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Abstract: This work is inspired by the current European policies that aim to reduce plastic waste.
This is especially true of the packaging industry. The biocomposites developed in the work belong to
the group of environmentally friendly plastics that can reduce the increasing costs of environmental
fees in the future. Three types of short fibers (flax, hemp and wood) with a length of 1 mm each
were selected as fillers (30% mass content in PHBV). The biocomposites were extruded and then
processed by the injection molding process with the same technical parameters. The samples obtained
in this way were tested for mechanical properties and quality of the molded pieces. A significant
improvement of some mechanical properties of biocomposites containing hemp and flax fibers
and quality of molded pieces was obtained in comparison with pure PHBV. Only in the case of
wood–PHBV biocomposites was no significant improvement of properties obtained compared to
biocomposites with other fillers used in this research. The use of natural fibers, in particular hemp
fibers as a filler in the PHBV matrix, in most cases has a positive effect on improving the mechanical
properties and quality of molded pieces. In addition, it should be remembered that the obtained
biocomposites are of natural origin and are fully biodegradable, which are interesting and desirable
properties that are a part of the current trend regarding the production and commercialization of
modern biomaterials.

Keywords: biopolymers; biocomposites; PHBV; plant fibers; extrusion process; injection molding process

1. Introduction

In the current reality, an important problem is the topic of plastics waste management.
Every year a huge amount of this type of waste increases in the world. Despite many
recycling methods, not all plastics can be easily recycled. One alternative solution to this
problem is the synthesis of biodegradable polymers or polymers produced from renewable
raw materials. There are three groups of polymers satisfying these requirements [1,2]:

• biodegradable polymers made from petrochemical raw materials,
• non-biodegradable polymers made from renewable raw materials,
• biodegradable polymers made from renewable raw materials.

The third group of polymers combine the advantageous features of the first two
groups. These are unique and the most desirable plastics in the current waste management
problem.

Polyhydroxyalkanoates (PHAs) are a group of biodegradable polymers. They can be
obtained by using microorganisms as well as from secondary raw materials and renew-
able agricultural sources [3]. It should be emphasized that PHA degrades without the
production of toxic by-products [4].
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PHB (polyhydroxybutyrate) is one of the polymers belonging to the group of polyhy-
droxyalkanoates. The first information about this polymer was introduced by Lemogine
in the 1920s [5]. PHB has physical properties similar to polypropylene [6]; however, it is
more brittle. The brittleness of PHB is associated with the formation of large spherulites [7],
which may be due to the high purity of the obtained biopolymer. PHB is biodegradable and
biocompatible, making it useful in tissue engineering and other biomedical applications [8].

Copolymerization of PHB with polyhydroxyvalerate (HV or PHV) allows (3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to be obtained and leads to a decrease of
the degree of crystallinity of the polymer [9–11]. Compared to PHB, PHBV is character-
ized by reduced brittleness and stiffness, better tensile strength and greater elongation at
break. By increasing the amount of HV in the polymer chain, the window of processing
parameters can be improved [12].

Due to biodegradation to non-toxic compounds and easy processability, PHBV is still
being modified and can be commercialized as the main substitute for non-biodegradable
polymeric materials [13]. The similarity of some of its mechanical properties to polyolefins
indicates that it can be a substitute for polymers from this group [14]. PHBV is the first
biopolymer of the PHA group with properties that can be changed by controlling the
content of the second monomer [15–19].

The possibilities of commercial application of this biopolymer are still difficult due to
the narrow processing, relatively high brittleness and low flexibility, as well as significant
production costs [4,20,21]. Future research plans must, therefore, assume the improvement
of the mechanical properties and the extension of the processing window of biopolymers
produced on the basis of PHB, including the PHBV biopolymer [22,23].

The use of natural and biodegradable plastics, such as PHBV, can contribute to the
reduction of petrochemical plastic waste, which is not biodegradable and is very often
landfilled and difficult to recycle. The work of Guo, Stuckey and Murphy [24] shows
the possibility of developing a PHBV production system independent of the use of fossil
fuels. PHBV polymers produced in the current production scale (2000 tons per year) have
a slightly lower energy consumption during production per kg of polymer than in the
case of petrochemical polymers. The current production processes and production scale
of PHBV are still largely underdeveloped compared to the well-developed production of
petrochemical polymers. One of the methods of extending the commercialization of green
composites may be the use of natural fibrous fillers [25–27], especially in the PHBV matrix.
As a result of their use, one should expect an improvement of the mechanical properties
and a manufacturing cost reduction compared to pure biopolymer, while maintaining full
biodegradability. The advantages of these fibrous fillers include the following [28–32]:

• The production costs are lower than in the case of synthetic fibers,
• Low density while maintaining satisfying strength and stiffness,
• The production process does not have a negative impact on the environment,
• Combustion/utilization of this type of waste does not generate toxic substances,
• Full renewable energy.

The main components of natural fibers of plant origin are cellulose, hemicellulose
and lignin. The most common and available cellulose is contained in cotton (about 90%
cellulose content) [33,34]. The amount of cellulose in plants can vary depending on the
species and age of the plant. Although the chemical structure of cellulose from different
natural fibers is the same, the degree of polymerization is different [34]. Hemicellulose, in
turn, is a heterogeneous biopolymer of a group of polysaccharides that is less resistant to
the action of diluted acids. Lignin, however, fills the spaces between the polysaccharide
fibers, cementing them together. The presence of this fiber component stiffens the cell
walls, protecting against chemical and physical damage [35]. The composition of cellulose,
hemicellulose and lignin for individual plant fibers is presented in Table 1.

Polymers have different affinities for the fiber due to differences in their chemical
structure. In order to increase the adhesion of fibers to the polymer matrix, reduce water
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absorption, increase the proportion of cellulose in the fiber and increase the degree of
crystallinity, methods of fiber surface modification are used [36–39].

Table 1. Mass fraction of individual used plant fiber components (based on [34,40,41]).

Type of Fiber Cellulose
(% Mas.)

Hemicellulose
(% Mas.)

Lignin
(% Mas.)

Others
(% Mas.)

Linen/Flax 71 18.6–20.6 2.2 1.5

Hemp 68 15 10 0.8

Deciduous trees 44 ± 3 32 ± 5 18 ± 4 0.2–0.8

The Young’s modulus and tensile strength of natural fibers such as sisal, jute, kenaf,
hemp, flax are usually lower than for a glass fiber used in composites. The density of glass
fiber is high, around 2500 kg/m3, while the density of natural fibers is much lower (about
1500 kg/m3). This is important when the mass of products made of composites becomes
the key and therefore where this mass must be significantly reduced [42,43]. The properties
of natural fibers depend on the cultivation conditions, harvest time and the method of
processing and storage. So they are quite varied, which is quite a problem. In the work
of Bos and co-authors [44] it was shown that hand-picked flax fibers have 20% higher
mechanical properties than those harvested mechanically. In turn, the research in the work
of Pickering and co-authors [45] shows that the fibers harvested after 5 days after the proper
harvest time have lower strength properties, by as much as 15%. Of course, additional
factors can affect the properties of the fibers. In the work of Charlet and co-authors, it has
been noticed that Young’s modulus decreases with increasing humidity and grows with
increasing temperature [46].

The mechanical properties of composites are in most cases improved by the addition
of fibers to the polymer matrix. Therefore, the impact of fiber content on the strength
properties of fiber reinforced composites is particularly interesting and important for many
researchers [47–50].

A significant amount of research carried out with the use of PHBV composites with a
matrix of plant fibers relates to the possibility of processing, focusing mainly on compres-
sion molding of thin films [14,51–55]. Both compression molding of thin composite sheets
and processing on mini-extruders and mini-injection machines are limited processes due to
the fact that they are difficult to relate to actual processing conditions. Therefore, in most
cases, research results are difficult to transfer to a macro scale. The subjects of research
by scientists are composites with a PHBV matrix filled with fibers of plant origin, most
of which are coconut fibers [56–60], bamboo [14,61–69], abak [70,71], pineapple [56,72],
sisal [73–75], agave [76,77], and vine shoots [78]

Due to the geographical location of Europe, the main sources of short cellulose fibers
are wood, flax and hemp. When analyzing publications regarding the possibility of using
short hemp, flax and wood fibers in the PHBV matrix, little information on the production,
processing and properties of these types of composites was noticed [79–81]. The fibers
used in the analyzed works were usually characterized by a fairly long length, with a very
large dispersion of this value for a given set of fibers. This can lead to variable properties of
composites. In addition, too long fibers can cause processing problems, especially during
extrusion or injection molding. An important issue would be to consider the possibility
of using powder of PHBV as the matrix and short fibers with a length of 1 mm and a
very small length distribution. This would probably allow composites to be obtained
with a higher degree of homogenization. It should be mentioned that in some works no
conventional extruders were used, hence the observations and obtained research results
may not reflect possible phenomena and problems on an industrial scale. This would
also reduce the content of the expensive matrix in the biocomposite in order to reduce the
producing costs of composite.
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The aim of the study was to assess the impact of the type of filler on the processing
and mechanical and functional properties of biocomposites with the PHBV matrix—such
comprehensive work on analyzed fillers and matrices has not been found in the literature.
The fillers tested, i.e., wood, flax and hemp fibers, were selected due to their availability
and popularity in the authors’ geographical area of residence (Europe). No work was
found comparing these three types of composites in terms of production, processing and
evaluation of mechanical, processing and functional properties. The results of the research
may have a scientific as well as application aspect, allowing us to indicate the possibility
of manufacturing utility products in the injection molding process of the manufactured
composites, especially in Europe, where these fillers are easily available and popular.

2. Materials and Methods
2.1. Materials

As the polymer matrix, PHBV with the Enmat Y1000 trade name of Helian Polymers
(Belfeld, The Netherlands) in powder form was used. The molar content of HV in the
biopolymer was 8%, the density of the biopolymer was 1250 kg/m3 and the softening point
was in the range from 165 to 175 ◦C [82].

As fillers in the polymer matrix fibers of plant origin, the following were used:

• Wood fibers,
• Hemp fibers,
• Flax fibers.

Wood fibers with the trade name Lignocel C120 were about 1 mm long. Hemp and flax
fibers were supplied by EKOTEX company (Kowalowice, Poland) and were characterized
too by the length of 1 mm. The average ratio of length to diameter of all fibers (L/d) was
about 10 (for L = 1 mm). Three types of composites with a variable type of filler were
prepared, where their mass content in the polymer matrix was 30%.

2.2. Investigation of Fibers

A HITACHI S-3400 scanning electron microscope (SEM) produced by Hitachi Inc.
(Tokyo, Japan) was used to carry out the test of the microstructure of the fibers. In the
case of hemp fibers the rectilinear geometry of fibers can be seen in the SEM photographs
analyzed (Figure 1). The surface of hemp fibers is slightly more developed than flax fibers,
which causes undoubtedly better fiber adhesion to the matrix. The diameter of flax fiber
is noticeably smaller than the diameter of hemp fiber. The smaller diameter of flax fibers
is visible and they are also more twisted. It should also be noted that wood fibers have
irregular size and geometry, and the surface of the fibers is the most developed among the
three analyzed fillers.
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Figure 1. SEM photography of (a) hemp, (b) flax and (c) wood fibers.

2.3. Manufacturing of Biocomposites

In order to minimize the presence of moisture/water in the obtained mixtures (PHBV–
flax fibers, PHBV–hemp fibers, PHBV–wood fibers), they were dried before the extrusion
process. Both hemp, flax and wood fibers as well as PHBV biopolymer tend to absorb water,
which may have a negative impact on the possibility of obtaining a homogeneous structure
of the composite fiber fractions, and PHBV with a high degree of water absorption may
tend to clump into larger agglomerates. Moreover, drying should be performed in order to
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reduce the occurrence of possible air bubbles in the cross-section of the obtained extrudate.
Drying was carried out in a Chemland laboratory dryer, model DZ-2BC (produced by
Chemland company, Szczecin Stargard, Poland) with a maximum power of 1400 W and
a capacity of 52 L, equipped with a Value pressure pump model V-i120SV with a flow of
51 L/min. The mixtures were dried at a temperature of 90 ◦C for 6 h with a vacuum in the
drying chamber of 0.02 MPa.

Biopolymer and biocomposites were extruded using the ZAMAK EHP-25E single
screw extruder (produced by ZAMAK Mercator company, Skawina, Poland) at a constant
temperature in individual extruder heating zones. The temperature ranged from 145 ◦C
(Zone 1) to 160 ◦C (Head) for pure PHBV and from 150 ◦C (Zone 1) to 170 ◦C (Head) for
biocomposites. The temperature increase during biocomposite extrusion resulted from the
higher viscosity of the extrudate obtained.

A summary of the set temperatures is shown in Table 2. The extrusion was carried
out using an extrusion granulation station equipped with a cooling bath and a granulator.
All materials were extruded at a constant screw speed of 100 rpm. The choice of such a
rotational speed of the screw was justified by the fact that in the case of a higher speed, the
process was unstable, i.e., the fiber accumulated between the cylinder and the extruder head,
and the outgoing extrudate was characterized by very low viscosity. In turn, reducing the
screw speed below 100 rpm resulted in degradation of the biocomposite in the plasticizing
system due to too long of a heating time. The granules obtained were used to manufacture
specimens of a dogbone shape intended for testing the mechanical properties.

Table 2. The heating zone temperatures of a single screw extruder.

Type of Material

Temperatures (◦C)

Head Zone 3 Zone 2 Zone 1
Feed

Hopper
Zone

PHBV 160 160 155 145 50
biocomposites 175 170 160 150 35

2.4. Manufacturing of Samples

The Dr. Boy 55E injection molding machine (produced by BOY Machines Inc. (Exton,
PA, USA)) equipped with a Priamus data acquisition and processing system (by Priamus
System Technology, Rheinweg, Switzerland) for control and monitoring of the injection
molding process was used. In the study, an injection mold with special inserts designed for
uniaxial tensile sample tests (in accordance with EN ISO 527-1 [83] was used. The samples
of dogbone geometry for all types of biocomposites were produced at the same processing
parameters shown in Table 3. Only during the production of samples of biopolymer were
lower mold and melt temperatures (Table 3) to obtain a higher viscosity of polymer. For
instance, the specimen from a biocomposite filled with flax fibers is shown in Figure 2.
The resulting samples were used to test the mechanical properties and the quality of the
molded piece (specimens).

Table 3. The sample processing parameters of the injection molding process.

Parameter PHBV Biocomposites

Mold temperature (◦C) 60 85
Melt temperature (◦C) 167 185

Cooling time (s) 25 25
Packing time (s) 25 25

Packing pressure (MPa) 30 30
Flow rate (cm3/s) 35 35
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Figure 2. Samples made of PHBV–flax fiber biocomposite (30 wt.%).

Using the same parameters for all biocomposites, an increase in the maximum pressure
values (up to approx. 25 MPa) in the mold cavity was observed (Figure 3) after adding
the flax and hemp filler to the PHBV matrix. In the case of injection of pure PHBV and
PHBV wood–fiber biocomposite, the fastest solidification of the material was noticeable,
which indicated the possibility of shortening the pressure time. In addition, significantly
lower pressure values were observed for wood fiber–PHBV biocomposite than for other
biocomposites (maximum pressure was approx. 13 MPa).
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Figure 3. The pressure profile in mold cavity for biocomposites with a variable type of filler and pure biopolymer.

2.5. Testing Methods

The tests of the obtained biocomposites were carried out for a package of seven
samples from each composite and biopolymer.

The shrinkage properties of composites were tested based on the EN ISO 294-4 [84]
standard. The degree of water absorption was tested based on the EN ISO 62 [85] standard.
Microstructure tests were carried out using a HITACHI S-3400 scanning electron microscope
(SEM) based on specimens from the uniaxial tensile test.
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In order to determine the strength properties, a Z030 testing machine manufactured
by Zwick Roell (Ulm, Germany) was used. The uniaxial tensile test was performed in
accordance with EN ISO 527-1. The statistical analysis was performed. In the evaluation
of the strength properties, the following were taken into account: tensile strength (σM),
relative elongation at maximum tensile strength (εM) and Young’s modulus (E). The results
were analyzed by determining the arithmetic mean (AM), the standard deviation (s) and
the coefficient of variation (V).

The hardness tests were carried out using the Brinell method in accordance with the
EN ISO 2039-1 standard in two areas of the sample (Figure 4), i.e., in the measuring zone
(zone A) and in the grip zone (zone B). A Zwick 3106 hardness tester manufactured by
Zwick Roell (Ulm, Germany) was used for this purpose.
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Biocomposite samples were also tested by means of the impact tensile test. The tensile
impact strength test was determined in accordance with EN ISO 8256 [86]. The CAEST 9050
impact pendulum hammer produced by Instron Inc. Europe (Buckinghamshire, UK) was
used for this purpose. In order to carry out the correct test, some samples were prepared
from the dogbones samples intended for the uniaxial tensile test. Their geometry was
modified according to the standard. The notch was milled for the entire sample packages.

3. Results
3.1. Determination of Shrinkage

The longitudinal, transverse and thickness shrinkage were determined (Figure 5). It
was observed that the use of examined types of fillers in most cases had a positive effect on
reducing the shrinkage of product compared to the pure biopolymer.
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3.2. Water Absorption Assessment

A water absorption study was carried out. The expected fact was an increase of water
absorption after adding cellulose fillers to the polymer matrix (Figure 6). This may be due
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to the fact that hydroxyl (OH) groups in cellulose, hemicellulose and lignin build up a
large amount of hydrogen bonds inside the macromolecule and between macromolecules
in the cell wall of plant fibers. The action of water on plant fibers breaks these bonds. The
hydroxyl groups then form new hydrogen bonds with water molecules that promote fiber
swelling and, consequently, increase the mass of the biocomposite.
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3.3. Uniaxial Tensile Test

Representative stress–strain characteristics from the uniaxial tensile test are shown in
Figure 7. When analyzing the results (Table 4), it was noted that the use of flax and hemp
filler improved the strength properties of biocomposites compared to the pure biopolymer.

Polymers 2021, 13, x FOR PEER REVIEW 9 of 19 
 

 

large amount of hydrogen bonds inside the macromolecule and between macromolecules 

in the cell wall of plant fibers. The action of water on plant fibers breaks these bonds. The 

hydroxyl groups then form new hydrogen bonds with water molecules that promote fiber 

swelling and, consequently, increase the mass of the biocomposite. 

 

Figure 6. Water absorption for biocomposites with a variable type of filler and for pure PHBV. 

3.3. Uniaxial Tensile Test 

Representative stress–strain characteristics from the uniaxial tensile test are shown 

in Figure 7. When analyzing the results (Table 4), it was noted that the use of flax and 

hemp filler improved the strength properties of biocomposites compared to the pure bi-

opolymer. 

 

Figure 7. Stress–strain characteristics for pure PHBV and biocomposites with different types of filler. 

  

Figure 7. Stress–strain characteristics for pure PHBV and biocomposites with different types of filler.



Polymers 2021, 13, 3934 10 of 19

Table 4. The results from uniaxial tensile test for pure polymers and biocomposites with different
filler types.

Type of Material Statistics E (MPa) σM (MPa) εM (%)

PHBV
x 2617.37 35.48 4.12
s 112.02 0.86 0.15
V 4.28 2.42 3.63

Hemp fiber–PHBV
biocomposite

x 6992.31 42.90 2.28
s 199.44 0.71 0.06
V 2.85 1.65 2.60

Flax fiber–PHBV biocomposite
x 6701.86 40.18 2.50
s 216.86 0.40 0.25
V 3.24 0.99 9.94

Wood fiber–PHBV
biocomposite

x 6110.16 30.68 1.13
s 362.87 0.79 0.06
V 5.94 2.57 5.23

3.4. Tensile Impact Strength Test

Higher values of impact tensile strength of biocomposites with flax and hemp fiber
were noted (Figure 8), where an increase of approx. 62% was noted, compared to pure
biopolymer. In addition, it was noted that the use of wood fiber as a filler in the PHBV
matrix did not improve the tensile impact strength compared to the pure biopolymer.
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3.5. Brinell Hardness Test

Brinell hardness tests for biocomposites were carried out in two areas of the samples
dedicated for the uniaxial tensile test, i.e., in the neck (area A) and in the grip (area B) of
every sample. The test results are shown in Figure 9.
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3.6. Study of Microstructure

By analyzing SEM photographs (Figure 10) of biocomposite sample fractures after the
uniaxial tensile test, it could be seen that in biocomposites reinforced with hemp fibers, the
fibers cracked transversely to their length. In addition, hemp fibers had no tendency to
delaminate and had a rectilinear geometry. In the case of flax fibers, it could be seen that
the fibers located in the matrix had a smaller diameter than hemp fibers and were mostly
delaminated and more twisted. In the case of wood fibers, cracking at the fiber–matrix
boundary was noticeable due to the visible free space at the boundary of the fiber located
in the biopolymer. This may indicate low adhesion and may result in worse mechanical
properties compared to other biocomposites.
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In addition, wood fibers had irregular geometry and size—it was difficult to observe
a constant length/diameter ratio (L/d). In turn, similar values of the ratio of length to
diameter of the fibers could be observed in the case of flax and hemp fibers located in a
polymer matrix. It should also be noted that the dispersion of wood fibers in the matrix was
quite low—this fact may also be evidence of worse strength properties of the biocomposite.
For biocomposites with flax and hemp fibers, the degree of fibers dispersion in the polymer
matrix was more regular than in composite with wood fiber.
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4. Discussion

Over the last 30 years, a continuous and accelerating process of introducing biodegrad-
able materials into industrial use has been observed. Environmental protection require-
ments, rising costs of petroleum products and striving to reduce the carbon footprint of
civilization are driving researchers towards materials of organic origin. Particular interest
is directed towards composite materials, in which, thanks to the combination of various
properties of the base material and reinforcement, the possibility of a wide and varied
shaping of functional features is gained. Introducing new materials into common use
requires one not only to demonstrate the immediate properties of this material, but also to
analyze the processes taking place during their long-term use in various environmental
conditions. It is necessary to learn the rules governing the phenomena related to the process
of producing the material itself.

In the analyzed works, Keller, for example, discussed the influence of the hemp fiber
production process, and thus the length of fibers, on their mixing with the matrix (PEA
or PHBV) and the resulting differences in the basic mechanical properties of the obtained
composites [80]. He obtained a composite material with a fiber volume fraction of 32%.
The use of hemp fibers was characterized by a length of 5 to 25 mm, which resulted in a
problem with the extrusion of the biocomposite. A heterogeneous granulate was obtained;
hence, some attempts were made to spin the threads for the extrusion process. During
the extrusion process, shortening of the fibers and loss of rectilinear geometry were also
noted. When assessing the test results, it was found that by adding hemp fibers to the
PHBV matrix, the tensile strength did not increase, but the maximum elongation of the
sample was reduced compared to pure PHBV.

The study of the influence of the fillers (in a form of: cellulose, jute, abaca fibers) on
the properties of composites taking into account various matrix materials (PLA, PHBV) and
their comparison with mixtures based on PP can be found in [22]. The tested composite
materials were characterized by comparable or even better properties than composites
with a PP matrix. There was an increase in rigidity, but also of the strength and notched
impact strength.

A wider scope of research on the influence of the reinforcement content in the com-
posite (wood flour/PHBV) is described in [81]. The authors focus on the influence of
temperature on the properties of the obtained mixture, both in the process of its extru-
sion and in the finished product. When analyzing the environmental factors affecting
biodegradable composites, it is also impossible to ignore the time of this impact and the
type of factor. When analyzing the results, it was noticed that increasing the content of
wood flour causes a significant increase in the tensile modulus (it was improved by 167%
compared to the pure PHBV). The tensile strength decreased significantly with the increase
in the content of wood flour.

The problem of changing the mechanical properties of structures (flax/PHBV) was
also described [20]. The work focused on the evaluation of the properties of PHBV–flax
fiber composites with variable flax fiber content for samples produced by injection molding
and compression pressing. A comparative analysis of the mechanical properties of the
obtained composites with the mass fraction of filler from 10 to 30% was performed. Similar
Young’s modulus values were reported for the samples produced by the two methods
mentioned. Slightly higher values of Young’s modulus were obtained for injection-molded
samples and amounted to approx. 6 GPa (30% by volume of the filler content).

The use of fillers (not only of plant origin) in the polymer matrix reduces the shrinkage
of the composites. The geometry of the fibers (L/d) especially reduces the longitudinal
shrinkage because during the flow of the plasticized polymer composite in the channels
feeding to the forming cavity, the fibers are arranged along the flow direction, which results
in the formation of the polymer matrix reinforcement counteracting the shrinkage of the
composite in the longitudinal direction [87–90]. The lowest value of longitudinal shrinkage
was obtained for a biocomposite with hemp fibers—the value of longitudinal shrinkage
compared to pure biopolymer was reduced by about 74%. In addition, the lowest values
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of transverse and in thickness shrinkage were also observed for biocomposite with hemp
fiber—an approx. 37% decrease in transverse shrinkage and an approx. 44% decrease
in the thickness shrinkage compared to the pure biopolymer. The smallest decrease of
shrinkage compared to pure PHBV was observed for the PHBV–wood fiber biocomposite.
A 56% decrease of longitudinal shrinkage value was then observed, and in the event of
the shrinkage in thickness, there was a 26% decrease related to pure PHBV. In addition,
there was no change in transverse shrinkage relative to PHBV for the wood fiber–PHBV
biocomposite.

In the case of the uniaxial tension test made for a biocomposite with hemp fiber, an
approx. 167% increase in Young’s modulus value and an approx. 21% increase in tensile
strength were noticed. On the other hand, for a biocomposite filled with flax fiber, there
was an approx. 156% increase in Young’s modulus and an approx. 13% increase of tensile
strength. In the case of using wood fiber, an approximate 133% increase in the Young’s
modulus was noted, and an approximate 14% decrease in the tensile strength. For all types
of plant-based fillers used in the PHBV matrix, a decrease in relative elongation at ultimate
tensile strength was noted, where the biggest drop was noted for wood-filled biocomposite
and was about 73% less compared to pure PHBV

Higher values of hardness in the area A (Figure 9) were observed for all biocomposites
(for wood fiber—an increase of approx. 46%, for flax fiber—an increase of approx. 34% and
for hemp fiber—an increase of approx. 36%) compared to pure PHBV. In turn, analyzing
area B (Figure 9), a smaller increase of the hardness for a biocomposite with wood fiber
(36%), flax (21%) and hemp (24%) compared to a pure biopolymer was observed. A greater
resulting dispersion performed in B area was also noted compared to area A of the sample.

As can be seen in the water absorption diagram, the difference in water absorption
between the produced composites was small. This is due to the similar morphology of
plant fibers (Table 1). It should be noted, however, that there was a significant increase
in the water absorption of composites compared to pure PHBV. Hydroxyl groups (OH)
in cellulose, hemicellulose and lignin build a large amount of hydrogen bonds inside the
macromolecule and between macromolecules in the cell wall of plant fibers. The action
of water on plant fibers causes these bonds to break. The hydroxyl groups then form new
hydrogen bonds with the water molecules, which cause the fiber to swell. The swelling of
the cell wall generates very high forces. The theoretical value of the pressure may be around
165 MPa [91–93]. Cellulose fibers interact with water not only on the surface but also in
the entire volume. The structure of cellulose-based materials consists of crystalline and
amorphous regions. Amorphous regions readily absorb chemical compounds such as dyes
and resins, and the presence of crystalline regions makes chemical penetration difficult [94].
The possibility of water absorption by cellulose fibers depends on the following, among
others: (a) cellulose purity: crude cellulosic material, such as unwashed sisal fibers, absorbs
at least twice as much water as washed fibers due to the 24% pectin content; (b) degree
of crystallinity: all the OH groups in the amorphous phase are accessible to water, while
only a small amount of water interacts with the surface OH groups of the crystalline phase.
The main disadvantage of cellulose fibers is their highly polar nature, which makes them
incompatible with non-polar polymers. The poor resistance to water absorption makes the
use of natural fibers less attractive for products that will be used under the influence of
external factors (e.g., rain, snow, hail) [33,34,95].

Solle and co-authors researched the biodegradability of flax/PHBV untoughening
and toughening composites. Composites containing 30% filler were prepared by pressure
pressing PHBV powder interspersed with unidirectional flax fabric. In the natural soil
environment, biodegradation was carried out. Biodegradability was assessed by weight
loss analysis, optical microscopy and electron microscopy. The biodegradability of the com-
posite was significantly increased by the addition of flax fibers as compared to pure PHBV.
Toughened composites showed a faster degradation rate than untoughened ones [96].

Zaidi and Crosky researched PHBV reinforced with a unidirectional flax fabric. The
addition of flax resulted in a 4-fold increase in tensile properties, a 3-fold increase in flexural
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properties and a 20-fold increase in impact properties with minimal change in thermal
properties. Moreover, they found that unidirectional flax PHBV reinforcement significantly
extends the range of PHBV applications in terms of mechanical properties [97].

Mazur and Kuciel indicated, apart from the issues of aging, the relationship between
temperature and mechanical properties of the tested compositions. Biodegradable compos-
ites based on PHBV reinforced with 7.5% or 15% by weight of wood fibers were produced
by injection molding. The obtained composites were characterized by an increase in
the value of Young’s modulus, but also a decrease in strength and impact properties. A
comparative analysis of the experimentally measured values of Young’s modulus with
the values obtained in various theoretical micromechanical models was performed. The
Haplin–Kardas model was found to be similar to the experimental data. Biodegradation
studies of biocomposites in physiological saline solution at 40 ◦C were also carried out in
order to investigate the loss of mass. It was observed that the presence of fibers influences
the water absorption rate, and the highest index was observed for composites with 15% by
weight of filler [98].

Taking into account the microstructure test, it can be noted that in the case of three
types of biocomposites, a greater porosity of the structure in relation to pure PHBV is visible.
There is also a visible lack of significant difference in the geometry and surface quality of
the fibers located in the PHBV matrix in relation to the SEM photography of individual
fibers (Figure 1). This may be some evidence of well-chosen processing parameters for
biocomposites, with no degradation of the fibers.

5. Conclusions

Three types of biocomposites with PHBV matrix filled with hemp, wood and flax fibers
were produced in the extrusion process. In the case of the processing of the biocomposites
filled with flax and hemp fiber, higher pressure values in the mold cavity were obtained
compared to pure PHBV. For biocomposites filled with wood fiber, pressure values in the
mold cavity, similar to pure PHBV, were achieved.

In the case of analyzed biocomposites, there was an improvement in both their me-
chanical properties and an improvement in the quality of products made of them, especially
for composites with flax and hemp fibers. The best results were obtained for a biocomposite
filled with hemp fibers. In comparison to PHBV, an approx. 167% increase in the Young’s
modulus was found, approx. 21% increase in the tensile strength value and approx. 62%
increase in tensile strength. For composites with wood fibers, much worse mechanical
properties were obtained compared to other biocomposites and pure PHBV. In the case
of the shrinkage value of the moldings, a significant reduction in shrinkage, in particular
longitudinal shrinkage, was found for all biocomposites. It should be noted that the value
of longitudinal shrinkage compared to the pure biopolymer was reduced by up to approx.
74% for a biocomposite filled with hemp fibers. For all biocomposites with a filler of plant
origin, greater water absorption was observed compared to pure biopolymer.

The use of natural fibers, in particular hemp fibers as a filler in the PHBV matrix, in
most cases has a positive effect on improving the mechanical properties and quality of
molded pieces. In addition, it should be remembered that biocomposites obtained are of
natural origin and are fully biodegradable, which is interesting and desirable for properties
that are part of the current trend regarding the production and commercialization of
modern biomaterials. The directions of searching for the possibility of using these materials
focus on the production of consumer products that would meet the following criteria: wear
out after a certain period of use; they are not repaired when damaged; they can be loaded
during use; they can come into direct contact with living organisms. Ultimately, taking
into account these criteria, the manufactured biocomposites may apply, inter alia, in the
production of plastic pallets, fruit/vegetable boxes, containers for hospital waste such as
gauze pads, etc., elements securing electronic products in cardboard boxes and packaging.
The companies producing such products, e.g., in injection molding processes, may be the
recipient of such a solution.
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