survival rate of bacteria was calculated to quantitatively evaluate the antibacterial
activity of the PM NFMs (Figure 7b,d). Compared with PM−0 NFMs, the PM−10 NFMs
exhibited slightly antibacterial activity against S. aureus and E. coli within 30 min light irra-
diation due to the lowest loading amount of PCN−224 NPs. The corresponding survival
rates of 21.04% for S. aureus and 52.51% for E. coli. An improvement in antibacterial activity
was noted as the increased concentration of PCN−224 NPs contained in the membranes.
In detail, the PM−25 NFMs exhibited excellent potent antibacterial properties with sur-
vival rates of 0.13% for S. aureus and 2.06% for E. coli upon 30 min irradiation, respectively.
For the PM−40 NFMs, the survival rates of S. aureus and E. coli are 6.48% and 11.04% under
30 min irradiation, respectively. It could be clearly observed that the antibacterial ability
of PM−25 NFMs was superior to the PM−40 NFMs, which was in accordance with the
previous result of 1O2 generation. These results confirmed that the prepared membranes
containing PCN−224 NPs have significant antibacterial activities, and also demonstrated
that the antibacterial activity is strongly associated with the loading dose and distribution
of PCN−224 NPs. The bacteria were attached to the surface of the composite membrane,
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and the nanofiber morphology did not change significantly under the dark/light treatment,
which indicated that the bacteria would not affect the nanofiber structure (Figure S10).
It is also worth mentioning that the different sensitivities to 1O2 between Gram-positive
S. aureus and Gram-negative E. coli. The Gram-negative bacteria showed more tolerance to
1O2 than Gram-positive bacteria, which is ascribed to the different structures of bacterial
cell walls. The Gram-negative bacteria contain an additional layer of lipopolysaccharide on
the outside of the peptidoglycan layer, which has a high degree of impermeable, making it
difficult for 1O2 to enter the inside of the bacteria, and cannot destroy bacterial biomolecules
such as proteins, nucleic acid and lipids [58].

MRSA is a typical example, it has become one of the most prevalent pathogens in clinic
wound infections [79–81]. The local skin infection caused by it is almost resistant to all
conventional antibiotics, greatly increases the difficulty of clinical treatment, and seriously
threatens public health [82]. Hence, MRSA was selected as the representative strain of
drug-resistant bacteria to evaluate the performance of PM NFMs in eliminating drug-
resistant bacteria (Figure S11). The results show that the PM−25 NFMs exhibited excellent
antibacterial properties with survival rates of 1.91% for MRSA upon 30 min irradiation.
The antibacterial test results show that the photodynamic composite membranes prepared
by introducing PCN−224 NPs can effectively eliminate drug-resistant bacteria and common
bacteria that are widely present in the wound, and has excellent antibacterial effects.
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3.7. Cytotoxicity Assay

Last but not least, we used the CCK-8 method to measure the viability of L929 cells
co-cultured with PM−0 and PM−25 NFMs for 24 h to evaluate the cytotoxicity of the
composite membrane. As shown in Figure 8, the viability of the cells on the PM−0 NFMs
reached 123%, indicating that the neat PCL membrane has excellent biocompatibility, which
is consistent with the results of previous studies. The cells co-cultured with PM−25 NFMs
also maintained high viability (85%), which indicates that the nanocomposite membrane
after the introduction of PCN−224 NPs has good biocompatibility, which is beneficial for
its application in anti-infection and wound healing.
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4. Conclusions

In conclusion, we adopted the ‘MOF-first’ strategy to pre-synthesize porphyrinic
MOFs nanoparticles (PCN−224 NPs) firstly, then mixed with the polymer solution to fiber
processing via one-step co-electrospinning technology, and successfully developed PM
NFMs with PDT antibacterial properties. The structure of PCN−224 NPs can be well
preserved after integration with PCL, and a large number of firm loads can be achieved
on the nanofibers. Both PCN−224 NPs and PM NFMs showed excellent ability of 1O2
generation. The PM NFMs could increase the 1O2 generation and exhibit excellent PDT
antibacterial against S. aureus, E. coli, and MRSA in vitro based on the increased loading
of PCN−224 NPs. Importantly, the PM−25 NFMs had the best PDT antibacterial perfor-
mance with survival rates of 0.13% for S. aureus, 2.06% for E. coli, and 1.91% for MRSA
upon 30 min irradiation, due to a homogeneous and stable loading of PCN−224 NPs
in nanofibers. The cytotoxicity assay verified that the PM NFMs possessed good bio-
compatibility. Taken together, these NFMs functionalized by porphyrinic MOFs could
be regarded as a promising wound dressing, and could be widely applied in the field of
wound antibacterial infection.
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patterns of PM−0 and PM−25 NFMs, Figure S9: UV-visible spectrum of DPBF under visible illumi-
nation (630 nm, 100 mW/cm2), Figure S10. The SEM images of bacteria and bacteria treated fibers,
Figure S11: Relative bacterial survival rate and photographs of residual colonies of MRSA under
various membranes treatments in the dark/light.
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