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Abstract: Metalla-ynes and poly(metalla-ynes) have emerged as unique molecular scaffolds with
fascinating structural features and intriguing photo-luminescence (PL) properties. Their rigid-rod con-
ducting backbone with tunable photo-physical properties has generated immense research interests
for the design and development of application-oriented functional materials. Introducing a second d-
or f -block metal fragment in the main-chain or side-chain of a metalla-yne and poly(metalla-yne)
was found to further modulate the underlying features/properties. This review focuses on the
photo-physical properties and opto-electronic (O-E) applications of heterometal grafted metalla-ynes
and poly(metalla-ynes).

Keywords: metalla-ynes; poly(metalla-ynes); polymers; opto-electronic; photo-physical

1. Introduction

Metalla-ynes and poly(metalla-ynes) are rigid-rod type molecular systems in which one
or more transition metal ions are connected to the alkynyl unit via σ-linkage [1,2]. Owing
to their excellent photo-luminescence (PL) properties, structural features and diverse
applications, this class of materials has received significant attention in the last two decades.
In this class of materials, the electronic structure and properties are a function of the overall
chemical composition of the material, i.e., type of organic spacers, no. of alkynyl units,
metal fragments, and auxiliary ligands attached to the metals [1,3–5]. For instance, the
introduction of a heavy transition metal ion into the backbone of organic poly-yne core
induces spin–orbit coupling (SOC) and facilitates intersystem-crossing (ISC) leading to
efficient photo-luminescence quantum yield (PLQY) [6–9]. Similarly, when an electron-rich
(donor, D) and an electron-deficient (acceptor, A) organic spacers are introduced, it creates
a strong intramolecular D-A interaction leading to absorption and emission extending from
the visible to near-infrared (NIR) region of the spectrum [10–14]. The impact of topology
(point of attachment) on the photo-physical properties (such as isomerization) was also
established [15,16]. Several functional materials have been developed with potential
application in molecular electronics, photo-voltaic, organic light-emitting diodes (OLEDs),
bioimaging, catalysis, etc. [3,17,18].

Among the various strategies adopted by researchers, the introduction of a second
metal ion into the main-chain or as side-chain of the metalla-ynes and poly(metalla-ynes)
is a judicious way to fine-tune their PL features. Several complexes in which d-block and

Polymers 2021, 13, 3654. https://doi.org/10.3390/polym13213654 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-5665-5175
https://orcid.org/0000-0002-6780-632X
https://orcid.org/0000-0001-7429-2710
https://orcid.org/0000-0001-5606-6832
https://doi.org/10.3390/polym13213654
https://doi.org/10.3390/polym13213654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13213654
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13213654?type=check_update&version=3


Polymers 2021, 13, 3654 2 of 18

f -block metal fragments are connected through conjugated [19] and non-conjugated [20]
linkers were reported in the literature. It is to be noted that the high conductivity, preserva-
tion of conjugation through the metal fragment, high triplet yield, etc. make “d” fragment
a matter of choice for the metalla-ynes and poly(metalla-ynes) [21]. The heterometallic
complexes bearing conjugated metalla-yne fragments often display modulated properties
due to the synergistic effect of the two different metal ions [2,3,22–25]. For example, it
is reported that combining two transition metal (d-d) fragments in an alkynyl complex
affects the energy of the frontier molecular orbitals, emission lifetime [26], and, to some
extent, solid-state packing [27]. Similarly, it was demonstrated that in mixed metal alkynyl
complexes, the metalla-yne core sensitizes NIR lanthanide luminescence [28] and improves
decay lifetime (from µs to ms) [29] via d→ f energy transfer pathways. Inspired by this
heterometallic cooperativity, numerous complexes were reported with d-d and d-f combi-
nations [20,29–37]. We present herein a review of the photo-physical properties and O-E
applications of heterometal grafted metalla-ynes and poly(metalla-ynes). In this paper,
we considered only those examples in which d-d and d-f fragments are separated by one
or more alkynyl units (Figure 1). Both, the main-chain, and side-chain metalla-ynes and
poly(metalla-ynes) were considered to get a clear picture.
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Figure 1. General chemical structure of some of the d-d and d-f fragments containing heterometallic
complexes. M1 and M2 = transition metal ions (a), Ln = a lanthanide core (b), Ar = conjugated
carbocyclic/heterocyclic spacers and (c) semi-circle = bi- (d) or polydentate donor ligands (e).

2. Impact on Properties
2.1. Main-Chain Systems

Transition metal complexes display a multitude of colorful optical (absorption/emission)
and interesting magnetic properties due to the presence of metal ions in different oxidation
states [38]. Moreover, multi-dimensional applications of transition metal complexes are
well established [39]. It is well demonstrated that when one or more transition metal ions
(decorated with suitable auxiliary ligands) are embedded in an organic framework via
σ-linkage, new conducting materials are realized with limitless features and properties.
Such materials, commonly known as metalla-ynes or poly(metalla-ynes), were studied
and reviewed by several groups [40]. Both homo- and heterometallic σ-acetylide metal
complexes with one or more types of transition metal ions are known in the literature,
with a majority on homometallic systems [1,2]. The combination of two transition metals
provides an effective way to realize new materials with unique structural features and im-
proved properties such as high solubility and transparency [41]. Although heterometallic
poly-ynes containing Ni/Pt and Pd/Pt have been known for a long time [42,43], focus on
using other metals has been sparse, possibly due to the challenging synthesis of suitable
monomers and/or polymers. In this sub-section, we exemplify the structure and properties
of heterometallic molecular systems while clusters [44] are beyond the scope of this paper.
Attempts were made to include recent references that have not been covered before [25].

Dixneuf and co-workers [45] reported the first one dimensional Ru(II)/Pd(II) mixed
metalla-yne as a yellow oligomer in good yield (84%) and moderate chain length (Mw = 14,800,
Mn = 7800). Basic structural characterization showed the formation of mixed metalla-yne
but no photo-physical properties were reported. Wong and co-workers [46] reported the
very first example of soluble rigid-rod heteronuclear Pt(II)/Hg(II) poly(metalla-yne) (P1,
Figure 2) and their corresponding model complexes. The reported white polymer exhibits
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excellent thermal stability (Td = 366 ± 5 ◦C), and polydispersity (Mw = 29,790, Mn = 15,704,
Table 1). The fluorescence quantum yield of the heterobimetallic polymer (Φf = 0.52 in
DCM, Table 1) was found to be lower than the homometallic trans polymers (Φf = 2.53
for Hg(II) and 0.62 for Pt(II) in DCM) but higher than the cis counterpart (Φf = 0.1 in
DCM). Similarly, the heterometallic Pt(II)/Hg(II) complex showed a weak triplet emission
at room temperature (RT) and a slightly stronger optical power limiting (OPL) performance
than the homo-nuclear Hg(II) complexes. The transparency window of the poly-ynes in
the visible regime coupled with their OPL performance was achieved by interrupting π-
conjugation via copolymerization with Hg and tuning the Pt geometry (cis and trans).

A comparative study on homo- and heterometallic poly-ynes (P1–P3, Figure 2) indi-
cated that Hg(II) and Pt(II) containing poly-ynes are better candidates for OPL than the
corresponding Pd(II) poly-ynes as the former display absorption maxima below 400 nm [47].
It was shown that the heterometallic complex P1 shows better transparency (maximum
absorption wavelength (λmax) = 386 nm, Table 1) than that of homometallic Pt(II) com-
plexes (Figure 3). Theoretical calculations suggested that in heterometallic complexes,
the contribution of dπ orbitals to the highest occupied molecular orbital (HOMO) was
more from Pd/Pt than the Hg. Conversely, the contribution of pπ orbitals to the lowest
unoccupied molecular orbital (LUMO) was more from the Hg fragment, in line with the
earlier studies [46].
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Figure 3. Photoluminescence (PL) spectra at 298 K and 77 K in CH2Cl2 for (a) P1, (b) P3, and (c) P2. Reproduced with
permission from ref. [47].

In 2005, Vicente et al. [48] reported the very first examples of Pt(II)/Au(I) heterometal-
lic anionic poly(metalla-ynes) P4 and P5 (Figure 4). The polymers, obtained by reacting
Pt(II) bis- or tetra acetylides with PPN[Au(acac)2] (PPN = bis(triphenylphosphine)iminium
cation, acac = acetylacetone) were poorly characterized due to the extremely low solubility.
The only polymer P5 (R = Bu) was soluble and could be characterized by nuclear magnetic
resonance (1H, 13C, and 31P NMR) and gel permission chromatography (GPC) techniques,
which showed comparatively good chain length of the polymers (up to 667 units).
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Figure 4. Pt(II)/Au(I) heterometallic anionic poly(metalla-ynes) P4 and P5. (PPN = bis(triphenylphosphine)iminium cation).

Table 1. Photoluminescence (PL) data of some selected heterometallic poly(metalla-ynes) P1–P3 and P6–P11.

Code Metals
Molecular

Weight (×104) λabs
(nm)

λems
(nm)

Lifetime
of S1

(τa, ns)

Lifetime
of T1

(τb, µs)

Φ

(%)
Eg

(eV) Ref.

Mw Mn

P1 Pt/Hg 2.9 1.5 386 409 a, 542 b,582 b 1.23 194.38,
202.84 0.52 3.01 [46]

P2 Pd/Hg 0.45 0.40 411 430 a, 544 b, 578 b 0.92 12.19,
22.71 12.60 2.85 [47]

P3 Pt/Pd 2.5 1.3 415 437 a, 540 b, 588 b 0.89 193.7,
188.2 0.60 2.83 [47]

P6 Pt/Au - 2.4

270, 276,
305, 319,
345, 362,

387

417 a, 438a, 450a,
539 a, 548 b, 587 b,

625 b, 642 b
0.71 181.63 1.03 2.98 [22]

P7 Pt/Au - 2.7 264, 276,
316sh, 377

504a, 504 b, 545 b,
563 b 10370 130.80 0.62 3.00 [22]

P8 Pt/Au - 2.9
253, 262,

276sh, 317,
335

405 a, 425 a, 455 a,
495 a, 534 a, 456 b,
492 b, 507 b, 527 b

0.99 44.31 0.27 3.19 [22]

P9 Pt/Au - 2.1
275, 305,
319, 344,
361, 384

412 a, 432 a, 449sh a,
542 a, 584 a, 548 b,

586 b, 619 b
0.63 137.84 1.66 3.00 [22]

P10 Pt/Au - 2.4 268, 275,
314sh, 373

504 a, 503 b, 529 b,
603 b 6460 165.23 1.69 3.01 [22]

P11 Pt/Au - 3.1 253, 261,
316, 334

402 a, 421 a, 438 a,
455 a, 503 a, 457 b,

493 b, 507 b
0.72 40.14 0.30 3.12 [22]

Mw: average weight molecular weight, Mn: number weight molecular weight, λabs: absorption wavelength peaks, λems: emission
wavelength peaks, sh: shoulder, a: measured at 298 K, b: measured at 77 K, Φ: quantum yield, Eg: energy gap.

Wong and co-workers [22] reported heterometallic Au(I)–Pt(II) poly(metalla-ynes)
(P6–P11, Figure 5), in which the impact of merging two different metals can be clearly
observed (Table 1). Compared to the homometallic systems, Au(I)–Pt(II) poly(metalla-ynes)
showed blue-shifted absorption maxima and cut-off absorption wavelengths in solution
slightly shifted with respect to monomeric Pt(II) complexes. Merging two different metallic
cores also significantly improved the transparency of the resulting material, which was
attributed to the weak metal-ligand interactions and conjugation interruption by auxiliary
ligands.
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Figure 5. Heterometallic Au(I)–Pt(II) poly(metalla-ynes) (P6–P11) reported by Wong et al. [22].

2.2. Side-Chain Systems
2.2.1. d-d Metal-Containing Systems

Compared to the main chain heterometallic systems, dimers and polymers with second
organometallic fragments attached via chelating ligand are more common in the literature.
Several oligo- and poly(metalla-ynes) bearing heterometallic fragments were synthesized
and studied in the past. In this section, we discuss some pertinent examples of both small
and large molecular systems with two or more types of metal ions. As observed in the
earlier examples, the inclusion of a second metal affects the PL properties. Among d-d
combinations, the use of Ir(III) and Re(I) with Pt(II) metalla-ynes is very common as the
mixed-metal systems show improved photo-physical behavior [49]. It is well established
that the photo-physical properties of a material are the function of the molecular structure
of the main-chain and pendant ligands. Studies on heterometallic branched complexes
indicated that the absorption and emission energies shift to the red upon the incorporation
of the Pd(II) fragment moiety [50]. Compared to monometallic Re(I) complexes (maximum
absorption wavelength (λabs

max) = 408–418 nm), trimetallic complexes O1 (R = H or Me,
Figure 6) exhibit low energy transition at λabs

max = 416–426 nm in solution (Table 2). Similarly,
in tetrahydrofuran (THF) solution at RT, Re(I) complexes showed maximum emission
wavelength (λem

max) at 625–636 nm (lifetime, τ0 = < 0.1 µs), while Pd(II)/Re(I) complexes
emitted at λem

max = 628–639 nm (τ0 = < 0.1 µs, Table 2). Heterometallic complex O2 (Figure 6)
bearing Pd(II)/Ru(II) core exhibits highly red shifted absorption band (Table 2) compared
to monometallic Ru(II)-counterpart [51].



Polymers 2021, 13, 3654 6 of 18Polymers 2021, 13, x FOR PEER REVIEW 6 of 19 
 

 

 

Figure 6. Re(I)/Pd(II) hetero-trimetallic (O1) and Ru(II)/Pd(II) heterometallic (O2) complexes. 

Piazza and coworkers [52] assessed the photo-physical and magnetic properties of 

Ru(II)/Cu(I) and Ru(II)/Mn(I) couples O3 and O4 (Figure 7). Interestingly, a long-distance 

magnetic coupling between the terminal Cu(II) units through Ru(II) fragment was noted. 

Moreover, heterometallic systems displayed low energy bands in the visible region (Table 

2). Cu(II) complexes exhibit higher thermal stability compared to Mn(I) complexes. 

 

Figure 7. (a) Structures of bimetallic and trimetallic Ru/Cu and Ru/Mn complexes O3 and O4 and 

(b) the optical absorption spectra (in CH2Cl2) of O3 when M = Cu (1Cu) and Mn (1Mn) along with 

the corresponding monometallic Ru-bipyridyl compound (1). Reprinted (adapted) with permission 

from Di Piazza, E.; Boilleau, C.; Vacher, A.; Merahi, K.; Norel, L.; Costuas, K.; Roisnel, T.; Choua, S.; 

Turek, P.; Rigaut, S., Ruthenium carbon-rich group as a redox-switchable metal coupling unit in 

linear trinuclear complexes. Inorg. Chem. 2017, 56, (23), 14540–14555. Copyright 2017 American 

Chemical Society. 

In contrary to this, theoretical and experimental studies suggest that the two metal 

centers in binuclear heterometallic Ru(I)/Re(I) complexes O5–O7 (Figure 8) are weakly 

coupled [27]. Chen et al. [26] found that the insertion of one or more heterometal (Re/Ru) 

reduces the π* energy level in the ethynyl bipyridyl ligand in platinaynes and thus alters 

the photo-physical properties. For example, complexes (O8 and O9, Figure 8) showed a 

red-shift in optical absorption and longer lifetime (in µs) compared to monometallic plat-

inaynes (Table 2). Complex with Pt/Ru couple (𝜆𝑚𝑎𝑥
𝑎𝑏𝑠  = 504 nm, 𝜆𝑚𝑎𝑥

𝑒𝑚  = 658 nm and τ0 = < 

0.1 μs) showed red shifted absorption and emission compared to Pt/Re (λmax
𝑎𝑏 =

427 nm, λmax
𝑒𝑚  = 595 nm and τ0 = < 1.5, 0.22 μs) and Pt (λmax

𝑎𝑏 = 392 nm, λmax
𝑒𝑚  = 540 nm and 

τ0 = < 0.1 μs) complexes. 

In addition to these small molecular systems, several polymeric complexes bearing 

d-d metal fragments were also investigated [53]. Complex O10 (Figure 8) is an example of 

a highly emissive (Table 2) pentanuclear complex containing Pt(II) and Ir(III) fragments 

[54]. An efficient triplet energy transfer between the terminal and central Ir(III) cores 

through the Pt(II) moiety was reported in such systems. 

Figure 6. Re(I)/Pd(II) hetero-trimetallic (O1) and Ru(II)/Pd(II) heterometallic (O2) complexes.

Piazza and coworkers [52] assessed the photo-physical and magnetic properties of
Ru(II)/Cu(I) and Ru(II)/Mn(I) couples O3 and O4 (Figure 7). Interestingly, a long-distance
magnetic coupling between the terminal Cu(II) units through Ru(II) fragment was noted.
Moreover, heterometallic systems displayed low energy bands in the visible region (Table 2).
Cu(II) complexes exhibit higher thermal stability compared to Mn(I) complexes.
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Figure 7. (a) Structures of bimetallic and trimetallic Ru/Cu and Ru/Mn complexes O3 and O4 and
(b) the optical absorption spectra (in CH2Cl2) of O3 when M = Cu (1Cu) and Mn (1Mn) along with
the corresponding monometallic Ru-bipyridyl compound (1). Reprinted (adapted) with permission
from Di Piazza, E.; Boilleau, C.; Vacher, A.; Merahi, K.; Norel, L.; Costuas, K.; Roisnel, T.; Choua,
S.; Turek, P.; Rigaut, S., Ruthenium carbon-rich group as a redox-switchable metal coupling unit in
linear trinuclear complexes. Inorg. Chem. 2017, 56, (23), 14540–14555. Copyright 2017 American
Chemical Society.

In contrary to this, theoretical and experimental studies suggest that the two metal
centers in binuclear heterometallic Ru(I)/Re(I) complexes O5–O7 (Figure 8) are weakly
coupled [27]. Chen et al. [26] found that the insertion of one or more heterometal (Re/Ru)
reduces the π* energy level in the ethynyl bipyridyl ligand in platinaynes and thus alters
the photo-physical properties. For example, complexes (O8 and O9, Figure 8) showed a red-
shift in optical absorption and longer lifetime (in µs) compared to monometallic platinaynes
(Table 2). Complex with Pt/Ru couple (λabs

max = 504 nm, λem
max = 658 nm and τ0 = < 0.1 µs)

showed red shifted absorption and emission compared to Pt/Re λab
max = 427 nm, λem

max =
595 nm and τ0 = < 1.5, 0.22 µs) and Pt (λab

max = 392 nm, λem
max = 540 nm and τ0 = < 0.1 µs)

complexes.
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Figure 8. Structures of the d-d and d-f type heterometallic complexes O5−O10.

In addition to these small molecular systems, several polymeric complexes bearing
d-d metal fragments were also investigated [53]. Complex O10 (Figure 8) is an example of a
highly emissive (Table 2) pentanuclear complex containing Pt(II) and Ir(III) fragments [54].
An efficient triplet energy transfer between the terminal and central Ir(III) cores through
the Pt(II) moiety was reported in such systems.

Table 2. Photoluminescence (PL) data of some selected heterometallic metalla-ynes O1−O4 and O8−O10.

Code Metals λabs(nm) λems(nm) Lifetime of
S1(τa, µs)

Lifetime of
T1(τb, µs) Φ (%) Ref.

O1 (R = Me) Pd/Re 236, 284, 336sh, 416 628 a, 589 b <0.1 0.73 - [50]
O1 (R = H) Pd/Re 238, 284, 334sh, 426 639 a, 594 b <0.1 0.62 - [50]
O2 (dppm) Pd/Ru 386 - - - - [51]
O2 (dppe) Pd/Ru 389 - - - - [51]

O3 Ru/Cu 308, 494 - - - - [52]
O3 Ru/Mn 308, 468 - - - - [52]
O4 Ru/Cu 308, 494 - - - - [52]
O4 Ru/Mn 306, 468 - - - - [52]
O8 Pt/Re 271, 382, 427 595 1.5, 0.22 - 0.0018 [26]
O9 Pt/Ru 243, 291, 360, 504 658 <0.1 - 0.045 [26]

O10 Pt/Ir 255, 315, 415, 435
560 a, 613 a,
663 a,550 b,
595 b, 651 b

2.3 2.5, 1.9 3.3 [54]

λabs: absorbtion wavlength peaks, λems: emission wavelength peaks, sh: shoulder, a: measured at 298 K, b: measured at 77 K, Φ: quantum
yield.

Harvey and coworkers [55] prepared a series of mono- and bimetallic Pt(II)/Ir(III)
complexes (P12–P14, Figure 9a) and assessed their photo-physical properties. The pho-
tophysical features of the heterometallic complexes were found to be a hybrid of the
monometallic complexes used. For instance, Ir(III)-containing 5,5′-bisacetylide complex
(Φ = 1.6%, τ = 0.09 µs) showed structureless emission maxima at 638 nm while Pt(II) dimer
(Φ = 13.7%, τ = 39.2 µs) showed a blue-shifted structured emission at 561 nm. The intro-
duction of a second luminescent fragment in Pt(II) complex (Φ = 13.7%, τ = 39.2 µs) led
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to Pt/Ir (Φ = 4%, τ = 1.33 µs) dimer with red-shifted emission at 623 nm. Under similar
conditions, polymer P13, which is a Bipy containing Pt(II) poly-yne exhibits emission at
561 nm (Φ = 12.8%, τ = 9.2 µs, Table 3). Ir-containing polymer P12 showed emission at
617 nm (Φ = 2.6%, τ = 1.22 µs, Table 3) (Figure 9b). Later the same group [56] compared
the photo-physical and electrochemical properties of complex P14 (Figure 9a). Upon fluori-
nation of the pendant ligand, the nature of the excited state remains the same; however,
there were some changes in the absorption and in emission profiles (Table 3).
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Figure 9. (a) Mono- and bi-metallic Pt(II)/Ir(III) polymers (P12–P14). (b) Absorption (298 K) and emission spectra of P12
and P13 at 298 and 77 K. Reproduced with permission from ref. [55].

In the past, we demonstrated that the topology of alkynylated π-conjugated ligands
plays an important role in determining electron transfer and other processes [57]. For exam-
ple, it was found that the Pt(II) acetylide attached to different positions of azobenzene [15]
and stilbene [16] exhibit different levels of isomerization. Later, we found that the inclusion
of Re(I) core in Pt(II) di-ynes and poly-ynes alters the optical properties of the complexes,
the extent of which depends on the topology of the bipyridine (Bipy) ligand (i.e., 5,5′-
or 6,6′ systems, P15–P16, Figure 10 and Table 3) [33]. Like other reports, we also noted
that the 5,5′-bisalkynyl systems are much better than the 6,6′- counterparts. Wong and
co-workers [58] also reported that the coordination of a Re(I) unit, as well as the number of
thienyl rings, plays a central role in determining the PL properties of poly(platina-yne) P17
(Figure 10, Table 3).

Polymers 2021, 13, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 9. (a) Mono- and bi-metallic Pt(II)/Ir(III) polymers (P12–P14). (b) Absorption (298 K) and emission spectra of P12 

and P13 at 298 and 77 K. Reproduced with permission from ref. [55]. 

In the past, we demonstrated that the topology of alkynylated π-conjugated ligands 

plays an important role in determining electron transfer and other processes [57]. For ex-

ample, it was found that the Pt(II) acetylide attached to different positions of azobenzene 

[15] and stilbene [16] exhibit different levels of isomerization. Later, we found that the 

inclusion of Re(I) core in Pt(II) di-ynes and poly-ynes alters the optical properties of the 

complexes, the extent of which depends on the topology of the bipyridine (Bipy) ligand 

(i.e., 5,5′- or 6,6′ systems, P15–P16, Figure 10 and Table 3) [33]. Like other reports, we also 

noted that the 5,5′-bisalkynyl systems are much better than the 6,6′- counterparts. Wong 

and co-workers [58] also reported that the coordination of a Re(I) unit, as well as the 

number of thienyl rings, plays a central role in determining the PL properties of poly(plat-

ina-yne) P17 (Figure 10, Table 3). 

 

Figure 10. Re(I)-coordinated Pt(II) poly(metalla-ynes). 

Table 3. Photoluminescence (PL) data of selected heterometallic poly(metalla-ynes) P12–P19. 

Code Metals 

Molecular 

Weight (x 104)  
λabs  

(nm) 

λems 

(nm) 

Lifetime of 

S1 (τa, ns) 

Lifetime of 

T1, (τb, µs) 

Φ 

(%) 
Eg (eV) Ref. 

Mw Mn 

P12 Pt/Ir 1.33  1.18  
250, 280, 

340, 435 
617 a, 563 b 1220  5.67  2.60 - [55] 

P13 Pt 1.22    2.48  
253, 270, 

295, 390 
561 a, 562 b 9200 70  12.80 - [55] 

P14a Pt/Ir - - 
250, 260, 

315, 415, 485 

628 a, 547 b, 

592 b, 640 b 
800 4.81  1.0 - [56] 

P14b Pt/Ir - - 
250, 280, 

340, 435 

555 a, 617 a, 

655 a, 558 b, 

596 b, 654 b 

2500, 1900  5.7, 3.3  2.6 - [56] 

Pt

N N

PBu3

PBu3

n

[Re]

P15

Pt
N

N

PBu3

PBu3

n

[R
e]

P16

Pt

PBu3

PBu3

[Re]

S

N

S

N

S S
m m

C9H19 C9H19 m = 0-2

P17

[Re] =
Re

Cl

CO
COOC

Figure 10. Re(I)-coordinated Pt(II) poly(metalla-ynes).



Polymers 2021, 13, 3654 9 of 18

Table 3. Photoluminescence (PL) data of selected heterometallic poly(metalla-ynes) P12–P19.

Code Metals
Molecular

Weight (× 104) λabs
(nm)

λems
(nm)

Lifetime
of S1 (τa,

ns)

Lifetime
of T1,

(τb, µs)

Φ

(%)
Eg

(eV) Ref.

Mw Mn

P12 Pt/Ir 1.33 1.18 250, 280, 340,
435 617 a, 563 b 1220 5.67 2.60 - [55]

P13 Pt 1.22 2.48 253, 270, 295,
390 561 a, 562 b 9200 70 12.80 - [55]

P14a Pt/Ir - - 250, 260, 315,
415, 485

628 a, 547 b, 592 b,
640 b 800 4.81 1.0 - [56]

P14b Pt/Ir - - 250, 280, 340,
435

555 a, 617 a, 655 a,
558 b, 596 b, 654 b

2500,
1900 5.7, 3.3 2.6 - [56]

P15 Pt/Re 6.1 7.7 343, 419, 448 - - - - - [33]

P16 Pt/Re 5.5 8.3 276, 300, 324,
388, 402 - - - - - [33]

P17 (m
= 0) Pt/Re 1.3 3.8 230, 306, 539 582 a 0.22 - 0.05 2.18 [58]

P17 (m
= 1) Pt/Re 1.0 1.9 229, 362, 548 659 a 0.44 - 0.19 1.95 [58]

P17 (m
= 2) Pt/Re 0.9 1.9 229, 400, 552 729 a 0.34 - 0.10 1.85 [58]

P18 Pt/Ir 1.3 -
229, 260, 287,
379, 400, 446,

465, 487

549 a, 588 a, 552 b,
599 b 110 10.82 12.3 2.44 [49]

P19 Pt/Ir 1.1 ×
104 -

229, 251, 283,
383, 400, 474,

502

577 a, 625 a 577 b,
631 b 510 12.12 4.80 2.39 [49]

Mw: average weight molecular weight, Mn: number weight molecular weight, λabs: absorption wavelength peaks, λems: emission
wavelength peaks, sh: shoulder, a: measured at 298 K, b: measured at 77 K, Φ: quantum yield, Eg: energy gap.

2.2.2. d-f Metal-Containing Systems

In contrast to d-block elements, f -block lanthanides (Ln) display fascinating optical
(colorful sharp line-like emission spectra with large Stokes shifts and long lifetime) and
magnetic properties [32,59–61]. Owing to these features, they serve as an excellent dopant
for the fabrication of display devices and probes for cellular imaging. However, it is often
overshadowed by the low molar absorption coefficients (ε ~ 0.1–10 M−1·cm−1) of Ln(III)
complexes as f-f electronic transitions are forbidden by parity and spin selection rules. To
overcome this limitation, coordination of transition metal organometallic complexes was
proposed as it would facilitate efficient electronic energy transfer (EET) via the antenna
effect [62–66]. In addition to the synergistic effect of these different blocks of metals,
judicious selection of coordinating ligand, the excitation wavelength could be extended
to the visible region [64]. In this context, π-conjugated arylethynyl spacer covalently
linked to transition metal is an excellent choice [67–69]. Exploiting this concept, several
hetero-multimetallic Ln(III) complexes incorporating Pt(II) acetylide chromophore were
reported [25,32,34]. It was noted that Pt(II) acetylide complex strongly sensitizes the Ln(III)
in the Vis-NIR region with a high Φf value [66,70]. In complexes (O11–O17, Figure 11,
Table 4), an efficient energy transfer to Ln(III) ions takes place and the separation between
Pt—Ln played an important role [28,71–73]. Regardless of Pt(II) isomer configuration (cis or
trans) the low energy phosphorescence from dπ(Pt)→π*(C≡C-Bipy/phen)

3MLCT excited states
were quenched indicating efficient energy transfer from the Pt(II) acetylide chromophore
to lanthanide centers.
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Figure 11. Acetylide-functionalized diimine-based hetero-multimetallic complexes with different lanthanides metal ions
(O11–O17).

Belayev and coworkers [74] reported Au(I)/Eu(III)-based dually luminescent D–π–
A type complexes O18–20 (Figure 12a) with solvatochromic features (Figure 12b). In
these heterometallic complexes, different π-extended phosphines ligands attached to Au(I)
center were tested. It was noted that the partial energy transfer from phosphine→ Eu(III)
and efficient energy transfer from β-diketonate → Eu(III) were the main causes of dual
emission (Table 4).
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Figure 12. (a) Bipyridine-based Au(I) complexes incorporating Eu(III) β-diketonate fragment. (b) UV-
vis absorption (dashed lines) and normalized emission (solid lines) spectra of metallo-ligands Au1–
Au3 (A), and dyads O18–O20 (B) the photographs show the corresponding solutions under UV light.
Reproduced from ref. [74] licensed under a Creative Commons Attribution Non-Commercial 3.0
Unported License.
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We recently investigated the structural and optical properties of Bipy-based Pt(II)/Eu(III)
heterometallic complexes O21 and O22 (Figure 13, Table 4) [32,34]. In line with the other
studies, we also found an efficient, but topology-dependent, d→ f energy transfer in the
complexes. Whereas complex O21 exhibited typical Eu(III)-based red emission, complex
O22 displayed dual emission (red and green) with excitation in both the UV and Vis regions.
Moreover, complexes exhibited longer lifetime (τobs) than similar complexes reported in
the literature [28,75].
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Figure 13. “d-f -d” type Eu(III)-co-ordinated Pt(II) di-ynes.

Table 4. Photoluminescence data of heterometallic metalla-ynes O11−O22 and O24−O29.

Code Metals λabs
(nm)

λems
(nm) Lifetime of S1 (τa, µs) Φ (%) Ref.

O11a Pt/Nd - 1060a - 0.84 [28]
O11b Pt/Eu - 615 a 250.60 24 [28]
O11c Pt/Yb - 980 12.20 5.65 [28]
O12a Pt/Gd - 563 0.84 0.07 [71]
O12b Pt/Nd - 1060 weak - [71]
O12c Pt/Yb - 980 12.10 0.061 [71]
O13a Pt/Nd - 1060 - 0.2 [28]
O13b Pt/Eu - 615 33.60 0.5 [28]
O13c Pt/Yb - 980 12.90 0.635 [28]
O14a Pt/Nd 304, 320, 363, 401 1061 - - [72]
O14b Pt/Eu 301, 323, 365, 400 613 105 5.4 [72]
O14c Pt/Yb 295, 322, 365, 400 980 11.8 6.3 [72]
O15a Pt/Nd 304, 329, 358, 381, 430 1060 - - [72]
O15b Pt/Eu 299, 329, 357, 382, 430 613 164 1.7 [72]
O15c Pt/Yb 294, 328, 357, 382, 430 980 10.9 0.54 [72]
O15d Pt/Gd 303, 329, 358, 383, 430 572 0.40 2.4 [72]
O16a Pt/Nd 228, 297, 371 423, 1061 <0.01 - [73]
O16b Pt/Eu 228, 303, 375 420, 613 <0.01, 109.5 1.4 [73]
O16c Pt/Yb 228, 297, 371 428, 980 <0.01, 12.6 0.63 [73]
O17a Pt/Nd 229, 305, 372 421, 1060 <0.01 - [73]
O17b Pt/Eu 230, 303, 375 415, 613 <0.01, 216.3 1.0 [73]
O17c Pt/Yb 228, 293, 384 448, 980 <0.01, 12.7 0.64 [73]

O18 Au/Eu 271, 339 460, 580, 592, 611, 654,
700 0.0022, 280.00 15 [74]

O19 Au/Eu 280, 337, 404 525, 611 0.0017, 434.00 21 [74]
O20 Au/Eu 276, 336, 495 611, 635, 705 0.0041, 404.10 16 [74]
O21 Pt/Eu 325 550–725 590 54 [32]
O21 Pt/Eu 325 550–725 410 29 [32]
O22 Pt/Eu 416 425–531, 550–725 39.52, 519.86 39 [34]
O24 Ir/Eu 242, 283, 343 578, 590, 615, 684, 697 0.780, 0.116, 0.51, 0.095 - [76]
O24 Ir/Gd 242, 285, 338 560 1.1, 0.45 0.64, 0.22 4.8 [76]
O25 Ir/Eu 241, 292, 357 616 1.24, 0.168 - [76]
O25 Ir/Gd 242, 292, 358 595 1.26, 0.233 2.6 [76]
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Table 4. Cont.

Code Metals λabs
(nm)

λems
(nm) Lifetime of S1 (τa, µs) Φ (%) Ref.

O26 Au/Re 243, 265, 305, 366 592 - - [77]
O27 Au/Re 240, 278, 3.19, 357 576 - - [77]
O28 Au/Re 237, 271, 318, 352 607 - - [77]
O29 Au/Re 368 614 1060 30.4 [69]

λabs: absorption wavelength peaks, λems: emission wavelength peaks, sh: shoulder, τa: lifetime measured at 298 K, Φ: quantum yield.

3. Applications

It is clear from the above discussion that the optical properties of homo- and het-
erometallic metalla-ynes and poly(metalla-ynes) are highly sensitive to the type of metal
ions, number of π-linkages, spacers and end-groups. Despite this knowledge, relatively
less attention has been focused on application-oriented studies. From the application
point of view, complex O23 (Figure 14) is the first example of a heterometallic complex
featuring an NLO response [78]. This complex was reported to be a two-photon absorber
(2PA) as well as an excited-state absorber under two different conditions. Heterometallic
polymers (P1–P3, Figure 2) were reported as promising OPL candidates [47]. Among
the tested heterometallic poly(metalla-ynes), Hg(II)/Pt(II) exhibit best optical-limiting
thresholds (0.07 J·cm–2 at 92% linear transmittance) followed by Pd/Pt (0.35 J·cm–2) and
Pd/Hg (0.75 J·cm–2) couples. On the other hand, polymers P18 and P19 (Figure 14) are
promising materials for the fabrication of phosphorescent organic light-emitting diodes
(PHOLEDs) [49]. Both polymers can effectively absorb energy from the host properly,
which is one of the prerequisites to realize high-performance OLED devices. Both poly-
mers showed high performance (luminance = 2708 and 3356 c·dm−2, EQE = 0.5% and
0.67%, luminance efficiency = 0.6 and 0.55 L·mW−1 for P18 and P19, respectively) with
orange-yellow color emission at 10% doping level.
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The application of luminescent lanthanide complexes for dual imaging (magnetic
resonance imaging and optical imaging) is well established [79]. Jana and co-workers [76]
showed that merging the high relaxivity feature of lanthanide ions with the luminescence
from the Ir(III)/Ln(III) centers is an intriguing way to produce highly efficient bioimaging
probes. The reported heterometallic complexes with d→f energy transfer feature exhibit
high aqueous solubility, high intake in cancerous cell lines, low toxicity, and lysosomal
target ability. Moreover, it was also reported that dinuclear complexes (O24, Figure 15a)
were better than their trinuclear counterparts (O25, Figure 15a). One of the reported
dinuclear complexes (O24: Ln = Gd) showed multi-modal imaging capability, which is
the first of its kind. The luminescence lifetime of this multi-modal imaging probe varies
inversely with the concentration of O2 (Figure 15b).



Polymers 2021, 13, 3654 13 of 18
Polymers 2021, 13, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 15. (a) Ir(III)/Ln(III) di- and trinuclear complexes (O24 and O25). (b) Two-photon PLIM imaging of O24 (Ln = Gd) 

stained Hela cells under different concentrations of oxygen. Reproduced with permission from ref. [76]. 

On the contrary, nucleus and nucleolus localizing ability was reported for heterome-

tallic Re(I)/Au(I) complexes (O26–O28, Figure 16) [77]. Compared to monometallic com-

plexes (IC50 = 120–200 μm), higher cytotoxicity was exerted by the heterometallic deriva-

tives (IC50 = 4.4–19 μm). 

 

Figure 16. Heterometallic Re(I)/Au(I) complexes (O26–O28) with potential for cell imaging and 

cancer therapy. 

Researchers also explored the pesticides/chirality sensing ability of heterometallic 

complexes. Zhu and coworkers [80] exploited the luminescent enhancement by post-as-

sembly modification of complex O29 (Figure 17) for the sensing of some common pesti-

cides. They reported that self-assembled coordination-driven complexes show a high pro-

pensity for thiophosphonates (OMA, MET and MAL) and turn-on the luminescence via 

displacement mechanism leading to intensity enhancement (~ 4-fold). However, negligi-

ble responses were noted for other pesticides. Overall, heterometallic complexes with 

open metal sites offer a new design principle in constructing sensors. Very recently, het-

erometal-organic macrocycles were also reported as having the ability to detect enantio-

meric excess (ee) [81]. 

Figure 15. (a) Ir(III)/Ln(III) di- and trinuclear complexes (O24 and O25). (b) Two-photon PLIM imaging of O24 (Ln = Gd)
stained Hela cells under different concentrations of oxygen. Reproduced with permission from ref. [76].

On the contrary, nucleus and nucleolus localizing ability was reported for heterometal-
lic Re(I)/Au(I) complexes (O26–O28, Figure 16) [77]. Compared to monometallic complexes
(IC50 = 120–200 µm), higher cytotoxicity was exerted by the heterometallic derivatives (IC50
= 4.4–19 µm).
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Figure 16. Heterometallic Re(I)/Au(I) complexes (O26–O28) with potential for cell imaging and
cancer therapy.

Researchers also explored the pesticides/chirality sensing ability of heterometallic
complexes. Zhu and coworkers [80] exploited the luminescent enhancement by post-
assembly modification of complex O29 (Figure 17) for the sensing of some common pes-
ticides. They reported that self-assembled coordination-driven complexes show a high
propensity for thiophosphonates (OMA, MET and MAL) and turn-on the luminescence via
displacement mechanism leading to intensity enhancement (~ 4-fold). However, negligible
responses were noted for other pesticides. Overall, heterometallic complexes with open
metal sites offer a new design principle in constructing sensors. Very recently, heterometal-
organic macrocycles were also reported as having the ability to detect enantiomeric excess
(ee) [81].
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Figure 17. (a) Luminescence response to various pesticides, and (b) X-ray crystal structure of O29
(C, gray; H, white; N, blue; O, red; S, orange; F, light green; Pt, yellow; Eu, pink). Reproduced with
permission from ref. [80].

4. Conclusions

In summary, we reviewed the structure, properties and applications of metalla-ynes
and poly(metalla-ynes) containing one or more types of metal ions. Both d-d and d-f
combinations (either in the main- or side-chain) were briefly summarized. To date, a
number of luminescent materials that contain d-d and d-f combinations (either in the
main- or side-chain) separated by mono-, oligo- and poly-ynes have been developed
and studied. From the discussion, it is quite clear that the combination of two metal
centers, especially transition and lanthanide metals, is an effective way to modulate the PL
properties. In the majority of cases, transfer of energy takes place from transition metal to
lanthanide core, hence enhancing the luminescence intensity. Often, the hybrid material
exhibits luminescence properties in between the transition and the lanthanide metal. In
addition, owing to the wide variety of auxiliary groups, solution-processable small and
large macromolecules can be realized with applications ranging from OLEDs through
sensing to imaging. Despite multiple advantages, challenges such as limited synthesis
incorporating metals other than the discussed ones, a mixture of products, batch-to-batch
variation in the performance especially for polymeric materials are some of the main
obstacles in this field.
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Abbreviations

acac Acetylacetone
Bipy Bipyridine
D-A Donor-acceptor
EET Electronic energy transfer
EQE External quantum efficiency
Eg Energy gap
GPC Gel permission chromatography
HOMO Highest occupied molecule orbital
ISC Inter system crossing
Ln(III) Trivalent lanthanide
LUMO Lowest unoccupied molecular orbital
MLCT Metal to ligand charge transfer
Mn Number average molecular weight
Mw Weight average molecular weight
NLO Non-linear optical
NMR Nuclear magnetic resonance
O-E Optoelectronic
OLEDs Organic light-emitting diodes
OPL Optical power limiting
phen Phenyl
PHOLEDs Phosphorescent organic light-emitting diodes
PL Photo-luminescence
PLQY Photo-luminescence quantum yields
RT Room-temperature
SOC Spin-orbit coupling
THF Tetrahydrofuran
UV Ultraviolet
Vis Visible
τ lifetime
φ Quantum yield
ε Absorption coefficient
λem

max Wavelength of maximum emission
λabs

max Wavelength of maximum absorption
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