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Abstract: The electrochemical synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) was first
carried out in the presence of mixtures of flexible-chain and rigid-chain polyacids and their Na-salts.
Earlier on with the example of polyaniline, we have shown the non-additive effect of the rigid-chain
component of polyacid mixtures on the electrodeposition of polyaniline films, their morphology
and spectroelectrochemical properties. In this study, we confirmed the non-additive effect and
showed that such mixed PEDOT–polyelectrolyte films possess unique morphology, spectroelectro-
chemical and ammonia sensing properties. The electrosynthesis was carried out in potential cycling,
galvanostatic and potentiostatic regimes and monitored by in situ UV–Vis spectroscopy. UV–Vis
spectroelectrochemistry of the obtained PEDOT–polyelectrolyte films revealed the dominating in-
fluence of the rigid-chain polyacid on the electronic structure of the mixed complexes. The mixed
PEDOT–polyacid films demonstrated the best ammonia sensing performance (in the range of 5 to
25 ppm) as compared to the films of individual PEDOT–polyelectrolyte films.

Keywords: PEDOT; electropolymerization; polyelectrolyte; ammonia sensor; spectroelectrochemistry

1. Introduction

Conductive polymers (CPs) such as poly(3,4-ethylenedioxythiophene) (PEDOT),
polyaniline (PANI) and polypyrrole reveal a unique combination of physicochemical,
electrochemical, optical and magnetic characteristics that make them promising for use as
antistatic or conductive coatings, components of electrochromic, electroluminescent and
organic photovoltaic devices, supercapacitors, chemical and biological sensors [1]. This is
the main reason for the intensive research and development of such materials.

Besides the change in conductivity, the doping of a CP leads to a change in the
electronic structure of the CP that is accompanied by a change in the optical properties
in the UV, visible and near-IR (UV–Vis–NIR) regions. This allows them to be used in
electrochromic displays and optical sensors for gaseous or liquid substances [2,3].

A special place among CPs is occupied by PEDOT. This is due to its properties,
including optical transparency in the conducting state, sufficiently high conductivity, high
stability and ease of synthesis [4,5].

The synthesis of PEDOT can be carried out both by chemical and electrochemical
methods in the presence of polyelectrolytes (PEs). They work as counterions for PEDOT
chains and stabilize the insoluble charged PEDOT in aqueous dispersion. There are a
number of PEs used for chemical EDOT polymerization for improving its solubility and
modifying the PEDOT properties [4,6–9]. The most popular PE is polystyrenesulfonate
(PSS), which forms with PEDOT a blend best known as PEDOT:PSS. An enormous number
of studies are devoted to the investigation of its morphological, structural, electrical and
optical properties, along with its applications in various devices [10].

The use of PEs of different structures in the electrochemical synthesis of PEDOT
makes it possible to modify its physicochemical properties and the morphology of the

Polymers 2021, 13, 3866. https://doi.org/10.3390/polym13223866 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://doi.org/10.3390/polym13223866
https://doi.org/10.3390/polym13223866
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13223866
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13223866?type=check_update&version=1


Polymers 2021, 13, 3866 2 of 16

films obtained [11–15]. The electrochemical method of PEDOT synthesis has a number of
significant advantages, such as one-step formation of an oxidant-free homogeneous film
with controlled thickness, morphology and good adhesion to the substrate.

One of the most promising applications of PEDOT films is the possibility of using
them for the detection of gases. Among them, ammonia is a dangerous environmental
pollutant, usually formed as a result of anthropogenous processes and the operation of
industrial facilities. It is a toxic, flammable, colorless gas that can damage the cells of
the human body, causing damage to the skin, eyes and respiratory tract. It is used as a
refrigerant in industrial refrigeration units, in dairies, meat processing plants and other
facilities, which are often located directly on the territory of settlements. Therefore, the
control of the concentration of ammonia in air is an important and urgent task. The UK
Health and Safety Executive (HSE) has set the long-term exposure limit in the air (8 h TWA
reference period) for ammonia at 25 ppm [16].

In the majority of ammonia sensors based on CP films, two popular sensing techniques
are used: chemiresistive and optical methods [3,17–20]. The use of the optical detection
method has a number of significant advantages, such as reduced influence of humidity
on the operation of the detector, insensitivity to electromagnetic and radiation fields and
remote control—the ability to transmit an analytical signal without distortion over long
distances [3,18,19,21]. In comparison to most sensors based on metal oxides, sensors based
on CPs have good mechanical properties and stability in air, as well as sensitivity at room
temperature [3,17–19].

The lowest detection limits of optical sensors based on CPs were 12 ppm for dye-
doped PPy [22], 2.73 ppm for PEDOT [21] and 1–5 ppm for PANI [23,24]. PANI is more
popular among CP sensing layers due to the very high rate and amplitude of the optical
response on ammonia action [23,25]. In the studies [25,26], it was shown that PANI/PEDOT
bilayer structures have a higher sensitivity to ammonia due to their wider spectral region
than for individual PANI. The authors in [27] report that the detection limit of the bilayer
PANI/PEDOT was 7.86 ppm with a response time of 2.33 min.

At the moment, the sensing properties of PEDOT films in relation to ammonia have
been insufficiently studied [21,27–32], despite their high sensitivity to the effect of a reduc-
ing gas (a wide range of changes in resistance and optical density at a certain wavelength).
Most often, optical sensors based on the films cast from commercially available chemically
synthesized water dispersion of PEDOT:PSS are used [28–31]. For the best optical sensor
based on PEDOT, the detection limit was 2.73 ppm, response amplitude—9.03%, response
time—1.19 min and recovery time—5.47 min [21].

Earlier [33], the electrosynthesis of PANI was performed in the presence of a mixture of
polyacids with different flexibilities of the polymer chain. It was shown that the rigid-chain
polyacid has a dominating influence on the synthesis and properties of the resulting PANI
complex. The possibility of combining the specific electronic and spectroelectrochemical
properties of PANI complexes with polyacids of various chain flexibilities in a single film
is the advantage of such a synthesis. In this work, we have tried a similar approach for
EDOT electropolymerization. The electrochemical synthesis of PEDOT in the presence
of mixtures of sulfonated PEs of various structures and flexibilities of the polymer chain
was carried out for the first time. The features of EDOT electropolymerization in the
presence of flexible-chain and rigid-chain PEs and their mixtures in acid and salt forms
were studied by in situ spectroelectrochemistry in UV–Vis regions. The resulting films
were characterized by UV–Vis–NIR spectroscopy and UV–Vis spectroelectrochemistry, as
well as atomic force microscopy. The ammonia sensing properties of the obtained PEDOT
films were investigated.

2. Materials and Methods

Electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) was carried
out in the presence of the following water-soluble PEs (Figure 1): flexible-chain poly-
(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA), rigid-chain poly-(4,4′-(2,2′-



Polymers 2021, 13, 3866 3 of 16

disulfonic acid)-diphenylene-tere-phthalamide) (t-PASA), their mixtures and their sodium
salts. PAMPSA (Sigma-Aldrich Co., St. Louis, MO, USA, Mw = 2,000,000, 15% aqueous
solution) was converted to Na+ form during the pH-titration process. The laboratory-
synthesized Na+ salt of t-PASA [34] with Mw = 40,000 was converted to the H+ form using
an ion exchange column. All used PEs were purified from low molecular weight fractions
by dialysis against distilled water (dialysis membrane ZelluTrans MWCO 8000–, Carl Roth
GmbH & Co. KG, Karlsruhe, Germany). Before the synthesis, EDOT (Sigma-Aldrich Co.,
St. Louis, MO, USA) was distilled under vacuum (20 mmHg, 125 ◦C).
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Figure 1. Structures of monomer units of polyelectrolytes used in this study (PAMPSA(Na) and t-PASA(Na)) and sim-
plified scheme of their electrostatic interaction with charged PEDOT moieties (scheme of bipolaron is based on [35]). 
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of EDOT to sulfonic groups was always kept as 0.5 mol/g-equivalent of sulfonic groups. 
The concentrations of PEs were calculated taking into account their basicity [33]. The 
compositions of PAMPSA/t-PASA mixtures were 2:1, 1:1 and PAMPSNa/t-PASNa 1:1 
with respect to sulfonic groups. Aqueous solutions of polyacids and their salts of the 
required concentration were prepared one day before the synthesis of PEDOT. In order 
to obtain a homogeneous mixture of poorly soluble EDOT in water, the solutions were 
intensively stirred for 2 h with a heating to ~60 °C. 

EDOT polymerization was carried out in three regimes: potential cycling (PC) 
(−0.6–1.0 V, potential sweep rate 50 mV/s), galvanostatic (GS) (0.05 mA/cm2) and poten-
tiostatic (PS) (0.9 V) on purified glass electrodes coated with a transparent conductive 
layer of SnO2:F (FTO), with a surface resistance of ~7 Ω/square. The working surface of 
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Figure 1. Structures of monomer units of polyelectrolytes used in this study (PAMPSA(Na) and t-PASA(Na)) and simplified
scheme of their electrostatic interaction with charged PEDOT moieties (scheme of bipolaron is based on [35]).

The concentration of EDOT for all solutions was 0.01 M. The ratio of concentrations
of EDOT to sulfonic groups was always kept as 0.5 mol/g-equivalent of sulfonic groups.
The concentrations of PEs were calculated taking into account their basicity [33]. The
compositions of PAMPSA/t-PASA mixtures were 2:1, 1:1 and PAMPSNa/t-PASNa 1:1 with
respect to sulfonic groups. Aqueous solutions of polyacids and their salts of the required
concentration were prepared one day before the synthesis of PEDOT. In order to obtain
a homogeneous mixture of poorly soluble EDOT in water, the solutions were intensively
stirred for 2 h with a heating to ~60 ◦C.

EDOT polymerization was carried out in three regimes: potential cycling (PC) (−0.6–1.0 V,
potential sweep rate 50 mV/s), galvanostatic (GS) (0.05 mA/cm2) and potentiostatic (PS)
(0.9 V) on purified glass electrodes coated with a transparent conductive layer of SnO2:F
(FTO), with a surface resistance of ~7 Ω/square. The working surface of the electrode was
2 cm2. As a counter electrode, a platinum foil was used. The reference electrode was a silver–
silver chloride electrode in saturated KCl. The polymerization was carried out in a specially
designed three-electrode spectroelectrochemical quartz cell. The electrochemical parameters
of the synthesis were controlled and recorded using a HA-501G potentiostat/galvanostat
(Hokuto Denko Ltd., Meguro-ku, Japan) and a Nicolet 2090 digital storage oscilloscope
(Nicolet Test Instruments Division, Madison, WI, USA). Simultaneously, the electronic UV–
Vis absorption spectra (380–900 nm) were registered every 2 s using a high-speed scanning
single-beam spectrophotometer Avantes 2048 (Avantes, Apeldoorn, The Netherlands). The
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electrodeposition of PEDOT films was carried out until a charge of 50 mC/cm2 was reached.
Electrochemical and spectroelectrochemical studies of the PEDOT films thus produced were
taken with the same equipment in 0.5 M NaClO4 aqueous solution.

Spectroscopic studies of the dry PEDOT–PE films on air in the UV–Vis–NIR spectral
area (350–1850 nm) were performed using a UV3101PC spectrophotometer (Shimadzu
Scientific Instruments Inc., Columbia, MD, USA).

Atomic force microscopy (AFM) of PEDOT films obtained in GS mode was per-
formed on an Enviroscope AFM microscope with a Nanoscope V controller (Bruker GmbH,
Berlin, Germany) in tapping mode. The thickness of the films depending on PEs used
was 200–300 nm and was measured by the MII-4 microinterferometer (LOMO, St. Peters-
burg, Russia).

A comparative study of the sensing properties of the PEDOT–PE films obtained in GS
mode with respect to 5 and 25 ppm of ammonia was carried out using optical detection.
The films on transparent FTO substrates were placed in a closed 5 cm quartz cuvette
filled with ammonia vapors over 5 mm layer of the aqueous solutions of different NH3
concentrations prepared by dilution of the 10% solution. The concentrations of ammonia
in air were calculated using interpolated calibration curve based on the values of NH3 gas
partial pressure over ammonia aqueous solutions tabulated in [36].

The spectral changes of the films under ammonia vapor in the UV–Vis regions were
recorded by Avantes 2048 spectrophotometer every 2 s.

The response amplitude was calculated as a relative absorbance change (∆A) at
wavelengths specific for each film. The response time (tr) was the time required to reach
90% of ∆A.

∆A =
ANH3vap −Aair

Aair
· 100%, (1)

where ANH3vap is the value of absorbance when the sample is exposed to NH3, and Aair is
the value of absorbance when the sample is exposed to air.

3. Results and Discussion
3.1. Electrochemical Synthesis of PEDOT
3.1.1. Electrochemical Data

The CV curves obtained during PEDOT electrosynthesis in the PC regime are shown
in Figure 2. The CV curve of PEDOT film with polyacid mixture shows a shape similar
to the curve obtained during the synthesis in the presence of t-PASA [37]—the maximum
current in the region of 0.1–0.3 V is more pronounced than in the presence of flexible-chain
polyacid [38] and is shifted in the anodic direction by 60–70 mV (Figure 2a). In the case
of EDOT polymerization in the presence of PE mixture in salt form (Figure 2b), one can
see a curve similar in shape to the curves registered during the electrosynthesis of PEDOT
in aqueous medium [39,40] and synthesis in the presence of PAMPSA, PAMPSNa and
t-PASNa (the absence of clearly visible peaks on CVs) [37,38].

Table 1 shows the parameters of PEDOT electrosynthesis in various regimes in the
presence of all selected PEs. It can be seen that the onset potential of monomer oxidation
(EPC), determined from CV, in the case of polyacids and their mixtures is lower than this one
for the synthesis in the presence of salt forms of PEs. In the case of mixtures of polyacids,
the lowest EPC was observed.

The greatest differences are observed in the case of synthesis in the PS regime
(Figure 3a,b). The synthesis of PEDOT in the presence of PAMPSA and its salt proceeds
at the lowest current (IPS). The highest synthesis currents are observed in the presence
of t-PASA and the mixture of polyacids. The duration of the induction periods (TPS) of
EDOT polymerization in the presence of various PEs was calculated based on the kinetic
curves of charge (Figure 3b) during the synthesis. It can be seen in Table 1 that the synthesis
of PEDOT in the presence of PEs in the salt form is characterized by a slightly longer
induction period than that for the synthesis in the presence of acid forms of PEs.
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Table 1. Electrochemical parameters of different regimes of PEDOT electrosynthesis in the presence
of various PEs and their mixtures.

PEs EPC, V TPS, s IPS, mA EGS, V

PAMPSA 0.86 8 0.18 0.87
t-PASA 0.84 8 0.47 0.88

PAMPSA/t-PASA (1:1) 0.80 8 0.39 0.87
PAMPSA/t-PASA (2:1) 0.81 8 0.40 0.89

PAMPSNa 0.88 10 0.14 0.87
t-PASNa 0.89 25 0.26 0.87

PAMPSNa/t-PASNa (1:1) 0.88 18 0.17 0.87

Summarizing, one can see that the synthesis in the presence of t-PASA and the mixtures
of PAMPSA/t-PASA proceeds much more easily (higher current and shorter induction
period) than in the presence of PEs in the salt form and PAMPSA. It was shown [11]
that during EDOT electropolymerization in the presence of rigid-chain polyacids, the
formation of radical cations dominated. Since radical cations are the driving force of EDOT
electropolymerization, this leads to a higher rate and current of PS synthesis.

In the case of GS synthesis, close values of potential (EGS) of EDOT electropolymeriza-
tion were observed (Figure 3c, Table 1).

3.1.2. Spectroelectrochemical Data

The growth of the optical absorption spectra in UV–Vis region during the polymeriza-
tion of EDOT in the GS regime is shown in Figure 4.

In the process of PEDOT synthesis in the presence of PAMPSA, an intense increase in
the absorption in the region of wavelengths longer than 600 nm is observed (Figure 4a),
which extends to the NIR region of the spectrum indicating the formation of the highly
conductive second oxidized form (bipolarons) [40–43]. During EDOT electropolymer-
ization in the presence of PAMPSNa and t-PASNa, as well as their mixture (Figure 4e),
the evolution of absorption spectra is similar to that for the synthesis in the presence of
PAMPSA (Figure 4a). Thus, in the case of EDOT electropolymerization in the presence of
salt forms of PEs and their mixture, the chemical structure of PE molecules does not affect
the course of PEDOT synthesis and electronic structure of the growing film.

Investigating the nature of the difference in the absorption spectra during the poly-
merization of EDOT in the presence of t-PASA (Figure 4b), one can observe the formation
of a wide absorption maximum located at about 600–700 nm. In this case, the increase
in absorption in the NIR region is less pronounced than in PAMPSA (Figure 4a). In the
case of synthesis in the presence of the PAMPSA/t-PASA mixture (Figure 4c,d), one can
see the broad absorption maximum near 680–780 nm, which is likely caused by conju-
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gation breaks in the PEDOT chains as in the case of synthesis in t-PASA. A pronounced
absorption plateau in the NIR region (Figure 4c,d) indicates the formation of bipolarons
occurring to a greater extent compared to the synthesis in t-PASA. Thus, the presence of
rigid-chain polyacid in PAMPSA/t-PASA mixtures produces an obvious influence on the
electronic structure of electrodeposited PEDOT complexes even at twice higher content of
the flexible-chain polyacid.
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3.2. Characterisastion of PEDOT–PE Films
3.2.1. UV–Vis–NIR Absorption Spectroscopy

Figure 5 shows UV–Vis–NIR absorption spectra of dry PEDOT–polyelectrolyte films
on air. In our opinion, the most adequate analysis of the absorptions observed in the range
of 700–1850 nm is presented in [44] based on the results of DFT calculations.

First of all, let us consider the spectrum of PEDOT–t-PASA film (curve 2), where
the most pronounced absorption maxima are observed near 745 and 1510 nm. These
absorption maxima resemble those found in [44] at 791 nm and 1772 nm and are attributed
to low-doped PEDOT in the polaronic state. Shorter wavelengths, at which the polaronic
maxima are experimentally observed for PEDOT–t-PASA film, may be explained by the
shorter conjugation length or even shorter chain length of the polymer. It is important
that one can observe an absorption deep in the range of 900–1350 nm, where the authors
of [44] predict absorption maxima near 915, 933 and 1300 nm for the bipolaronic state
of PEDOT. Contrarily, in the spectra of PEDOT films prepared in flexible-chain polyacid
and salt forms of all polyelectrolytes and their mixtures, one can observe the full range of
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absorptions predicted for both polaronic and bipolaronic states of PEDOT. The spectra of
PEDOT films prepared in the polyacid mixtures (curves 3,4 corresponding to 1:1 and 2:1
compositions) have a similar shape and look more like this one of PEDOT–t-PASA film,
but the absorptions near 745 and 1510 nm are shifted to 770 and 1635 nm, respectively.
Since in these spectra 3 and 4 one can also observe the absorption deep in the range of
900–1350 nm indicating the low content of the bipolarons, it is reasonable to suppose that
the above-mentioned shift is due to longer conjugation.
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PASNa (e).
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Figure 5. Electronic UV–Vis–NIR absorption spectra of films of PEDOT complexes with PAMPSA (1),
t-PASA (2), PAMPSA/t-PASA (1:1) (3), PAMPSA/t-PASA (2:1) (4), PAMPSNa (5), t-PASNa (6) and
PAMPSNa/t-PASNa (7) obtained during GS synthesis.

These peculiarities of the electronic spectra of PEDOT–polyelectrolyte films may be
explained on the basis of differences in polyelectrolytes’ structure. The main structural
differences between them are: the flexibility of the main polymer chain; the length and
flexibility of side chains bearing sulfonic groups; and the distribution of sulfonic groups
along the main chain. It is clear from Figure 1 that if one considers a simplified variant
of the double-strand interpolymer complex, the rigid-chain t-PASA(Na) with irregular
distribution of sulfonic groups with short links to the main chain cannot fully compensate
double charges of bipolaron fragments on the rigid conjugated PEDOT chain. This results
in obstacles for the elongation of the polymer chain during EDOT electropolymerization
in the presence of t-PASA. On the contrary, flexible-chain PAMPSA(Na), thanks to long
and flexible side chains, can fully compensate these charges. However, one should admit
that the rigid-chain polyelectrolyte may also form interpolymer complexes, in which the
polyelectrolyte chains are crossing (almost perpendicularly) several PEDOT chains. So, in
the case of EDOT electropolymerization in the presence of polyacid mixtures, PAMPSA
can compensate the charges that t-PASA failed to compensate due to steric hindrances
(Figure 1). This may contribute to the formation of longer PEDOT chains.

The differences in charge compensation by acid and salt forms of t-PASA were ex-
plained by us earlier on the basis of zeta-potential measurements [11]. It was shown
that sulfonic groups in t-PASA in the acid form are approximately 3 times less negatively
charged (less dissociated) than in the Na-salt form. Another electrostatic obstacle for PE-
DOT chain charge compensation in the case of rigid-chain t-PASA may arise from hydrogen
bond interaction between the sulfonic group and adjacent NH group detected by us using
FTIR spectroscopy [11]. This interaction produces positive charges on the polyacid chain,
which repulse from positively charged moieties of oxidized forms of PEDOT. This type
of interaction was not detected for t-PASNa due to the absence of movable protons in its
structure. The above factors may be used to explain cardinal differences in the spectra of
PEDOT–t-PASA and PEDOT–t-PASNa films.

3.2.2. Spectroelectrochemical Study of Redox Processes in PEDOT-PE Films

Figure 6 shows the absorption spectra of PEDOT films at fixed potentials in the
aqueous solution of 0.5 M NaClO4. A pronounced band near 612 nm due to π–π* transitions
in the reduced form of PEDOT (Figure 6a,b,d,f, Table 2) [37,40–43] can be seen at low
potentials in the spectra of PEDOT films obtained in the presence of PAMPSA and salt forms
of all PEs and the mixtures. With an increase in the potential (oxidation), the intensity of this
band decreases, while at the same time an absorption band at about 800–900 nm is formed
(the polaronic form of the oxidized PEDOT). During this transition, an isosbestic point (i.p.1)
appears near 710–720 nm. Further growth in the potential causes an increase in absorption
in the NIR region of the spectrum (transition from polaronic to bipolaronic form) [40–43]
and the second isosbestic point (i.p.2) can be observed. In reality, the transitions from the
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neutral form to the polaronic form and then to the bipolaronic form occur in wider ranges
of potential, but optical phenomena occurring during PEDOT doping/dedoping due to
changes in the film thickness and its refractive index introduce some uncertainty in the
isosbestic points’ positions (sometimes called “isosbestic range”) [32].

The charter of changes in the electronic absorption spectra for PEDOT–t-PASA film
shows significant differences (Figure 6c) from this one for traditional PEDOT films [30–32].
The maximum of the characteristic absorption bands of reduced (~500 nm) and polaron
fragments (~700 nm) of PEDOT is shifted hypsochromically compared to that for PEDOT
films obtained in the presence of PAMPSA and salt forms of all PEs and the mixtures
(Table 2). The observed shift to the short-wave region as discussed above may be due to a
decrease in the length of the π-conjugation of the polymer chain and the formation of short
PEDOT chains. In addition, the retarded formation of a highly conductive bipolaronic form
in this film is observed, as can be seen from the low absorption in the NIR region. PEDOT–
t-PASA film has only one isosbestic point shifted to the short-wave region (611 nm).

PEDOT films obtained in the mixtures of polyacids (even at twice higher content of
the flexible-chain polyacid) (Figure 6e,g) demonstrate behavior similar to that of PEDOT–t-
PASA film: the maximum of the absorption bands of the reduced (~550 nm) and polaronic
(~770 nm) forms of PEDOT and the i.p.1 (650–670 nm) are shifted to the short-wave region
and are located in the position between those for the films of complexes with rigid-chain
and flexible-chain polyacids. It is characteristic that the isosbestic point in this case exists
in the whole range of studied potentials, indicating preferential conversion of the neutral
form of PEDOT to the polaronic one, and, to a much lesser extent, to the bipolaronic one.
Thus, PEDOT–polyacid mixture films demonstrate retarded formation of bipolarons as
PEDOT–t-PASA, but have longer conjugation.

So, the rigid-chain polyacid t-PASA produces a dominating influence on the spectro-
electrochemical properties of PEDOT–PAMPSA/t-PASA films. Previously, the domination
effect of the rigid-chain t-PASA in mixtures with the flexible-chain PAMPSA was first
discovered by us during the electrosynthesis of PANI [33]. Now it is clear that this is a
universal phenomenon.

Table 2. The positions of the maxima of the absorption bands of the reduced and polaronic forms of PEDOT and the
isosbestic points i.p.1 (neutral-to-polaron) and i.p.2 (polaron-to-bipolaron).

PEs Reduced Form,
nm

i.p.1, nm (Potential
Range *, V) Polaronic Form, nm i.p.2, nm (Potential

Range *, V)

PAMPSA 612 722
(−0.8 ÷ −0.6) 835 777

(−0.5 ÷ −0.2)

t-PASA 505 611
(−0.6 ÷ 0.2) 690 -

PAMPSA/t-PASA (1:1) 548 653
(−0.6 ÷ 0.3) 774 -

PAMPSA/t-PASA (2:1) 570 674
(−0.7 ÷ 0.3) 775 -

PAMPSNa 612 727
(−0.8 ÷ −0.5) 832 772

(−0.5 ÷ −0.3)

t-PASNa 611 728
(−0.6 ÷ −0.4) 828 754

(−0.4 ÷ −0.2)

PAMPSNa/t-PASNa (1:1) 613 714
(−0.8 ÷ −0.5) 845 756

(−0.4 ÷ −0.2)

Note: * the ranges of potential, in which the polaronic and bipolaronic forms exist, in reality are wider (see the discussion).
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3.2.3. Morphology of PEDOT-PE Films

Films of PEDOT, obtained in the presence of PEs, were also characterized using the
AFM method. Figure 7 shows that films with greater roughness formed by larger objects
are obtained during the synthesis of PEDOT in the presence of PAMPSA, PAMPSNa and,
to a lesser extent, in the mixtures of polyacids and polysalts. PEDOT films obtained in
the presence of PAMPSA and salt forms of PEs and their mixtures reveal filament-like
structures. The surface of the films of PEDOT with t-PASA and 1:1 mixture of the polyacids
consists of isolated globules with a size of 150–400 nm.
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For the PEDOT films obtained in the presence of PAMPSA, salt forms of PEs and 
their mixtures, much smaller changes in the absorption are observed than those in the 
case of PEDOT films with the rigid-chain t-PASA and the PAMPSA/t-PASA mixture 
(Figure 8a). In most cases, a greater change in the absorption is observed in the region of 
450–500 nm. Hence, the values of amplitude response ∆A were calculated at this wave-
length region and their time dependences are presented in Figure 9. Subsequently, a 
blue or blue-green LED, emitting in the range (450 < λ < 500 nm), can be used in a com-
mercial device to detect changes in absorption in this wavelength range. All calculated 
values of the sensor responses for all investigated films are presented in Table 3. 

Figure 7. AFM images of PEDOT films obtained in the presence of PAMPSA (a), t-PASA (b),
PAMPSA/t-PASA (1:1) (c), their cross-section profiles along white line on the images (d), PAMPSNa
(e), t-PASNa (f), PAMPSNa/t-PASNa (g) and their cross-section profiles (h).

3.3. Ammonia Sensing Properties of PEDOT-PE Films Using Optical Detection Method

Figure 8 shows the changes in the optical absorption spectra of PEDOT–PAMPSA/t-
PASA (1:1) (a) and PEDOT–PAMPSNa/t-PASNa (b) films exposed to 25 ppm NH3. Changes
in the spectra shown in Figure 8a are specific for PEDOT films obtained in the presence of
t-PASA and polyacid mixture. Changes in the spectra shown in Figure 8b are typical for
PEDOT films obtained in PAMPSA and all salt forms of PEs.
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Figure 8. Changes in the optical absorption spectra of (a) PEDOT–PAMPSA/t-PASA and (b) PEDOT–PAMPSNa/t-PASNa
films during exposure to ammonia vapors with the concentration of 25 ppm.

The influence of ammonia on the PEDOT films leads to their reduction [30–32], as
evidenced by an increase in the absorption in the region of the reduced form (450–500 nm)
and a decrease in the absorption in the region of polarons (800–850 nm).

For the PEDOT films obtained in the presence of PAMPSA, salt forms of PEs and their
mixtures, much smaller changes in the absorption are observed than those in the case of
PEDOT films with the rigid-chain t-PASA and the PAMPSA/t-PASA mixture (Figure 8a).
In most cases, a greater change in the absorption is observed in the region of 450–500 nm.
Hence, the values of amplitude response ∆A were calculated at this wavelength region
and their time dependences are presented in Figure 9. Subsequently, a blue or blue-green
LED, emitting in the range (450 < λ < 500 nm), can be used in a commercial device to
detect changes in absorption in this wavelength range. All calculated values of the sensor
responses for all investigated films are presented in Table 3.
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Table 3. Values of response amplitude (∆A) and response time (tr) of PEDOT films.

PEs ∆A at 25 ppm, % ∆A at 5 ppm, % tr, s (25 ppm)

PAMPSA 6.05 3.17 637
t-PASA 10.19 5.06 616

PAMPSA/t-PASA 20.91 7.26 648
PAMPSNa 5.46 2.17 346
t-PASNa 3.41 1.15 125

PAMPSNa/t-PASNa 13.54 4.21 324

It can be seen from Table 3 that PEDOT–t-PASA and PEDOT–PAMPSA/t-PASA films
are characterized by higher ∆A and shorter response times than PEDOT–PAMPSA, the
PEDOT mixed film demonstrating the highest response. Even at a very low concentration of
ammonia 5 ppm (less than the MPC), the mixed film is capable of detecting ammonia with
sufficient efficiency and accuracy. PEDOT films obtained in the salt forms of PEs showed
the same tendency but their ∆A are several times lower. However, they reveal significantly
shorter response times. The latter fact may be explained by the presence of excessive
protons in the film, which partly neutralize ammonia penetrating to the surface [32].

The observed difference in sensing properties may be explained on the basis of spec-
troelectrochemical data. Upon reduction (Figure 6c,e) or exposure to ammonia, the PEDOT
films obtained in t-PASA and PAMPSA/t-PASA mixture preferentially exhibit a transition
from the polaronic form to the reduced one. So, PEDOT interaction with ammonia results
in only one direct electronic transition. The surface morphology of PEDOT films can also
affect their sensing properties. The surfaces of the PEDOT films obtained in t-PASA and
a mixture of polyacids consist of isolated globules, which probably allow ammonia to
interact with a larger surface area of the film. For sensors based on PANI, a similar corre-
lation between globular morphology and sensing properties was found [45,46]. On the
other hand, the roughness of PEDOT–t-PASA is the lowest, while higher roughness should
increase the contact area of the film [46]. So, in the case of the mixed PEDOT–polyacid film,
the reduced number of electronic transitions and globular morphology due to the presence
of t-PASA and higher roughness due to the presence of PAMPSA contribute to the best
sensor performance.

4. Conclusions

As a result of the present study, it was found that PEDOT films can be electrodeposited
in aqueous solutions of mixtures of polyelectrolytes distinguished by flexibility of the poly-
mer chain. The electrosynthesis of PEDOT films in the presence of the salt forms of the
mixed polyelectrolytes proceeds in a similar manner as that for PEDOT electropolymer-
ization in aqueous solutions of flexible chain PEs or inorganic electrolytes. The resulting
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PEDOT films have a similar electronic structure, surface morphology and electrochemical
and spectroelectrochemical properties. So, in this case, the presence of rigid-chain PEs in
the PAMPSNa/t-PASNa mixture does not affect the character of PEDOT electrosynthesis
and the properties of the films obtained.

On the contrary, if one uses acid forms of the rigid- and flexible-chain polyelectrolytes
in the mixture, the evolution of electronic spectra during PEDOT electrosynthesis has an
intermediate character between those in the presence of flexible- and rigid-chain poly-
acids, the electropolymerization rate being higher and closer to that in the latter case.
This higher electropolymerization rate may be explained by the fact that thanks to the
presence of the rigid-chain polyacid in the PAMPSA/t-PASA mixture the intermediate
EDOT oligomers have a higher content of polaronic form, being the main driving force for
PEDOT chain growth.

Surprisingly, the electronic absorption spectra, spectroelectrochemical properties and
surface morphology of the electrodeposited PEDOT–PAMPSA/t-PASA films are almost
identical to those of PEDOT films obtained in the presence of the rigid-chain polyacid. The
evolution of in situ absorption spectra with potential indicates the retarded formation of
the bipolaronic form of PEDOT in this case. So, the presence of a rigid-chain polyacid in
PAMPSA/t-PASA mixtures produces a decisive influence on the electronic structure of the
electrodeposited PEDOT films even at twice higher content of flexible-chain polyacid. In
this respect, the mixed PEDOT films resemble those of polyaniline studied in our earlier
publications [33].

The electrodeposited PEDOT films with the individual PEs and their mixture were
comparatively tested as optical ammonia sensors. It was shown that all PEDOT films
can reliably detect 25 ppm ammonia, with the mixed PEDOT–PAMPSA/t-PASA films
demonstrating the best sensor performance due to the synergistic effect of two factors:
(1) upon exposure to ammonia, the presence of rigid-chain polyacid provides rapid polaron–
neutral transition and (2) the flexible-chain polyacid gives high roughness and contributes
to the easier penetration of ammonia into the film. It is important to note that, similarly
to all the sensors based on popular conducting polymers (polyaniline, polythiophene,
polypyrrole and their derivatives), the PEDOT films described in this study are sensitive to
all oxidative or reductive gases and vapors. However, studying this interference was not
among the aims of this work.
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