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Abstract: Aromatic polyimine (PIM) was prepared through condensation polymerization between
p-phenylene diamine and terephthalaldehyde via Schiff reactions. PIM can be physically crosslinked
with ferrous ions into gel. The gel-composites, calcined at two consecutive stages, with temperatures
ranging from 600 to 1000 ◦C, became Fe- and N-doped carbonaceous organic frameworks (FeNC),
which demonstrated both graphene- and carbon nanotube-like morphologies and behaved as an
electron-conducting medium. After the two-stage calcination, one at 1000 ◦C in N2 and the other
at 900 ◦C in a mixture of N2 and NH3, an FeNC composite (FeNC-1000A900) was obtained, which
demonstrated a significant O2 reduction peak in its current–voltage curve in the O2 atmosphere, and
thus, qualified as a catalyst for the oxygen reduction reaction. It also produced a higher reduction
current than that of commercial Pt/C in a linear scanning voltage test, and the calculated e-transferred
number reached 3.85. The max. power density reached 400 mW·cm−2 for the single cell using FeNC-
1000A900 as the cathode catalyst, which was superior to other FeNC catalysts that were calcined at
lower temperatures. The FeNC demonstrated only 10% loss of the reduction current at 1600 rpm after
1000 redox cycles, as compared to be 25% loss for the commercial Pt/C catalyst in the durability test.

Keywords: FeNC catalyst; polyimine; two-stage calcination; oxygen reduction reaction

1. Introduction

The oxygen reduction reaction (ORR) is usually the bottleneck reaction for fuel cells,
implying that catalysts, which are usually precious and expensive, are needed to lower
the barrier of the reaction in order to improve the power and productivity of the fuel cells.
To carry out ORR in a cheaper way without depressing the catalyzing capability of Fe,
N-doped MOF (metal organic framework) composites are prepared, in which covalent-
bonded iron nitrogen (Fe–N) can become an active center in the carbonaceous matrix
after calcination.

The first MOF-based cathode catalyst was prepared using cobalt-coordinated with
large cycled phthalocyanine [1], which was, over the following year, modified via high-
temperature calcination to become Co-porphyrin. This did not increase the efficiency of
the catalyst; however, the ORR in the cathode improved significantly [2]. Eventually, it was
understood that calcination at a higher temperature than 800 ◦C is required to obtain an
MOF-based cathode catalyst. Some iron- and nitrogen -containing carbonaceous materi-
als [3] were calcined in the presence of N2 or NH3 to create the micro- or mesoporous areas
of FeNC with defined numbers of active sites. FeNC was made available after calcination
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at temperatures that were higher than 950 in the argon and ammonia atmosphere in a
study conducted by Mamtani [4]. Several closely related works for ORR and MOF can be
found. Refs. [5–8] In a conventional iron- and nitrogen-doped MOF (FeNMOF), Fe ions are
designed to be captured (complexed) with multi-nitrogen (usually 4-nitrogen) in a cyclic
compound that contains 4-nitrogens [9–13] before being subjected to calcination. However,
the preparation of FeNMOFs requires many tedious series of steps of organic reactions with
limited yield. In other words, the expense of obtaining FeNMOF is close to that needed
to purchase precious metals such as Pt or Pd. In this study, we attempted to avoid the
tedious steps of organic synthesis and the associated expenses by directly polymerizing a
nitrogen-containing polymer (polyaniline: PANI) in the presence of either Fe or Co ions to
allow ions to complex with the nitrogen-containing monomers before the initiation of poly-
merization. New publications [14,15] on the application of PANI in the design of biosensors
and biofuel cells are available. The polymerization of PANI on the carbonaceous surfaces
demonstrated significant ORR in both acidic and alkaline media [16–18]. Additionally, the
amino groups of the N-containing PANI on an XC72 (Vulcan) support could coordinate
with Pt ions, resulting in the presence of a well-dispersed Pt-catalyst on the XC72 surfaces
and the control of the pore sizes of the obtained PANI/XC72 composites [19,20]. However,
PANI can easily be prepared by polymerizing aniline monomers (NH4

+) in the acidic
aqueous solution [21–24]. The repulsive force between NH4

+ and Fe+2 or Co+2 hinders the
coordination (complex) and decreases the amounts of metal ion captured by the resultant
PANIs. Furthermore, due to the steric effect of the two huge benzene rings located on both
sides of the amino group (-NH) in the backbone of PANI, most of the metal ions are not
able to come close enough to induce the complexation with -NH, even when the PANI
was synthesized following polymerization. Therefore, the degree of coordination with
the metal ions by PANIs was too low to become an efficient cathode catalyst of fuel cell
after calcination. Consequently, additional small N-containing molecules such as ethylene
diamine (EDA) were added to capture most of the metal ions firmly in water before the
addition of anilinium monomers to increase the degree of coordination before and after
polymerization [25].

In this study, aromatic polyimine (PIM) replaced PANI to effectively remove the steric
hindrance and allow the approach of metal ions to form robust coordination bonding
before calcination, without the necessity of adding any small N-containing molecules
before polymerization and calcination. Since PIM can usually be prepared quickly with
a high yield, at temperatures slightly higher than room temperature, by means of Schiff
condensation between the diamine and the dialdehyde, we used p-phenylene diamine
(PDA) and terephthaldehyde (TPAl) as the monomers to obtain aromatic PIM. Compared to
PANI, it was found that there was a large empty space around the imine groups (-N=CH-)
without the presence of a huge benzene ring at one end, and that no hydrogen was
connected to the nitrogen of the imine. Furthermore, no positive charge was present on
PDA and TPAl monomers to repulse the positive metal ions before or after polymerization.
Theoretically, the addition of metal ions could be carried out before polymerization with
monomers or after polymerization with polymers, both of which could create a physically
crosslinked gel if the degree of complexation is high enough. In other words, we were able
to judge the degree of complexation according to whether or not gel was formed prior to
being subjected to calcination.

2. Materials and Methods
2.1. Materials

p-Phenylene diamine (PDA) (Tokyo Kasei Kogyo Co., Ltd., Tokyo, Japan), tereph-
thaldehyde (TPAl) (Tokyo Kasei Kogyo Co., Ltd., Tokyo, Japan), and iron(II) chloride
hexahydrate (FeCl2·6H2O, J.T. Baker, NJ, USA) were used in this study.



Polymers 2021, 13, 3850 3 of 19

2.2. Preparation of FeNC Catalyst

Quantities of 1.34 g of PDA and 1.62 g of TPAl were placed in 80 and 50 mL of alcohol,
respectively, before being mixed into a single solution. The mixture solution was stirred
at room temperature for 12 h, during which the color changed to thick orange, indicating
that the polymerization is complete. Then, 0.04 g of Iron(II) chloride hexahydrate was
introduced into the solution and the viscosity of the mixture gradually increased before
turning into a frozen gel. The gel-like composite was concentrated by centrifugation at
300 rpm for 10 min to obtain the precipitate in the bottom of the centrifugation tube. The
precipitate was dried at 80 ◦C for 8 h before cooling to RT.

The obtained PIM, which was the precursor of the FeNC catalyst, was heated to 600 ◦C
(700, 800, 900, 1000 ◦C) at 10 ◦C min−1 and maintained at 600 ◦C (700, 800, 900, 1000 ◦C) for
1 h in the argon atmosphere, then cooled to room temperature. The impurities and magnetic
parts of the obtained materials were removed via washing in 9 M H2SO4 (aq.) at 80 ◦C for
36 h, followed by filtration, and the cake was washed with de-ionized water and alcohol
before drying in a vacuum oven at 80 ◦C for 8 h. The acid-leached products were further
calcined at 500 ◦C (600, 700, 800, 900 ◦C) in N2 and NH3 atmospheres, at 10 ◦C min−1

(named as FeNC-600A500), and washed again in 1 M H2SO4 (aq.) at 80 ◦C for 3 h, followed
by drying in a vacuum oven at 60 ◦C. The sample was named FeNC-600A500 (-700A600,
-800A700, -900A800, and -1000A900). The schematic diagram depicting the preparation of
the FeNCs is shown in Scheme 1.
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2.3. FTIR Spectroscopy

The main functional groups of PDA, TPAl, and PIM were assigned in accordance with
the FTIR spectra that were recorded on an IFS3000 v/s FTIR spectrometer (Bruker, Ettlingen,
Germany) at room temperature with a resolution of 4 cm−1 and 16 scanning steps.
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2.4. X-ray Photoelectron Spectroscopy (XPS)

The different binding energy spectra of N1s of various FeNCs were used to character-
ize the percentage of nitrogen in pyridine, pyrrole, graphenec, Fe-N., etc. after calcination
with an XPS instrument produced by Fison (VG)-Escalab 210 (Fison, Glasgow, UK) using
Al Ka X-ray source at 1486.6 eV. The pressure in the chamber was kept at 10−6 Pa or less
during the measurement. The powered samples were shaped to become tablet samples
using a stapler. The binding energies of the N1s around 400 eV were recorded.

2.5. Wide Angle X-ray Diffraction: Powder X-ray Diffraction (WXRD)

A copper target (Cu-Kα) Rigaku x-ray source (Rigaku, Tokyo, Japan), with a wavelength
of 1.5402 Å, was the target for x-ray diffraction. The scanning angle (2θ) ranged from 10 to
90◦, with a voltage of 40 kV and a current of 30 mA, and was operated at 1◦ min−1.

2.6. Scanning Electronic Microscopy (SEM)

Using a SEM (field emission gun scanning electron microscope, AURIGAFE, Zeiss,
Oberkochen, Germany), the sizes and morphologies of the FeNCs were obtained.

2.7. Transmission Electronic Microscopy (TEM)

Photos of the samples were taken using an HR-AEM field-emission transmission
electron microscope (HITACHI FE-2000, Hitachi, Tokyo, Japan); the samples were dispersed
in acetone, and were subsequently placed dropwise on carbonic-coated copper grids before
being subjected to emissions.

2.8. Surface Area and Pore Size Measurement (BET Method)

Nitrogen adsorption–desorption isotherms (type IV) were obtained from an Autosorb
IQ gas sorption analyzer (Micromeritics-ASAP2020, Norcross, GA, USA) at 25 ◦C. The
samples were dried in a vacuum overnight at a temperature above 100 ◦C. The surface area
was calculated according to the BET equation when a linear BET plot with a positive C value
was in the relative pressure range. The pore size distribution was determined according to
methods derived from the Quenched Solid Density Functional Theory (QSDFT), based on
a model of slit/cylinder pores. The total pore volumes were determined at P/P0 = 0.95.

2.9. Electrochemical Characterization
2.9.1. Current–Potential Polarization-Linear Scan Voltammetry (LSV)

The performance of the electrocatalyst support was implemented in a three-electrode
system. The round working electrode, which had an area of 1.5 cm2, was prepared as
follows: Ag/AgCl, carbon graphite, and a Pt-strip were used as the reference, relative,
and counter electrode, respectively. The electrochemical test was carried out in a poten-
tiostat/galvanostat (Autolab-PGSTAT 30 Eco Chemie, KM Utrecht, The Netherlands) in
0.1 M HClO4 solution, and C-V curves were obtained with scanning potentials from −0.2
to 1.0 V at a scanning rate of 50 mV·s−1. The catalyst ink was prepared by mixing 3 mg
support powder in isopropanol and stirring until it became uniform. Subsequently, 5%
Nafion solution was added into the mixture as a binder, the mixture was ultra-sonicated for
1 h, and the obtained ink was uniformly spray-coated on the carbon paper for C-V testing.

The current-potential polarization curves obtained from LSV of the various FeNCs
were measured using a rotating-disk electrode (RDE: Metrohm, FL, USA) operating at 900,
1200, 1600, 2500, and 3600 rpm in O2-saturated 0.1 M HClO4, respectively. The reduction
current densities of various FeNCs, which were recorded at 1600 rpm within the measured
voltage range (0.0~1.2 V), were chosen for comparison.

2.9.2. MEA Preparation

A Nafion® 212 sheet, purchased from Ion Power Inc., New Castle, DE, USA, was
used as the proton exchange membrane. To remove the surface organic impurities and to
convert the membranes into protonated (H+) form, the Nafion-212 (4 × 4 cm), membrane



Polymers 2021, 13, 3850 5 of 19

was treated at 70 ◦C in 5 wt.% H2O2 aqueous solution for 1 h, and was then submerged in
1 M H2SO4 solution for 1 h. Subsequently, the treated membranes were dipped in distilled
water for 15 min and were then stored in deionized water. The catalyst inks were prepared
by mixing 20 mg of FeNC powders in isopropanol and were mechanically stirred until
they became uniform, followed by the addition of 5% Nafion solution, before stirring again
to reach uniformity. Eventually, the catalyst mixture was ultra-sonicated for 1h, followed
by dropwise coating on both sides of the treated Nafion sheet, as the anode and cathode
electrodes (2 × 2 cm), respectively, and hot-pressing at 140 ◦C with a pressure force of
70 kg cm−2 for 5 min to obtain the MEA.

2.9.3. Single-Cell Performance Testing

The MEA was installed in a fuel cell test station to measure the current and power
densities of the assembled single cell using a single-cell testing device (model FCED-P50;
Asia Pacific Fuel Cell Technologies, Ltd., Miaoli, Taiwan). The active cell area was 2 × 2 cm2.
The temperatures of the anode, cell, cathode and humidifying gas were maintained at
around 70 ◦C. The flow rates of the anode input H2 and the cathode input O2 fuels were set
at 200 and 100 mL·min−1, respectively, based on stoichiometry. To test the electrochemical
performance of FeNC cathode catalyst in the individual MEAs, both the C-V and output
powers were measured.

3. Results
3.1. FTIR Spectra

The IR-spectra of the PDA, TPAl monomers, and PIM obtained from the Schiff conden-
sation polymerization are demonstrated in Figure 1. The doublet peaks of the symmetric
and asymmetric stretching modes of the primary amine, which belonged to PDA, can be
clearly seen at around 3297 and 3201 cm−1, respectively. The –C–N– bond is also visible at
1520 cm−1 and para-substituted benzene ring contributed to the peak at 835 cm−1, which
overlapped with the para-substituted ones of TPAl and PIM, indicating that the Schiff
reaction was carried out at the para-positions for PDA and TPAl. The carbonyl group of
the aldehyde of TPAl contributed the peak at 1700 cm−1. The vanishing of the peaks of the
carbonyl and primary amine in PIM revealed that the condensation reaction successfully
occurred and that water was the by-product. The imine groups of the products of the Schiff
reaction caused the sharp peak at 1620 cm−1. The related polymerization reaction via Schiff
condensation is included in the upper part of Scheme 1.
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After heating, the alcohol solution containing a mixture of PIM demonstrated clear
swirls during stirring with a magnetic stirrer, as shown in Figure 2a. However, the liquid-
like solution gradually started to freeze with the addition of FeCl2 and eventually became
a gel, as seen in Figure 2b. We concluded that the gel resulted from the formation of
physically crosslinked PIM with Fe+2 ions, which could easily coordinate with the imine
groups belonging to different PIM molecules to build up the crosslinking network of the
gel, as depicted in Scheme 1. The gel was eventually calcined in the argon atmosphere to
prepare the FeNC (Fe, N-doped MOF), as described in Scheme 1.
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3.2. XPS

The active sites of FeNC were able to absorb O2 gas and form a peroxide that would
dissociate in the presence of protons during reduction (Scheme 2). The formed O2-captured
Fe-N catalysts were reduced following two approaches [26,27], with one involving the Fe-N
catalysts becoming diol and the other involving direct conversion into water following the
4-e route. The captured O2 could proceed with another possible ORR with the involvement
of two electrons, and H2O2, not H2O, being the final product. The possible formation
mechanism of H2O2, which is illustrated in Scheme 2, reveals that only two electrons were
involved. Two possible mechanisms of the formation of H2O2, depending on the reduction
reaction occurring before or after the proton doping, are also described in Scheme 2. The
produced H2O2 could be further reduced to become H2O, and an additional two electrons
would have become involved if the reduction reaction continued. The catalytic mechanism
followed the traditional six-coordinate catalytic reaction for Fe+2.

Theoretically, the O2 gas with two lone pairs could be attracted to the active sites
of FeNC through the coordination, or could be trapped in the porous holes with various
nitrogen-related bonds, in which case the increased polarity of the C-N bonding could
improve the O2 absorbing capability and cause the C-N bonds to behave as active sites, sim-
ilarly to transitional metals (Fe). The formation of active nitrogen-containing compounds
(–N), such as pyrrolic –N, graphitic –N, and pyridinic –N [28–33], is described in Scheme 3.
At higher temperatures in the N2 atmosphere, the first stage of calcination could create
various –N-containing covalent bonds as active sites. In the mixed gases of N2 and NH3 at
lower temperatures, the second calcination could create lots of micro- or mesopores on the
FeNC surfaces, resulting in increased surface area and allowing more active –N and –Fe
sites for the incoming O2 gas.
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PIM could crosslink with each other into ladder-like polymers in the initial stage of
thermal heating and higher temperature pyrolysis allowed the carbonization between the
ladder-like polymers, which could create FeNMOF of graphitic –N, pyridinic –N, and
pyrrolic –N (Scheme 3). Most of the pyridinic and pyrrolic –Ns were created on the edges
of the calcinated PIM, while graphitic –Ns were mostly formed inside the network. The
nitrogen-doped graphene (N-GF)-like structure of the calcined PIM also behaved as a
conducting medium, transporting electrons from the anode. This made it possible to avoid
the trouble of adding XC-72 during the preparation of the cathode ink. Depending on the
sp3 or sp2 bonding of –N- in the aromatic matrix, there were two types of laddered PIMs
formed, as illustrated in Scheme 3. For the ladder constructed mainly by sp3 –Ns, the strip
of the crosslinked PIM wrinkled slightly, and a more planar strip of the crosslinked PIM
formed for sp2 –Ns, as depicted in Scheme 3. The development of the laddered PIM with
the increasing of the temperature was able to create an N-GF structure, which is depicted
in the bottom of Scheme 3. These GF strips, which were either planar or wrinkled, could
self-assemble into thicker slabs, as will be discussed in the SEM section.

The atomic concentration of FeNCs (Fe, N, C, and O) listed in Table 1 clearly demon-
strates the increasing of the nitrogen and oxygen atom concentration upon higher tempera-
ture calcinations, as measured by XPS. This indicates that more nitrogen could dope into
the carbonaceous matrix at higher temperatures, regardless of whether they came from the
PIM or the influx of NH3 gas, which also caused damage on the catalyst surface and led to
an increased surface area, as will be discussed in the BET section. The N1s XPS spectra of
FeNCs calcined after acid leaching are presented in Figure S1 and the compositions of each
type of nitrogen-doped (-N) group are shown in Figure 3 and Table 2. The covalent-bonded
iron and nitrogen (Fe-N) were not found until calcination was higher than 700 ◦C, and
graphitic and pyrrolic –Ns were predominant at temperatures below 600 ◦C in the second
stage of calcination, according to Figure 3, Figure S1, and Table 1. Briefly, more pyridinic
–N and active centers of Fe-N (bottom of Scheme 1) bonding were created at the second
stage of calcination in the presence of mixed NH3 and N2 gases. Table 2 also illustrates two
major –Ns (pyridinic-N and Fe-N) when the calcination was performed according to the
1000A900 procedure. The increasing temperature created more active sites, which led to a
higher LSV current of the cathode and a higher power density of the single cell, which will
be discussed in the electrochemical sections.
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Table 1. Atomic concentration obtained from XPS of FeNCs prepared with different
calcination methods.

Catalysts
Atomic Concentration (at%)

C O N Fe

Polymers 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

trogen-doped graphene (N-GF)-like structure of the calcined PIM also behaved as a con-
ducting medium, transporting electrons from the anode. This made it possible to avoid 
the trouble of adding XC-72 during the preparation of the cathode ink. Depending on the 
sp3 or sp2 bonding of –N- in the aromatic matrix, there were two types of laddered PIMs 
formed, as illustrated in Scheme 3. For the ladder constructed mainly by sp3 –Ns, the strip 
of the crosslinked PIM wrinkled slightly, and a more planar strip of the crosslinked PIM 
formed for sp2 –Ns, as depicted in Scheme 3. The development of the laddered PIM with 
the increasing of the temperature was able to create an N-GF structure, which is depicted 
in the bottom of Scheme 3. These GF strips, which were either planar or wrinkled, could 
self-assemble into thicker slabs, as will be discussed in the SEM section. 

The atomic concentration of FeNCs (Fe, N, C, and O) listed in Table 1 clearly demon-
strates the increasing of the nitrogen and oxygen atom concentration upon higher temper-
ature calcinations, as measured by XPS. This indicates that more nitrogen could dope into 
the carbonaceous matrix at higher temperatures, regardless of whether they came from 
the PIM or the influx of NH3 gas, which also caused damage on the catalyst surface and 
led to an increased surface area, as will be discussed in the BET section. The N1s XPS spec-
tra of FeNCs calcined after acid leaching are presented in Figure S1 and the compositions 
of each type of nitrogen-doped (-N) group are shown in Figure 3 and Table 2. The cova-
lent-bonded iron and nitrogen (Fe-N) were not found until calcination was higher than 
700 °C, and graphitic and pyrrolic –Ns were predominant at temperatures below 600 °C 
in the second stage of calcination, according to Figure 3, Figure S1, and Table 1. Briefly, 
more pyridinic –N and active centers of Fe-N (bottom of Scheme 1) bonding were created 
at the second stage of calcination in the presence of mixed NH3 and N2 gases. Table 2 also 
illustrates two major –Ns (pyridinic-N and Fe-N) when the calcination was performed 
according to the 1000A900 procedure. The increasing temperature created more active 
sites, which led to a higher LSV current of the cathode and a higher power density of the 
single cell, which will be discussed in the electrochemical sections. 

Table 1. Atomic concentration obtained from XPS of FeNCs prepared with different calcination 
methods. 

Catalysts 
Atomic Concentration (at%) 

C O N Fe 
FeNC-600A500 93.8 4.8 1.4 <0.1 
FeNC-700A600 92.9 4.9 2.3 <0.1 
FeNC-800A700 91.5 4.7 3.9 <0.1 
FeNC-900A800 87.1 8.3 4.6 <0.1 
FeNC-1000A900 84.2 10.2 5.6 <0.1 

Table 2. Compositions of various –Ns of FeNCs determined by XPS 

FeNC Catalysts 
N 1s (at%)  

Pyridinic N Fe-N Pyrrolic N Graphitic N 
Pyridine-N 

Oxide 
FeNC-600A500 23.1 0.6 28.7 32.7 14.9 
FeNC-700A600 33 15.7 20.3 18.3 12.7 
FeNC-800A700 35.8 15.4 28.3 12.1 8.4 
FeNC-900A800 39.6 14.8 21.1 19 5.5 

FeNC-1000A900 39.1 21.1 19 12.8 8 

Polymers 2021, 13, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 3. Relative compositions of each type of nitrogen-containing compound found in various 
FeNC matrices. 

3.3. XRD 
The x-ray diffraction patterns, produced through the formation of GF after calcina-

tion after 700 °C during the first stage, in which a diffraction peak at 2θ = 26.5° gradually 
grew with the temperature, are seen in Figure 4. No significant peak is seen at 2θ = 26.5° 
for neat PIM in Figure 4 except for the characteristic diffraction peaks ((111), (110), (200), 
and (210)) for pure, aromatic PIM before calcination. The PIM-related crystals were de-
stroyed after 600 °C and only an amorphous pattern remained, demonstrating that the 
crosslinked PIM (ladder like) did not yet develop into GF or carbon nanotube (CNT) crys-
tals. The Fe was covalently bonded in the amorphous carbon networks at this stage (600 
°C), and both the carbonaceous and Fe domains started to create ordered domains after 
700 °C, undergoing GF (or CNT)- and Fe-related crystallization (Fe4N(111), Fe3C(031), α-
Fe(110)), respectively. For calcination temperatures over 700 °C, the solid crystallization 
resulted in the formation of the C(002) plane and more GF (or CNT) crystals started to 
build up. The characteristic diffraction peak (C(002)) of GF (or CNT) eventually became 
very sharp at 1000 °C, indicating that the ordered, conducting carbon matrix was entirely 
formed. Furthermore, the presence of Fe3C and α-Fe seeds was able to induce the for-
mation of CNT in the GF-dominating matrix with the increasing of the temperature [34], 
which will be discussed in the TEM section. 

Figure 3. Relative compositions of each type of nitrogen-containing compound found in various
FeNC matrices.

Table 2. Compositions of various –Ns of FeNCs determined by XPS

FeNC Catalysts
N 1s (at%)

Pyridinic N Fe-N Pyrrolic N Graphitic N Pyridine-N
Oxide

Polymers 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

trogen-doped graphene (N-GF)-like structure of the calcined PIM also behaved as a con-
ducting medium, transporting electrons from the anode. This made it possible to avoid 
the trouble of adding XC-72 during the preparation of the cathode ink. Depending on the 
sp3 or sp2 bonding of –N- in the aromatic matrix, there were two types of laddered PIMs 
formed, as illustrated in Scheme 3. For the ladder constructed mainly by sp3 –Ns, the strip 
of the crosslinked PIM wrinkled slightly, and a more planar strip of the crosslinked PIM 
formed for sp2 –Ns, as depicted in Scheme 3. The development of the laddered PIM with 
the increasing of the temperature was able to create an N-GF structure, which is depicted 
in the bottom of Scheme 3. These GF strips, which were either planar or wrinkled, could 
self-assemble into thicker slabs, as will be discussed in the SEM section. 

The atomic concentration of FeNCs (Fe, N, C, and O) listed in Table 1 clearly demon-
strates the increasing of the nitrogen and oxygen atom concentration upon higher temper-
ature calcinations, as measured by XPS. This indicates that more nitrogen could dope into 
the carbonaceous matrix at higher temperatures, regardless of whether they came from 
the PIM or the influx of NH3 gas, which also caused damage on the catalyst surface and 
led to an increased surface area, as will be discussed in the BET section. The N1s XPS spec-
tra of FeNCs calcined after acid leaching are presented in Figure S1 and the compositions 
of each type of nitrogen-doped (-N) group are shown in Figure 3 and Table 2. The cova-
lent-bonded iron and nitrogen (Fe-N) were not found until calcination was higher than 
700 °C, and graphitic and pyrrolic –Ns were predominant at temperatures below 600 °C 
in the second stage of calcination, according to Figure 3, Figure S1, and Table 1. Briefly, 
more pyridinic –N and active centers of Fe-N (bottom of Scheme 1) bonding were created 
at the second stage of calcination in the presence of mixed NH3 and N2 gases. Table 2 also 
illustrates two major –Ns (pyridinic-N and Fe-N) when the calcination was performed 
according to the 1000A900 procedure. The increasing temperature created more active 
sites, which led to a higher LSV current of the cathode and a higher power density of the 
single cell, which will be discussed in the electrochemical sections. 

Table 1. Atomic concentration obtained from XPS of FeNCs prepared with different calcination 
methods. 

Catalysts 
Atomic Concentration (at%) 

C O N Fe 
FeNC-600A500 93.8 4.8 1.4 <0.1 
FeNC-700A600 92.9 4.9 2.3 <0.1 
FeNC-800A700 91.5 4.7 3.9 <0.1 
FeNC-900A800 87.1 8.3 4.6 <0.1 
FeNC-1000A900 84.2 10.2 5.6 <0.1 

Table 2. Compositions of various –Ns of FeNCs determined by XPS 

FeNC Catalysts 
N 1s (at%)  

Pyridinic N Fe-N Pyrrolic N Graphitic N 
Pyridine-N 

Oxide 
FeNC-600A500 23.1 0.6 28.7 32.7 14.9 
FeNC-700A600 33 15.7 20.3 18.3 12.7 
FeNC-800A700 35.8 15.4 28.3 12.1 8.4 
FeNC-900A800 39.6 14.8 21.1 19 5.5 

FeNC-1000A900 39.1 21.1 19 12.8 8 

3.3. XRD

The x-ray diffraction patterns, produced through the formation of GF after calcination
after 700 ◦C during the first stage, in which a diffraction peak at 2θ = 26.5◦ gradually grew
with the temperature, are seen in Figure 4. No significant peak is seen at 2θ = 26.5◦ for
neat PIM in Figure 4 except for the characteristic diffraction peaks ((111), (110), (200), and
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(210)) for pure, aromatic PIM before calcination. The PIM-related crystals were destroyed
after 600 ◦C and only an amorphous pattern remained, demonstrating that the crosslinked
PIM (ladder like) did not yet develop into GF or carbon nanotube (CNT) crystals. The
Fe was covalently bonded in the amorphous carbon networks at this stage (600 ◦C), and
both the carbonaceous and Fe domains started to create ordered domains after 700 ◦C,
undergoing GF (or CNT)- and Fe-related crystallization (Fe4N(111), Fe3C(031), α-Fe(110)),
respectively. For calcination temperatures over 700 ◦C, the solid crystallization resulted
in the formation of the C(002) plane and more GF (or CNT) crystals started to build up.
The characteristic diffraction peak (C(002)) of GF (or CNT) eventually became very sharp
at 1000 ◦C, indicating that the ordered, conducting carbon matrix was entirely formed.
Furthermore, the presence of Fe3C and α-Fe seeds was able to induce the formation of CNT
in the GF-dominating matrix with the increasing of the temperature [34], which will be
discussed in the TEM section.
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3.4. Raman Spectroscopy

Although, as seen in Figure 4, the C(002) plane (2θ = 26.5◦), which was related to the
formation of GF or CNT, became more and more significant with the increasing of the
calcination temperature, the intensity of IG (sp2) decreased with the temperature, resulting
in the increasing of the ID/IG ratio in the Raman spectra, as demonstrated in Figure 5.
Carbons with sp2 bonding outnumbered those with sp3 bonding (smaller ID/IG ratio) for
FeNC-600A500, indicating a more ordered form in their domain, as shown in Figure 5.
However, these ordered domains did not contribute to the crystallization, and their x-
ray diffraction spectra did not demonstrate significant crystallization peaks, as shown in
Figure 4. With the increasing of the calcination temperature for FeNC-700A600, -800A700,
the structures of the FeNCs were gradually destroyed by the active, large NH3 molecules,
which contributed to the increase in ID/IG when more sp2 bonds were converted to sp3

ones after the bombardment of NH3 molecules, in accordance with the results shown
in Figure 5. It seems that the damage on the structures of FeNCs did not occur on the
crystalline region, which developed into GF or CNT at higher calcination temperatures
according to the x-ray pattern shown in Figure 4. The robust crystalline structure of the
GF (or CNT) formed at high calcination temperatures was able to withstand the attacking
of NH3 molecules, and to continuously grow into more ordered crystals, as a result of the
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higher energy provided at higher temperatures. In other words, at high temperatures, the
active NH3 molecules could only create more surface area for the FeNCs by destroying the
amorphous part on the surface (see BET section); the conversion of sp2 bonds to sp3 but
not cause any damage in the crystalline region, which could possibly have been located
inside of the matrix.
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3.5. SEM

Only particles with disordered surfaces and short rods are perceivable in the SEM
micrographs of FeNC-600A500 and -700A600 demonstrated in Figure 6a,b. The short rods
might have originated from the accumulation of a strip of crosslinked PIM, as described
in Scheme 3. No significant flake-like self-assembled slabs of associated N-GF or CNT
were found. With the increasing of the calcination temperature, these crosslinked strips
were able to develop into N-GF planes that could have been associated with the thick
slabs due to either the polarity provided by iron and nitrogen doping or the formation of
covalent bonds between the planes (Figure 6c–e). The formation of Fe, N-doped GF slabs
contributed to the 3D GF structure shown in Figure 6e and Figure S2.

Due to the attacking of the NH3 molecules, more micro- and mesopores developed on
the surfaces of FeNCs after calcination at temperatures above 800 ◦C.

Most of the Fe-related articles were actually on the surface of the GF slabs, as seen in
the enlarged image in Figure 6f, where standing GF slabs are also perceivable and huge
pores are present. These pores could accommodate more input O2 molecules that were
able to make contact with the active centers of Fe-N or various –N-doped carbon regions,
catalyzing the ORR at the cathode. Furthermore, the highly conducting GF slabs that
behaved as conducting carbon black (CB) in the Pt/C catalyst were capable of introducing
more electrons that were transferred from the anode.

3.6. TEM

The TEM micrograph (Figure 7a) of the neat PIM calcined at 1000 ◦C demonstrates
a thick layer morphology with no significant pores or broken sites found in the N-doped
carbonaceous matrix. The introduction of iron doping could significantly break the thick
layers and generate some short rod-like morphologies at calcination temperatures as low
as 700 ◦C (Figure 7b). The iron doping created larger pores, and the iron atoms acted as
the seeds of the formation of CNT from the carbonaceous matrix when the calcination
temperature was over 800 ◦C, as shown in Figure 7c–e. A large number of generated
winding carbon nanowires and tiny iron nanoparticles are visible in Figure 7c–e. The iron
seed seen in Figure 7f was covered with carbon matrix, demonstrating the presence of the
C(002) plane of either GF or CNT. Furthermore, the iron seed is characterized as α-Fe by its
(110) plane according to its HR-TEM micrograph in Figure 7f. The full covering of α-Fe by
the carbonaceous materials provides further evidence that these covering carbon domains
(mainly C(002) planes) were actually growing from the α-Fe seed during calcination (>800 ◦C).
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3.7. BET Surface Area

The type-IV isotherm, which was related to the characteristic N2 absorption and
desorption curves of the mesopores, can be clearly seen in Figure 8. FeNC-1000A900
(Figure 8a) had a much higher specific volume than the other FeNCs at all relative pressures.
Furthermore, in accordance with Figure 8a and Table 3, the surface area (specific volume)
became higher and higher with the increasing of the calcination temperature after two-
stage calcination in the NH3 atmosphere. The collapsing effect caused by NH3 at high
calcination temperatures could have resulted in increased surface area and the exposure of
more Fe-N active sites to O2 gas in the cathode. The specific area was increased from 329.0
to 546.6 m2·g−1 when the FeNC was exposed to increasing calcination temperatures, as
shown in Table 3 and Figure 8a.
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Table 3. Specific area and average pore sizes of FeNCs.

Catalysts BET Surface Area (m2·g−1) Ave. Pore Size (nm)

FeNC-1000A900 564.6 4.95
FeNC-900A800 468.5 4.63
FeNC-800A700 406.6 4.12
FeNC-700A600 364.1 4.29
FeNC-600A500 329.0 3.77

The pore size distribution, measured via the Barrett–Joyner–Halenda (BJH) method,
indicates the presence of both micro- and mesopores, as shown in Figure 8b. The increasing
of the surface area with the temperature could have originated from the collapsing power
of NH3, which not only caused damage on the surfaces but also created more micro- and
mesopores. The wide distribution of pore sizes indicates that the FeNCs were able to
improve the ORR, since the micropores were able to unveil the active sites and confine the
O2 inside FeNC catalysts, significantly decreasing the diffusion path. [35]. The average
pore sizes created on the FeNC surfaces ranged between 3.7 and 5.0 nm, as listed in Table 3;
this allowed more O2 molecules to stay inside.

3.8. CV and LSV Curve

The electrocatalytic activity of FeNCs, prepared at various temperatures, after acid-
leaching was evaluated using the CV and LSV curves of the FeNC catalysts, as shown in
Figures 9 and 10.
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Except FeNC-600A500, the CV curves of all catalysts demonstrated significant reduc-
tion peaks in the O2 atmosphere at around 0.4~0.6 V, revealing their abilities, as the cathode
catalysts of PEMFC, to cause ORR, as shown in Figure 9.

The LSV curves of all FeNC catalysts could be obtained in an O2-saturated 0.1 M
HClO4 aqueous solution at a scanning rate of 5 mV/s and a rotation rate of 1600 rpm,
as illustrated in Figure 10. The reduction current density at 0 voltage ranged from 2.5 to
5.8 mAcm−2 when the FeNC was calcined from 500 to 900 after acid-leaching, as can be
seen in Figure 10. In particular, the obtained reduction current density (5.8 mAcm−2) of
FeNC-100A900 was even higher than that of the commercial Pt/C catalyst (5.7 mAcm−2),
as illustrated in Figure 10. The high reduction current density could be attributed to the
presence of more active sites and highly conducting GF (or CNT), as well as the high
surface area, which were already discussed in the previous sections.

LSV curves for each FeNC could also be obtained from RDE at different rotating speeds.
The potential was selected at the region where the current underwent mixed control by
means of both kinetic and mass transfer (diffusion control) and the Koutecký–Levich (K–L)
plot was linear, in accordance with Equation (1)

1/I = 1/IK + 1/ID (1)

where:
IK—the current contributed by kinetic control
ID—the current contributed by diffusion control, which can be expressed in the form

of Equation (2):
ID = 0.62 × AnFD2/3ν−1/6C

√
ω (2)

A—the geometric area of the disk (cm2);
F—Faraday’s constant (C mol −1);
D—the diffusion coefficient of O2 in the electrolyte (cm2 s−1);
ν—the kinematic viscosity of the electrolyte (cm2 s−1);
C—the concentration of O2 in the electrolyte (mol cm−3);
ω—the angular frequency of rotation (rad s−1);
n—the number of electrons involved in the reduction reaction.
The LSV curves of every type of FeNC are illustrated in Figure S3 and can be used to

calculate ID. After plotting I−1 vs. ω−1/2, the K–L lines of FeNC-1000A900 were established,
and they are shown in Figure S4a. The slopes of these lines could be used to calculate the
numbers of electrons involved in the reduction reaction (n). The electrons transferred for
ORR differed from applied voltages and the average value was around 3.85 according to
Figure S4b. If the rotating speed became faster than 2500 rpm, both FeNC-1000A900 and
-900A800 demonstrated higher reduction currents than that of the commercial Pt/C catalyst,
as seen in Figure S3, indicating that it is possible to prepare FeNC at lower temperatures to
meet the requirement of gaining a comparable reduction in current density to that of Pt/C.
Actually, the ORR phenomenon was already present for FeNC-700A600, as indicated by
the CV curve shown in Figure 9. The low reduction current density for FeNCs prepared
below 800 ◦C could be attributed to the morphologies that were significantly related to the
performance of the catalysts in the ORR.

The numbers of e-transferred for each catalyst, at different potentials, were calculated,
and are listed in Table 4, where it can be seen that the average e-transferred numbers
increased significantly with the increasing of the calcination temperature. The average
numbers ranged from 3.30 to 3.85, and less than one electron followed the 2-e route
(Scheme 2); in other words, the ORR carried out via the 4-e route (Scheme 2) was between
65.0 and 92.5% according to Table 4.
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Table 4. Numbers of transferred electrons of various FeNCs.

Potential
FeNC

1000A900 900A800 800A700 700A600 600A500

0.4018 3.81 3.51 3.70 3.52 3.15

0.35053 3.82 3.93 3.72 3.58 3.24

0.30171 3.84 3.82 3.57 3.64 3.31

0.25044 3.87 3.65 3.54 3.66 3.37

0.20161 3.90 3.61 3.56 3.66 3.42

Ave. 3.85 3.70 3.61 3.61 3.30

% of 4-e route 92.5 85.0 80.5 80.5 65.0

3.9. Single Cell Testing

The limited max. power densities (Pmax less than 50 mWcm−2) or current densities
produced for the single cell with FeNC-700A600 as the cathode catalyst are shown in
Figure 11. The Pmax-values grew with the increasing of the calcination temperature
(700–1000 ◦C) from 40 to 400 mWcm−2, and increased by 10 times due to the creation
of more active centers and the increasing of the surface area. Even when calcined at a
lower temperature of 900 ◦C, the single cell prepared with FeNC-900A800 as the cathode
catalyst demonstrated a Pmax value equal to 310 mWcm−2. The current density curve
even extended to 1000 and 1300 mAcm−2 at 0.3 V for FeNC-900A800 and FeNC-1000A900,
respectively. The high percentage of electrons (92.5%) that adopted the 4-e route of ORR for
FeNC-1000A900 contributed to the higher power and current densities when they behaved
as the cathode catalyst, which effectively promoted the ORR without large quantities of
hydrogen peroxide being produced.
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3.10. Durablity Test

A simple test of durability in strong acids was performed by measuring the LSV curves
at various cycling times in O2-saturated 0.1 M HClO4 (aq.), which caused the FeNC catalyst
to corrode, resulting in a decrease in the reduction current (Figure 12). The reduction
current loss for the FeNC-1000A900 catalyst was only 10% compared to a loss of more than
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20% for Pt/C after 1000 cycles, revealing that the non-precious FeNC catalyst was more
acid-resistant as compared to Pt/C.
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4. Conclusions

An aromatic PIM-based Fe- and N-doped organic carbonaceous framework (FeNMOF)
was successfully synthesized by high temperature calcination. The non-precious FeNMOF
proved to be a promising candidate to replace Pt/C as the most effective cathode catalyst
in terms of improving the ORR in the PEMFC.

The complexation between the –Ns of PIM and Fe2+ led to the formation of FeNC
networks after calcination. The second calcination in the NH3 atmosphere, conducted
after acid leaching, created high a surface area of 546.6 m2·g−1 that was composed of high
concentrations of both micro- and mesopores, which exposed more Fe-active centers to
the O2, as characterized by SEM and TEM micrographs for FeNC-1000A900. The high
concentration of active centers and the large surface area contributed to a higher reduction
current of the cathode and a higher power density of the single cell as compared to the
Pt/C catalyst. The non-precious FeNC catalyst even demonstrated higher stability than
Pt/C in the durability test performed with 1000 cycles of redox reactions.

In the future, we intend to attempt the preparation of the FeNC catalyst at lower
calcination temperatures while avoiding reductions in the current of the cathode and the
power density of the prepared single cell.
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(a) 600A500 (b) 700A600 (c) 800A700 (d) 900A800 (e) 1000A900, Figure S2: Schematic diagram of
the formation of 3D-GF, Figure S3: LSV curves of all FeNC and Pt/C catalysts measured at various
rotating speeds, Figure S4: (a) Koutecký-Levich plots of FeNC-1000A900. (b) numbers of electrons
transferred during ORR
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