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Abstract: This study explores the possibility of transforming lignocellulose-rich agricultural waste
materials into value-added products. Cellulose was extracted from an empty fruit bunch of oil
palm and further modified into carboxymethyl cellulose (CMC), a water-soluble cellulose derivative.
The CMC was then employed as the polymeric content in fabrication of solid polymer electrolyte
(SPE) films incorporated with lithium iodide. To enhance the ionic conductivity of the solid polymer
electrolytes, the compositions were optimized with different amounts of glycerol as a plasticizing
agent. The chemical and physical effects of plasticizer content on the film composition were studied
by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analysis. FTIR and XRD analysis
confirmed the interaction plasticizer with the polymer matrix and the amorphous nature of fabricated
SPEs. The highest ionic conductivity of 6.26 × 10−2 S/cm was obtained with the addition of 25 wt %
of glycerol. By fabricating solid polymer electrolytes from oil palm waste-derived cellulose, the
sustainability of the materials can be retained while reducing the dependence on fossil fuel-derived
materials in electrochemical devices.

Keywords: carboxymethyl cellulose; glycerol; polymer electrolyte; ionic conductivity

1. Introduction

Malaysia is one of the world’s leading producers of palm oil, giving rise to the
production of enormous amounts of agricultural waste from the oil palm industry. For every
100 tonnes of fresh oil palm fruit bunches processed, about 22 tonnes of crude palm oil and
26 tonnes of empty fruit bunches are produced. These oil palm wastes are rich in cellulose,
a natural polymer with excellent mechanical properties which can be exploited for various
material developments. One of such novel applications is the employment of cellulose as
the polymeric material for fabrication of solid polymer electrolyte (SPE) films. SPEs are
commonly used in various electrochemical devices such as in batteries [1], electrochromic
devices [2,3], supercapacitors [4,5] and solar cells [6]. By far, most commercially available
SPE are made up of petroleum-derived synthetic polymers. By substituting the non-
renewable material with oil palm-derived cellulose, the ecological footprint of the product
can be reduced while simultaneously converting the biomass into a useful component.

Since cellulose in its native state is practically insoluble in most solvents, the polymer
is often chemically modified to soluble derivatives such as carboxymethyl cellulose (CMC).

Polymers 2021, 13, 3685. https://doi.org/10.3390/polym13213685 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-3266-5563
https://orcid.org/0000-0002-9846-5206
https://orcid.org/0000-0002-7891-6321
https://doi.org/10.3390/polym13213685
https://doi.org/10.3390/polym13213685
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13213685
https://www.mdpi.com/journal/polymers
http://www.mdpi.com/2073-4360/13/21/3685?type=check_update&version=2


Polymers 2021, 13, 3685 2 of 12

Upon functionalization of the cellulose, it can be easily converted into conductive films by
adding inorganic salts. Previously, cellulose derivatives-based SPEs have been exploited for
fabrication of SPEs. For instance, Selvakumar and co-workers have used cellulose acetate
(CA) as a biodegradable polymer electrolyte for supercapacitors. The electrochemical
properties and degradation tests of CA-based SPEs were investigated, then used for the
fabrication of supercapacitors that showed good capacitive nature and stability during
cycling [7].

The application of biopolymerbased SPE is restricted by its low ionic conductivity
at ambient temperature. Hence, most of the studies are dedicated to enhancing the ionic
conductivity of the films by various strategies including blending with other polymers,
insertion of fillers, and plasticizers. Amongst these methods, the use of plasticizer to
produce higher ionic conductivity has shown appreciable results in recent research. To
enhance the ionic conductivity of SPEs, it was found that the choice of a good plasticizer
with a low molecular weight and high dielectric constant or polar solvent, such as propylene
carbonate, ethylene carbonate, is highly effective [8,9]. The addition of a plasticizer leads
to an increase in the amorphousness of polymer electrolyte and dissociate ion pairs into
free cations and anions, thereby leading to an overall enhancement in conductivity. A high
plasticizer/salt ratio modifies the morphological, thermal, and electrochemical performance
of the matrix, which also leads to the enhancement of conductivity. Chinnam et al. have
prepared SPEs by mixing methyl cellulose, LiClO4, and polyethylene glycol (PEG), to
be used as a binder for Li-ion batteries and replace the commonly used materials, i.e.,
polyvinylidene fluoride–hexafluoropropylene (PVDF–HFP) or polyvinylidene fluoride
(PVDF). The fabricated SPE showed good electrochemical stability and interfacial resistance
with an optimum ambient conductivity of 1.6 × 10−5 S/cm [10].

Although previous literature has established the prospects of cellulose as polymer host
in fabrication of SPE films, most of these studies have employed commercially available
cellulose powder. Like any other natural polymer, the physical and chemical properties of
cellulose films depend on the source from which they are derived. Thus, to fully exploit
agrowaste-derived cellulose as a precursor material for SPE application, it is essential to
ensure that the films are fabricated from the waste material itself. There are numerous
studies on fabrication of cellulose films from different agricultural by-products including
sugarcane bagasse [11], pineapple peel [12], Ficus natalensis bark cloth [13], rice husks [14]
and corn husks [15]. However, research focussing on agrowaste-derived cellulose for SPE
fabrication have been scarce. More importantly, the electrical performance of such waste-
based SPE are poor, disabling their application into electrochemical devices. For instance,
carboxymethyl cellulose film fabricated from coconut husk recorded ionic conductivity of
4.82 × 10−4 S/cm [16]. Similarly, biopolymer electrolytes comprised of kenaf fibre-derived
CMC and ammonium acetate achieved the highest conductivity at ambient temperature of
5.77 × 10−4 S/cm [17].

Therefore, this study is dedicated to explore the potential of elevating the electrical
conductivity of oil palm waste fibre-derived cellulose films. To achieve this, two main
strategies were adopted. Firstly, the extracted cellulose chemically transformed into car-
boxymethyl cellulose. Our previous study has verified that the CMC derivative is essential
to impart solubility and diminish high crystallinity of the native oil palm-based cellulose.
However, the ionic conductivity of lithium iodide-incorporated CMC films can only achieve
5.58 × 10−3 S/cm. In this work, glycerol was infused as a plasticizer to improve the film’s
conductivity. Different amounts of glycerol were added to the polymer electrolyte matrix
to identify the best composition ratio with good physico-chemical properties and high
ionic conductivity for potential use in electrochemical devices.

2. Materials and Methods
2.1. Materials

Raw fibres of EFB oil palm were collected from Malaysian Agricultural Research
and Development Institute (MARDI) (Selangor, Malaysia). NaOH, glacial acetic acid,
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monochloroacetic acid, and isopropanol were supplied by Merck (Darmstadt, Germany).
Sodium chlorite, ethanol, methanol, glycerol, and lithium iodide were purchased from
Sigma-Aldrich Co. (Saint Louis, MO, USA). The used chemicals were of analytical grade
and were used without further purification.

2.2. Extraction Cellulose from Oil Palm Waste

The extraction of cellulose from raw EFB oil palm fibres is comprised of two steps, as
reported in our previous work [18]. Firstly, the fibres were treated in an aqueous solution
of 4 wt % of NaOH at 80 ◦C for 3 h. Then, the solid was filtered and washed several times
with distilled water. The process was repeated thrice. This was followed by bleaching in
equal parts of acetate buffer, aqueous chlorite (1.7% w/v), and distilled water, at 120 ◦C for
4 h. The bleaching treatment was repeated twice.

2.3. Carboxymethylation of Cellulose

The extracted cellulose powder was dispersed in isopropanol with subsequent ad-
dition of 30% w/v solution of NaOH and kept under stirring for 30 min at ambient tem-
perature. Monochloroacetic acid was added to the suspension followed by stirring for 90
min. the mixture was then allowed to retain for 90 min at 55 ◦C. The mixture was carefully
separated, suspended in methanol and the pH was adjusted with glacial acetic acid before
being washed multiple times in ethanol and methanol. The solid was left to dry overnight
at 50 ◦C.

2.4. Fabrication of CMC-Based Solid Polymer Electrolyte

The plasticized films were fabricated by preparing an aqueous solution containing
dissolved CMC, LiI and glycerol. For every film, 0.2 g of CMC was mixed with 0.13 g of LiI,
as per the optimized composition of LiI from our previously reported work [11]. Different
amounts of glycerol, ranging from 5 to 30% (as outlined in Table 1) were added into the
aqueous CMC-LiI solution to form a homogeneously distributed solution. The solutions
were cast onto moulding dish followed by drying at room temperature. Figure 1 depicts
the formation of plasticized CMC-based SPEs from oil palm-derived cellulose.
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Table 1. Composition of plasticized SPEs with various masses of glycerol.

Designations
CMC

(g)
LiI
(g)

Glycerol

(g) w/w (%)

B1

0.2 0.13

0.02 5

B2 0.03 10

B3 0.05 15

B4 0.07 20

B5 0.08 25

B6 0.10 30

2.5. Characterization

Changes in structural and chemical properties of the extrcated cellulose and its cor-
responding films were analysed using a PerkinElmer Spotlight 400 FTIR spectrometer
(UK). The FTIR measurement was performed with the resolution of 2 cm−1 and 32 scans
by scanning the samples from 650 to 4000 cm−1. X-ray diffractograms of both powder
and film samples were characterized utilizing an Empyrean diffractometer (PANalytical,
Al-melo, Netherlands). The X-ray diffraction data was scanned at 2θ angle between 10◦ and
60◦ with a step size of 0.026◦. The equation below was used to evaluate the crystallinity
index (CrI) using an empirical method:

CrI (%) =
I002 − Iam

I002
× 100 (1)

where I002 indicates the highest intensity of the (002) lattice diffraction peak and Iam is
attributed to the amorphous section of the polymer. In this study, the diffraction peak for
the highest intensity peak and the amorphous portion was measured at 2θ = 22.5◦ and 18.0◦

respectively. The ionic conductivity of the polymer electrolyte films were evaluated using
the electrochemical impedance spectroscopy (EIS) technique according the the equation
below. The bulk resistance of the samples were measured using the 3532-50 LCR Hi-Tester,
Hioki (Nagano, Japan), with a frequency scan from 50 Hz to 5 MHz and within 30–80 ◦C.

σ = t/(Rb × A) (2)

where t is the thickness of the sample measured, Rb is the bulk resistance of the sample,
and A is the contact surface area. All the EIS measurements were repeated three times for
each sample, and the average value was calculated.

3. Results and Discussion
3.1. Synthesis of Carboxymethyl Cellulose from Oil Palm Waste

CMC was synthesized by reacting cellulose and monochloroacetic acid in an alkali
environment. The yield % of the obtained CMC was calculated based on the theoretical
amount of reacted cellulose with the carboxymethyl group following the equation:

Yield % o f CMC =
Weight o f CMC obtained (g)

Theoretical weight o f CMC (g)
× 100 (3)

The yield % of CMC calculated following the above equation was found to be 84.84%.
The chemical identity of the cellulose extracted from oil palm waste and the CMC derivative
was confirmed via NMR, XRD, and DSC analysis in our previous publication [18].

The purity of cellulose extracted from oil palm fibres was verified by FTIR analysis of
the sample, as shown in Figure 2a. The bands between 1000 and 1500 cm−1 correspond to
characteristic absorption of cellulose. The bands at 1429 cm−1, 1163 cm−1, 1032 cm−1, and
892 cm−1 are attributed to C-H bending and C-O-C stretching of β-linked glucose subunits.
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Upon carboxymethylation, a significant absorption band appeared at 1588 cm−1, which is
assigned to the carboxyl group, thus verifying the transformation of cellulose into CMC
(Figure 2b).

Polymers 2021, 13, x FOR PEER REVIEW 5 of 13 
 

 

where t is the thickness of the sample measured, Rb is the bulk resistance of the sample, 
and A is the contact surface area. All the EIS measurements were repeated three times for 
each sample, and the average value was calculated. 

3. Results and Discussion 
3.1. Synthesis of Carboxymethyl Cellulose from Oil Palm Waste 

CMC was synthesized by reacting cellulose and monochloroacetic acid in an alkali 
environment. The yield % of the obtained CMC was calculated based on the theoretical 
amount of reacted cellulose with the carboxymethyl group following the equation:  𝑌𝑖𝑒𝑙𝑑 % 𝑜𝑓 𝐶𝑀𝐶 =  𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐶𝑀𝐶 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 (𝑔)𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐶𝑀𝐶 (𝑔)  × 100 (3)

The yield % of CMC calculated following the above equation was found to be 84.84%. 
The chemical identity of the cellulose extracted from oil palm waste and the CMC deriv-
ative was confirmed via NMR, XRD, and DSC analysis in our previous publication [18]. 

The purity of cellulose extracted from oil palm fibres was verified by FTIR analysis 
of the sample, as shown in Figure 2a. The bands between 1000 and 1500 cm−1 correspond 
to characteristic absorption of cellulose. The bands at 1429 cm−1, 1163 cm−1, 1032 cm−1, and 
892 cm−1 are attributed to C-H bending and C-O-C stretching of β-linked glucose subunits. 
Upon carboxymethylation, a significant absorption band appeared at 1588 cm−1, which is 
assigned to the carboxyl group, thus verifying the transformation of cellulose into CMC 
(Figure 2b). 

 
Figure 2. FTIR spectra of (a) cellulose extracted from oil palm waste and (b) carboxymethyl cellu-
lose. 

3.2. Chemical Interactions within the Polymer Film 
The FTIR spectra of plasticized SPEs in Figure 3 show appreciable changes in absorb-

ance with changing proportion of glycerol in the composition of SPEs. The scheme in Fig-
ure 3 outlines the possible site of interactions between the polymer chains and the plasti-

Figure 2. FTIR spectra of (a) cellulose extracted from oil palm waste and (b) carboxymethyl cellulose.

3.2. Chemical Interactions within the Polymer Film

The FTIR spectra of plasticized SPEs in Figure 3 show appreciable changes in ab-
sorbance with changing proportion of glycerol in the composition of SPEs. The scheme
in Figure 3 outlines the possible site of interactions between the polymer chains and the
plasticizer molecules and the ionic species present with the electrolyte matrix. Evidently,
significant changes in the FTIR spectra of the polymer films were observed for absorp-
tion bands corresponding to hydroxyl, carboxyl, and ether groups of the CMC backbone,
indicating possible complexation at these sites.

The addition of glycerol affected the O-H stretching vibration of SPEs, which shifted
from 3330 cm−1 in CMC to 3368 cm−1 in the films. This is expected primarily due to the
hydrogen bonding interaction between the hydroxyls in glycerol and in the polysaccharide
chains. The presence of glycerol also affected the carboxyl group absorption at 1588 cm−1,
causing an upshift to 1612 cm−1. The stretching vibrations of C-O in the glucose subunits
experienced an upshift from 1032 cm−1 to 1048 cm−1. It is evident that the main chemical
interactions between the polymer and the plasticizer occur within an oxygen-associated
functional group such as (-COO, -OH,-C-O), which serve as chemically active sites, as
explained by Liu et al. [19]. The trend in the FTIR spectra upon plasticization tallies with
previously reported cellulose-based films [20,21].
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spectra of (i) CMC powder and CMC-LiI films with (ii) 5%, (iii) 10%, (iv) 15%, (v) 20%, (vi) 25%, and
(vii) 30% glycerol content.

3.3. Crystallinity Analysis

The addition of glycerol is complemented with modification in the crystallinity of the
polymer chains within the SPEs, as shown in Figure 4. The increase of glycerol in fabricated
SPEs leads to a wider peak and a decrease of its intensity to reach a maximum with the
addition of 25% of glycerol content. These changes indicate that the addition of glycerol
helps to increase the amorphousness of the plasticized SPEs membrane [22]. The decline
in crystallinity is further confirmed by degree of crystallinity calculation, as tabulated in
Table 2, which shows a downward trend up to 25% glycerol. Beyond 25% of glycerol,
the crystallinity of CMC-LiI-Gly SPEs increases, which can be explained as the impact of
plasticizer overloading, leading to phase separation between the different components.
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Table 2. Degree of crystallinity of plasticized SPEs with various mass of glycerol.

Sample % Glycerol (w/w) Degree of Crystallinity (%)

CMC powder - 36.9

B1 5 25.0

B2 10 22.9

B3 15 20.1

B4 20 18.3

B5 25 17.6

B6 30 23.8

3.4. Conductivity Analysis

To obtain better results and enhance ionic conductivity of CMC-LiI SPEs, glycerol was
added as a plasticizer owing to its high dielectric constant εr = 41.14 [23]. The addition of
plasticizer to the SPEs does not supply more ions, instead, it facilitates more dissociation of
salt and generates separate conducting pathways for the migration of free ions.

The ionic conductivity of CMC-LiI SPEs was improved by adding glycerol as a liquid
plasticizer, and the highest value (6.26 × 10−2 S/cm) was achieved with the addition of
25% glycerol (Figure 5). This increase is due to the high dielectric constant of glycerol
and its low molecular weight, which modify the physical properties of SPEs [24]. Beyond
25% of glycerol content, the ionic conductivity dramatically decreased. This decrease may
be due to the bulk quantity of the plasticizer, which promotes the polymer/plasticizer
phase separation, an observation that is in agreement with the increased crystallinity of the
film [25].
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Interestingly, the ionic conductivity values recorded in this work are better than previ-
ously reported commercial cellulose-based films and are on par with synthetic polymer-
based SPEs, as shown in Table 3. This, in fact, consolidates that, with appropriate chemical
modifications, cellulose derivatives of agricultural waste origin can be tailored to form
functional materials with desirable physico-chemical properties.

Table 3. Recent literature on solid polymer electrolytes.

Polymeric Content Salt Additives Ionic Conductivity
(S cm−1) Reference

Carboxymethyl
cellulose

Lithium
tetrafluoroborate Glycerol 0.0037 [24]

Carboxylated cellulose Lithium
hexafluorophosphate

Ethylene carbonate + dimethyl
carbonate + ethyl methyl

carbonate
0.0018 [26]

Carboxymethyl
cellulose - Polyaniline 0.018 [27]

Poly(ethylene oxide) Sodium iodide 1-methyl-3-propylimidazolium
iodide 0.0094 [28]

Poly(vinylidene
fluoride-hexafluoro

propylene
-

1-ethyl-3-methylimidazolium
tetrafluoroborate + graphene

oxide
0.025 [29]

Carboxymethyl
cellulose Lithium iodide Glycerol 0.063 This study

The SPE film fabricated in this work attains an excellent ionic conductivity value,
thus enabling the application of the films in various electrochemical devices. In recent
times, biobased solid polymer electrolytes with the conductivity of magnitude within 10−3

and 10−2 S/cm have been proven to show good performance upon incorporation into
full devices. For instance, incorporation of cellulose acetate and ammonium nitrate in
different ratios were designed to prepare eco-friendly biopolymer electrolytes and the
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highest ionic conductivity of 1.02 × 10−3 S/cm was obtained [30]. The film with the highest
ionic conductivity was used in the development of a primary proton battery and proton
exchange membrane fuel cell. Monisha and co-workers found that the performances of the
fabricated biopolymer electrolyte were optimum and could replace the standard Nafion 117
membrane. In another work, cellulose triacetate, poly(polyethylene glycol methacrylate)
and ionic liquid were combined to make a solid polymer electrolyte and showed a high
ionic conductivity of 5.24 × 10−3 S/cm [31]. The fabricated solid polymer electrolytes
were tested on a Li cell and were found to be highly stable up to 5 V and safer with high
performance for lithium batteries. Promising solid polymer electrolytes have been also
prepared by blending methylcellulose and chitosan doped with ammonium thiocyanate for
electrochemical double-layer capacitor (EDLC) application [32]. The electrolyte with the
highest DC conductivity of 2.81 × 10−3 S/cm was used as an electrode separator in EDLC
and exhibited good performance. Hence, the oil palm-derived CMC films incorporated
with glycerol and lithium iodide have prospects to be used as a biodegradable SPE in place
of conventional synthetic polymer-based films.

However, to fully realize the potential of the films, it is vital to thoroughly investigate
the thermal and chemical stability of the films in the future. In addition to that, examining
physical parameters such as tensile strength, flexibility, adhesiveness, and hydrophilicity
will be useful to improve the integration of the films as SPE in electrochemical devices.

3.5. Temperature-Dependent Conductivity Analysis

Practically, the fabricated SPEs are expected to be exposed to high temperature. Thus,
it is vital to evaluate the temperature-dependent ionic conductivity values of plasticized
SPEs. Figure 6 shows the ionic conductivity of the SPEs with the increase of temperature
from 30 ◦C to 80 ◦C. The ionic conductivity increases linearly with temperature. This
linear behaviour shows that there is no phase transition in the polymer matrix within that
temperature range [24]. Since the conductivity behaviour at elevated temperature obeys the
Arrhenius equation, the activation energy, Ea, was calculated using the following equation:

σ = σ0 exp
[
− Ea

kT

]
(4)

where σ0 is the pre-exponential factor, Ea is the activation energy of ionic conduction, k is
the Boltzmann constant and T is the temperature in Kelvin.

Based on the calculation, the Ea was found to be in the range of 0.18–0.22 eV, which
reflects the amorphous nature of the SPEs. The increase in ionic conductivity behaviour
of SPEs with the rise of temperature is due to the dislocation and migration of ions across
the SPEs. Furthermore, the heat provides more energy for the segmental motion of poly-
mer chains, and thus facilitates ions transportation. The increase in conductivity can be
translated by the increase of ions motion and chain flexibility of polymers due to the rise of
temperature.

The Anderson–Stuart model defined that an ion within a matrix occur when the ion
is equipped with enough energy to detach itself from a site and suffiecient kinetic energy
to support its motion [33,34]. Thus, the activation energy is the main factor in influencing
the overall ionic conductivity of a sample at any given temperature. With the increase
of glycerol, Ea decreases up to a minimum with the addition of 25 wt %, followed by an
increase of its energy. Figure 5 clearly shows that the ionic conductivity and Ea have an
inverse relationship, where the conductivity is highest with lowest value of Ea at 65% salt
and 25 wt % plasticizer. This result can be attributed to the presence of substantial amount
of amorphous portions within the polymer film upon inclusion of salt and plasticizer, as
depicted by XRD analysis, aiding in the mobility of ions via the transitional motion of
the polymer chains contained within amorphous regions [35]. Selvasekarapandian and
co-workers reported that the density of ions in the electrolyte increases with the increase in
salt or glycerol content. Thus, the energy barrier for the proton transport decreases, leading
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to a decrease in the Ea value. These results are in agreement with the values obtained in
this work.
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4. Conclusions

The CMC-LiI-based SPEs plasticized with glycerol were successfully fabricated using
a solution-cast method. The interactions between polymer, salt, and plasticizer were
investigated by FTIR spectroscopy. The XRD showed that the amorphousness of the SPEs
facilitates the ions movement, which reflected the increase of ionic conductivity. The
optimum ionic conductivity was found to be 6.26 × 10−2 S/cm with a composition of
25 wt % of glycerol. This translates the appreciable effect of the addition of glycerol as a
plasticizer. Thus, the plasticized SPEs can be used in electrochemical devices.
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