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Abstract: Below the incipient characteristic tearing energy (T0), cracks will not grow in rubber under
fatigue loading. Hence, determination of the characteristic tearing energy T0 is very important in
the rubber industry. A rubber cutting experiment was conducted to determine the T0, using the
cutting method proposed originally by Lake and Yeoh. Then, a fatigue crack propagation experiment
on a edge-notched pure shear specimen under variable amplitude loading was studied. A method
to obtain the crack propagation rate da/dN from the relationship of the crack propagation length
(∆a) with the number of cycles (N) is proposed. Finally, the T0 obtained from the cutting method
is compared with the value decided by the fatigue crack propagation experiment. The values of T0

obtained from the two different methods are a little different.

Keywords: filled natural rubber; characteristic tearing energy; cutting experiment; fatigue crack propagation

1. Introduction

Rubber is widely used in industrial field due to its excellent mechanical properties. In
the traditional fields, rubber is used for tires, driving belts, seismic isolators, engine bushing
and so on [1,2]. Nowadays, it is emerging in new fields, such as soft robotics, stretchable
electronics, tissue engineering and others [3–5]. In these applications, soft rubbers often
suffer complex cyclic loads. When suffering cyclic loads, catastrophic failure frequently
induced in rubbers caused by crack propagation. During the fatigue crack propagation
process, the incipient tearing energy (T0) is very important for the anti-fatigue property of
rubber [6]. Below T0, cracks will not grow in rubber under fatigue loading. T0 is generally
regarded as a material constant of fatigue resistance. To prevent the fatigue failure, one
strategy is to improve the T0 of rubber. Thus, measuring the T0 has caught much attention.

There are various approaches for quantifying T0. One is near-threshold fatigue crack
propagation measurements. This method can get the T0 easily, but it requires a long
duration of continuous testing [7]. Lake and Thomas [8] proposed a model to calculate
the incipient characteristic tearing energy of an elastomer on an arbitrary orientation
plane. Although the theoretical and experimental results are in good agreement, the
model is complex and difficult to calculate. A cutting method which is easy and can
obtain the T0 in a short time was proposed by Lake and Yeoh [9]. Chang and Wang [10]
suggested that cutting tests are capable of conveniently measuring the fracture toughness
of polymers; however, the results are affected by the cut depth and the sharpness of
cutting tools. Zhang et al. [11] investigated the effects of the cutting tool and cutting rate
on the tearing energy using a “Y-shaped” rubber sample. Due to the convenience of the
cutting method, the classic Lake-Yeoh cutting method was even introduced into an Intrinsic
Strength Analyser (ISA), which is a commercial testing instrument and can test the T0 in
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two hours [7]. Moreover, new methods were proposed to decide the characteristic tearing
energy of a rubber material by analyzing the profile of the crack surface or the crack tip
shape during the tearing process [12,13]. Since the characteristic tearing energies are very
important for understanding the crack propagation behavior of rubber components, the
methods used for the determination of tearing energies and their influencing factors are
focused on by researchers in nowadays.

The aim of this work was to study the correlation of the T0 obtained from the classic
Lake-Yeoh cutting method with the fatigue crack propagation measurement. A simple
rubber cutting experiment was performed on an edge-notched pure shear rubber specimen
under different stretch conditions. The T0 of the material was obtained based on the
relationship of the cutting energy and tearing energy. In addition, under the condition
of variable amplitude loading, a fatigue crack propagation experiment with the edge-
notched pure shear specimen was conducted. From the crack propagation rate and the
corresponding tearing energy, the T0 of the material was obtained. The T0 obtained from
the cutting method was checked by the crack propagation test.

2. Tearing Energy and Fatigue Crack Propagation Law

The mechanical energy stored in the specimen is represented by U, and it will have a
change (dU) when the crack surface area (A) has a unit change (dA). The tearing energy T
can be defined as [14]:

T = −dU
dA

(1)

Note that Equation (1) is calculated on the condition of a constant displacement. When
a force is applied on the specimen, the tearing energy should be redefined. If a cutting
implement is presented at the crack tip and then a force f is applied, the corresponding
cutting energy E can be acquired [9]. Finally, the total energy S, which drives the crack
grow, is the sum of the two terms [9]:

S = T + E (2)

where T is the tearing energy only caused by the displacement and E is caused by the cutting.
The fatigue crack propagation behavior can be divided into four regimes of increasing

maximum tearing energy T for R = 0 cycles in rubber [6], where R is the ratio of minimum
tearing energy to maximum tearing energy. In Regime I, the maximum tearing energy T
below the incipient tearing energy T0, the crack propagation rate da/dN is independent of
the mechanical loading.

da
dN

= r ( T ≤ T0) (3)

where a is the crack length, N is the number of load cycles and r is the crack propagation rate.
When T increases from T0 to a transition tearing energy Tt, the relation of the rack

propagation rate da/dN and T satisfies the following function:

da
dN

= A(T − T0) + r (T0 ≤ T ≤ Tt) (4)

where A is a constant parameter of material property.
After the transition, when the T increases from Tt to the critical tearing energy Tc, the

relation of the fatigue crack propagation rate with the tearing energy obeys the following
power law. The B and F are constant properties of the material.

da
dN

= BTF (Tt ≤ T ≤ Tc) (5)
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Finally, In Regime IV (T > Tc), the crack propagation is unstable, and the crack
propagation rate is essentially infinite.

da
dN
→ ∞ ( T > Tc) (6)

3. Experiments
3.1. Specimen

The material we tested was a carbon black (CB) filled rubber with a shore-A hardness
of 55, and it was generously provided by the Zhuzhou Times New Material Technology
Co., Ltd., China. The main formulation of the rubber compound was as follows: 100 phr
natural rubber, 30 phr CB (N774), 25 phr silica (VN3), 5 phr zinc oxide, 2 phr stearic acid,
3.5 phr antioxidant, 2 phr sulphur and 2.5 phr accelerator’promoter. The edge-notched
pure shear specimen shown in Figure 1 was used for all of the tests conducted later. The
specimens had widths of 150 mm, thicknesses of 2 mm and heights of 10 mm. An initial
crack of length 25 mm was cut into the edge by a sharp razor blade.
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Figure 1. Dimensions of the test specimen (unit: mm).

3.2. Pure Shear Tension Experiment

The tensile mechanical behavior of a rubber material is usually studied before the
rubber cutting and crack propagation experiments. The tensile behavior is used to de-
termine the tearing energy and the maximum load imposed on the specimen during the
fatigue experiment. The pure shear tension test on the edge-notched pure shear specimen
shown in Figure 1 was carried out at 23 ◦C with an Instron machine manufactured by
Instron Co. (Boston, MA, USA). The strain rate 0.01s−1 was used for the stretching process.
In the experiment, three identical pure shear specimens (S1, S2, S3) were repeated. The
measured results of engineering stress (σ) vs. engineering strain (ε) are shown in Figure 2.
The strain energy density W can be obtained by integrating the test data through the
following equation:

W =
∫ ε

0
σdε (7)Polymers 2021, 13, 3891 4 of 11 
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The tearing energy at a constant tensile strain can be calculated using the following function:

T = W · h (8)

where h is the unstrained sample height.

3.3. Rubber Cutting Experiment

Figure 3 is the setup of the rubber cutting experiment. In the rubber cutting experiment,
razor blades were adopted as a cutting implement, because they can provide sharp and
reasonably reproducible cutting edges. The pre-cracked planar tension test specimens were
strained to three different strain levels, and the cutting force f was applied to the crack
tip. The schematic of the loading is shown in Figure 4. At each strain level, the specimen
was held at a fixed level of strain and allowed to equilibrate for a minimum of 10 min.
Then, a carefully controlled, highly sharpened blade was brought into contact with the
crack tip and driven to slice the specimen at a constant rate of 1 mm/min. The steady state
reaction force on the blade was measured at each strain level. At each strain level, three
identical pure shear specimens were used. Thus, nine specimens were needed (S4, S5, S6,
S7, S8, S9, S10, S11, S12). All the cutting experiments were carried out at room temperature,
23 ◦C. The cutting force vs. time curves obtained during the rubber cutting experiments
are shown in Figure 5.
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During a “catastrophic” cutting process, the cutting energy can be characterized by
a critical value, Ec, which can be calculated by equation [9]:

Ec = fc/t (9)

where fc are the cutting forces before the instantaneous drop to zero during the cutting pro-
cess, which are the values pointed out by the arrows in Figure 5; and t is the thickness of the
test piece. The values of the fc and the corresponding Ec calculated by Equation (9) are listed
in Table 1. The result of Ec varying with T (which can be calculated by Equations (7) and (8)
based on the engineering stress versus engineering strain curve shown in Figure 2) for the
three strain levels is shown in Figure 6 (solid point).

Table 1. Cutting force f c and the corresponding cutting energy Ec.

Strain Levels Sample Cutting Force
fc (N)

Cutting Energy
Ec (J/m2)

0.05 S1 2.94 1.470
0.05 S2 5.61 2.805
0.05 S3 1.01 0.505
0.10 S4 0.41 0.205
0.10 S5 0.53 0.265
0.10 S6 0.43 0.215
0.15 S7 0.22 0.110
0.15 S8 0.31 0.155
0.15 S9 0.34 0.170
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At low tearing energy T (<~200 J/m2), the relation between cutting energy and tearing
energy was linear [9], and their relationship satisfies the following function:

Sc = T + Ec (10)

where Sc is a constant for a given sharpness of blade and a particular vulcanizate. Moreover,
values of T0 for the various vulcanizates are in direct proportion to those of Sc, and their
relationship is found to satisfy the equation T0 = 0.149Sc from the study of Robertson
(2021) [7]. Thus, to get the T0 of the material we studied, we should first obtain the Sc in the
low tearing energy region. Here we fitted the lowest cutting energy data points at different
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tear energies lay in the low tear energy range with Equation (10), as the straight line shown
in Figure 6. A value of 510.99 J/m2 of the Sc was obtained. Then, by substituting the value
of Sc into the equation T0 = 0.149Sc, a value of 76.14 J/m2 for the T0 was obtained.

3.4. Fatigue Crack Propagation Experiment

To check the accuracy of the T0 obtained from the cutting experiment, a long-term
fatigue crack propagation test was carried out. The test was conducted at room temperature
(23 ◦C) in displacement-controlled mode. The setup of the fatigue crack propagation
experiment is shown in Figure 7. The geometry of the specimens for the fatigue tests is
shown in Figure 1. To quickly obtain the crack propagation test data, a variable amplitude
sinusoidal load was applied to the specimen. The loading frequency was 8 Hz; R = 0 (R is
defined as the ratio of minimum to maximum deformation of rubber during cycles); and
the maximum strain linearly increased from 3% to 56% (see Figure 8). A digital camera
was employed to measure the length of the crack. During the fatigue test, the machine was
periodically stopped to record the number of cycles and measure the length of the crack.
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The number of cycles N and the corresponding crack propagation length ∆a were
measured, as shown in Figure 9. It can be seen that when the number of cycles was smaller
than about 250,000, the crack grew slowly, whereas it grew fast when the cycles exceeded
250,000. From Figure 8, we can see that when loading was less than 250,000 cycles, the
loading strain was below about 35%. The result also indicates that a critical strain of 35%
exists for the material under study, above which the crack grows rapidly. This observation
is in accordance with the study of Ghosh (2014) and Young (1985) [15,16].

Polymers 2021, 13, 3891 9 of 11 
 

 

than about 250,000, the crack grew slowly, whereas it grew fast when the cycles exceeded 

250,000. From Figure 8, we can see that when loading was less than 250,000 cycles, the 

loading strain was below about 35%. The result also indicates that a critical strain of 35% 

exists for the material under study, above which the crack grows rapidly. This observation 

is in accordance with the study of Ghosh (2014) and Young (1985) [15,16]. 

 

Figure 9. Crack contour length as a function of fatigue cycles for CB filled rubber at 23 °C. 

The corresponding crack propagation path is shown in Figure 10. It shows that at the 

beginning of the loading cycles, the crack grew to form the natural rough crack. After a 

certain number of load cycles, the crack tip expanded vertically in the direction of imposed 

load. Thus, the crack grew slowly first, and after a certain number of load cycles, it grew 

fast. 

 

Figure 10. Crack front profiles for different load stages. x and y represent the coordinate positions 

of the points forming the crack contour, and its coordinate axis direction is shown in Figure 1. 

15 20 25 30 35 40 45 50 55
4

6

8

10

12

14

16

18

y
 (

m
m

)

x (mm)

Figure 9. Crack contour length as a function of fatigue cycles for CB filled rubber at 23 ◦C.

The corresponding crack propagation path is shown in Figure 10. It shows that at the
beginning of the loading cycles, the crack grew to form the natural rough crack. After a certain
number of load cycles, the crack tip expanded vertically in the direction of imposed load.
Thus, the crack grew slowly first, and after a certain number of load cycles, it grew fast.
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Figure 10. Crack front profiles for different load stages. x and y represent the coordinate positions of
the points forming the crack contour, and its coordinate axis direction is shown in Figure 1.
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The results of the crack propagation test indicate that the crack propagation has
two different stages. As the loading strain increased to 35%, the crack propagation rate
significantly accelerates. Thus, the relationships of the crack propagation length and the
number of cycles at different strain levels below and above 35% may follow different rules.
Based on the nonlinear least squares method, the relations of the crack propagation length
(∆a) and the number of cycles (N) in the two different strain regions were found to satisfy
the following two power functions, respectively.

Maximum strain below 35%:

∆a = 2.21× 10−12N2.24, R2 = 0.996 (11)

Maximum strain above 35%:

4 a = 4.63× 10−26N4.77, R2 = 0.998 (12)

where R2 is the correlation coefficient of the fitting of the power functions.
The da/dN can be determined by the derivative of Equation (11) or Equation (12). In

addition, the corresponding T values were obtained from Equation (8) at different crack
lengths. Figure 11 represents the double logarithmic plot of tearing energy, T versus crack
propagation rate (da/dN), of the studied material. We compared the test data with the
typical fatigue crack propagation behavior of the unfilled SBR and NR obtained by Lake
and Lindley [6], as shown in Figure 11. We can see that the da/dN of the material we tested
presents two different laws during the crack propagation, which are almost consistent
with the second and third stages of the classical curves of the unfilled SBR and NR. This
verifies that the method provided in this study to obtain the da/dN is practicable. The
transition tearing value T is about 1800 J/m2. The data in the region of Tmax < 1800 J/m2

in Figure 11 of the studied rubber were taken to determine the linear relationship of crack
propagation rate and the maximum tearing energy, as shown in Equation (4). The data in
the region of Tmax > 1800 J/m2 satisfy the power relationship of crack propagation rate
and maximum tearing energy, as shown in Equation (5). By fitting the corresponding test
data with Equations (4) and (5), the fitting lines became those shown in Figure 11. The
fitting results show that the fitting formulas (Equations (4) and (5)) are in good agreement
with the measured data. A value of 66.24 J/m2 of T0 was obtained for the fatigue crack
propagation, which is little different from the value 76.14 J/m2 measured by the cutting
method. This indicates that the cutting method is sufficient for quantifying T0.
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4. Conclusions

A rubber cutting experiment was conducted on an edge-notched pure shear rubber
specimen. The force versus time traces at different strain levels were recorded. According
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to the rubber cutting test data and tearing energy theory, the incipient characteristic tearing
energy T0 of the material was obtained. Under variable amplitude loading, the fatigue
crack propagation experiment with edge-notched pure shear specimen was performed.
A method to obtain the crack propagation rate was proposed. Additionally, from the crack
propagation rate versus the corresponding tearing energy plot, the T0 of the material was
determined. The values of T0 obtained from the fatigue crack propagation and cutting
method are a little different. The study indicates that the cutting method is sufficient for
quantifying the T0 of the rubber material, and it is less time-consuming.
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