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Abstract: In this study, the effect of solvent on the hydrodynamic properties of collagen extracted from
tail tendons of young rats was researched. Collagen was dissolved in various aqueous carboxylic acid
solutions, including acetic acid (AA), acetic acid with the addition of sodium chloride (AA/NaCl),
formic acid (FA), lactic acid (LA), citric acid (CA), and also citrate buffer at pH = 3.7 (CB). The
properties of collagen solutions at a concentration of 0.45 mg/mL were characterized based on the
viscometric method. The reduced viscosity, intrinsic viscosity, and Huggins coefficient of collagen
solutions and effect of solvent, temperature, and UV irradiation on these properties were investigated.
Collagen solutions in acetic acid, acetic acid/NaCl, and citrate buffer were irradiated with UV light
up to 1 h, and the viscosity of collagen solutions was measured. It was found that the organic
acids used as solvent affected viscosity behavior, denaturation temperature, and stability of collagen
solutions. The lowest values of studied parameters were obtained for the collagen solutions in
acetic acid with the addition of sodium chloride. Thus, the effect of various aqueous carboxylic acid
solutions on collagen solutions properties and denaturation temperature can also be affected by the
sodium chloride addition. The results of this research can be crucial for the preparation of collagen
solutions for both cosmetic and biomedical applications.

Keywords: collagen; collagen solutions; intrinsic viscosity; denaturation; UV irradiation

1. Introduction

Collagen is a natural macromolecule isolated from natural sources such as mammal
tendons and placenta; feet, skin, and sternal cartilage from domestic birds, for instance,
chickens, turkeys, and ducks; bovine skin; and the tendons and bones of buffalos, lamb,
rabbits, marine species, and others [1–3]. Due to its excellent biocompatibility, weak
antigenicity, and controlled biodegradability, collagen is a primary biomaterial used in the
food and cosmetic industries and the fields of tissue engineering and pharmacy. Some new
materials based on collagen processing involve aqueous solutions. It is worth mentioning
that the solubility of collagen in acidic pH depends on the age of the tissues, and it has
a tendency to decrease with time due to a higher number of crosslinkers in older tissues.
Collagen obtained from young tissue is more soluble than that extracted from maturated
ones. It is not easy to compare solution behavior of various types of collagens. In the
literature, one can find 29 types of collagens [1,4,5]. They differ in primary and secondary
structures. Moreover, some of them are highly cross-linked and not soluble at all. Collagen
is not a simple protein, and it is not possible to go to the general conclusion regarding
solubility and the effect of solvent on the hydrodynamic properties of collagen of all types.
Moreover, some collagens occur in tissues in a very small amount, so it is not easy to extract
such collagens for laboratory investigation. The most widely used collagen in cosmetic
and biomedical applications is collagen type I. This type of collagen is soluble in acidic
pH, and its solubility depends on the age of the tissues from which collagen was extracted.
Using collagen solution, one can obtain collagen films by solvent evaporation and 3D
sponges by freeze-drying [4–7]. Collagen solutions are also used in aesthetic medicine
as fillers. The subcutaneous injection of soluble collagen may improve the quality and
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density of the skin, repairing its dermatological defects [8]. Thus, the viscosity behavior
of collagen solutions is essential for many applications. The viscosity behavior is also
important in the characterization of collagen solution during the denaturation process.
Non-denatured collagen gives a more viscous solution than a denatured one, so viscometric
measurements are necessary when we carry out research using native collagen just to
control its quality [9]. The viscometric properties of a collagen solution also depend on the
acetic acid or other acids’ concentrations [10]. The interactions between collagen molecules
and an acidic solvent are mainly by hydrogen bonds. The interactions by hydrogen bonds
also occur between collagen molecules in concentrated collagen solutions. Collagen can be
dissolved in several organic acids, but for cosmetic applications, mainly collagen solutions
in lactic acid and citric acid are prepared. Lactic acid is also used in cosmetic formulas to
gently exfoliate the skin, and it promotes moisturizing, evacuation of dead cells, and cell
renewal. It is crucial to know the effect of various aqueous carboxylic acid solutions on
collagen solutions properties, denaturation temperature of collagens, and the possibility
to make emulsions containing collagens in temperatures higher than room temperature.
Film-forming properties may also depend on the interactions between collagen molecules
and molecules of the solvent. Preparation of 3D sponges by freeze-drying a collagen
solution can also be influenced by the type of solvent and its interactions with collagens.
Moreover, after freeze-drying a collagen solution, a small amount of solvent can be found
in the sponge.

The purpose of this study was to investigate the effect of various solvents (AA,
AA/NaCl, FA, LA, CA, and CB) on the hydrodynamic properties and denaturation tem-
perature of collagen solutions. Viscometric studies have been used for many years for the
characterization of natural and synthetic polymers in the dilute polymer solution [11–15].
This technique gives precious information regarding the viscosity, molecular weight, sta-
bility in different conditions, and others. We used a technique which is a simple and
inexpensive method to characterize polymer molecules in the solution and to investigate
the influence of various solvents on viscosity behaviors. The intrinsic viscosity [η] and
Huggins coefficient kH are important information on the nature of the polymer in a solution,
which characterizes the size and interaction of polymer chains. To the best of the author’s
knowledge, the effect of various aqueous carboxylic acid solutions on collagen solutions
by the viscometric method has not been investigated yet. We believe that the results can
be useful in preparation of collagen solutions and gels. The poor water solubility of col-
lagen seriously limits the application of collagen in fields such as injectable biomaterials
and cosmetics.

2. Materials and Methods
2.1. Materials

Collagen was obtained in our laboratory from the tail tendons of young rats [16,17].
Briefly, in the first step, tail tendons were resected and washed in distilled water and
dissolved in 0.1 mol/dm3 acetic acid for three days at 4 ◦C. After that, the prepared solution
was then spun at 10,000 rpm for 10 min in a Sorvall centrifuge, and the soluble fractions
were decanted. In the second step, the solution was frozen at −18 ◦C and lyophilized at
−55 ◦C and 5 Pa for 48 h (ALPHA 1–2 LD plus, CHRIST, Osterode am Harz, Germany).
All chemicals and reagents applied in this study were supplied by POCh (Avantor, Gliwice,
Poland) and Chempur (Piekary Śląskie, Poland). These materials were of analytical grade
and applied as received without further purification. IR spectroscopy was used to confirm
that the lyophilizate contains collagen.

2.2. Solution Preparation

After lyophilization, the collagen solution was prepared by diluting lyophilizate in
0.1 mol/dm3 various aqueous solution including acetic acid (AA), formic acid (FA), lactic
acid (LA), citric acid (CA), 0.1 mol/dm3 aqueous acetic acid/0.2 mol/dm3 aqueous NaCl
(AA/NaCl), and also citrate buffer at pH = 3.7 (CB) at the 0.45 mg/mL concentration. The
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solution was shaken at regular intervals for 48 h and at 4 ◦C. After this time, the solution
was clear.

2.3. Viscometric Method

The viscometric measurements of dilute collagen solutions (c = 0.045 g/dL) in various
solvents were carried out in a controlled thermostatic bath at 25 ± 0.1 ◦C using an Ubbelo-
hde capillary viscometer with a viscometer constant of 31.34 s2. Distilled water was applied
as the calibration liquid for an Ubbelohde viscometer in the temperature range between
22 ◦C and 32 ◦C. Before measurements, each collagen solution was filtered through G1
sintered glass filter. The stock collagen solution was prepared and diluted, producing
the four lower concentrations made through the addition of an appropriate amount of
solvent to the collagen solution. The flow time of solution was taken as the average of
three readings with an accuracy of ± 0.01 s. The reduced viscosity of collagen solution was
calculated by Equation (1):

ηsp

c
=

t − t0

t0c
(1)

where ηsp
c is the reduced viscosity (dL/g), t is the flow time of the collagen solution (s), t0

is the flow time of the solvent (s), and c is the concentration of collagen solution (g/dL).
The intrinsic viscosity was determined from the plot of reduced viscosity vs. collagen
concentration using the classical Huggins equation [18–20], shown in Equation (2):

ηsp

c
= [η] + kH [η]

2c (2)

where [η] is the intrinsic viscosity (dL/g) and kH is the Huggins coefficient (dimensionless).
The plot of reduced viscosity vs. concentration provided a straight line, where interception
and slope are, respectively, equal to [η] and kH[η]2. Kinetic energy correction was taken
into account for the evaluation of the intrinsic viscosity.

The viscosity average molecular weight of collagen (Mv) was calculated by its intrinsic
viscosity in citrate buffer at pH = 3.7 using the Mark–Houwink–Sakurada equation [19,20],
as follows:

[η] = KMa
v (3)

where K and a are empirical viscometric constants which depend on the kind of polymer
and solvent, and also on temperature. Collagen in citrate buffer at pH = 3.7 had the
constants of K = 1.23 × 10−9 dL/g and a = 1.80 at 25 ◦C [21].

2.4. Determination of Denaturation Temperature by Viscometric Method

For this measurement, the solutions of 0.5 mg/mL collagen were prepared in 0.1 mol/dm3

acetic acid (AA), 0.1 mol/dm3 aqueous acetic acid/0.2 mol/dm3 aqueous NaCl (AA/NaCl)
and citrate buffer at pH = 3.7 (CB). The thermal denaturation plots were obtained from
25 ◦C to 45 ◦C, and temperature was raised stepwise and maintained for 20 min. All the
experiments were carried out till three subsequent readings in the series reached a constant
value. Plots of reduced viscosity as a function of temperature were made for the collagen
solutions. The thermal denaturation temperature was expressed as a midpoint temperature
between the extrapolated line for stock collagen solution and that for fully denatured
collagen solution on the reduced viscosity vs. temperature plot [15].

2.5. UV Irradiation of Dilute Collagen Solutions

The collagen solution with a concentration of 0.5 mg/mL in 0.1 mol/dm3 acetic acid
(AA) and citrate buffer at pH = 3.7 (CB) were irradiated using a UV lamp, ULTRAVIOL
NBV 15, which emitted mainly UVC with 254 wavelength for different time intervals
(0–60 min). The intensity of UV light was 21.5 W/m2. Collagen solutions were irradiated
5 cm from the UV lamp. After that, the viscosity behavior was measured using the same
Ubbelohde capillary viscometer at 25 ± 0.1 ◦C. Before measurements, the collagen solution
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was filtered through G1 sintered glass filter. The flow time of solution was taken as the
average of three readings with an accuracy of ±0.01 s. Plots of reduced viscosity as a
function of time of UV irradiation were made for the collagen solutions.

3. Results and Discussion
3.1. Viscometric Studies

The influence of solvents on the reduced and intrinsic viscosity of the collagen so-
lutions at 25 ◦C was measured. Figure 1 presents the plots of the reduced viscosity vs.
the concentration for the collagen solutions in six aqueous solvent solutions, including
acetic acid (AA), acetic acid with the addition of sodium chloride (AA/NaCl), formic acid
(FA), lactic acid (LA), citric acid (CA), and also citrate buffer at pH = 3.7 (CB). It can be
seen that all plots showed a linear relationship. The intercept of these plots corresponds to
the intrinsic viscosity. [η] values, and comparisons between the different solvents used in
collagen solution, are listed in Table 1.
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Figure 1. Reduced viscosity (ηsp/c) values of collagen solution in different solvents at 25 ◦C.

Table 1. Values of intrinsic viscosity [η] and Huggins coefficient kH for collagen solutions in different
solvents at 25 ◦C.

Solvent [η] dL/g kH R2

AA 20.90 ± 0.90 0.80 0.992
AA/NaCl 10.88 ± 0.34 1.87 0.997

FA 16.55 ± 0.45 1.42 0.998
CA 16.58 ± 0.64 0.93 0.993
LA 13.83 ± 0.16 0.96 0.999
CB 10.52 ± 0.19 0.84 0.995

As shown in Figure 1 and Table 1, the collagen solution in AA had the highest reduced
and intrinsic viscosity while the collagen solution in AA/NaCl and CB had the lowest. This
behavior was due to the addition of salt to the aqueous carboxylic acid solution (AA and
CA). The addition of salt to the collagen solutions causes the increase in the ionic strength
in the solution and screens the electrostatic charges. As a consequence, a decrease in the
reduced and intrinsic viscosity in AA/NaCl and CB solutions in comparison with that of
the other solvents is observed (Figure 1 and Table 1). It is well known that the intrinsic
viscosity can be applied as a measure of the solvent power [20,22]. The larger value of
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intrinsic viscosity indicates more powerful interactions between the polymer molecules
and the solvent and a better solvent for the polymer. Thus, AA is an excellent solvent for
collagen, and formic acid is better than lactic acid and also citrate buffer. In citrate buffer
and AA/NaCl, the intrinsic viscosity decreased significantly compared to other solvents.
The Huggins coefficient was also determined from Equation (2) and is also listed in Table 1.

The parameter kH describes interactions between various polymeric molecules present
in the solutions. The Huggins coefficient decreases with the solvent power and for polymers
in thermodynamically good solvents usually falls in the range 0.2–0.4. Huggins parameter
is not constant for chosen polymer–solvent systems, but depends on temperature and
molecular weight [18,20,23]. Thus, the kH value should be lower in good solvents and at
higher molecular weights. There are, however, polymer–solvent systems where Huggins
coefficient is significantly higher than 0.5 [23]. This is attributed to the association of
polymer chains and the formation of molecular aggregates. According to the value of
Huggins coefficient, AA and CB are good solvents for collagen. Citrate buffer at pH = 3.7
is used for the determination of the viscosity average molecular weight of collagen in the
literature [21] and in this study. The highest value of kH we found for the collagen solution
in AA/NaCl. It is due to the association of collagen chains after the addition of NaCl to the
AA solution.

For the collagen solution in CB, the intrinsic viscosity was found to be 10.52 ± 0.19 dL/g.
Hence, the viscosity average molecular weight for collagen used in this study was calcu-
lated, and its value was 329 kDa. This result is consistent with other reports [24,25], which
indicate that a standard collagen molecule is typically 300 kDa where each of the alpha
stands is approximately 100 kDa.

3.2. Determination of Denaturation Temperature by Viscometric Method

Figure 2 shows the thermal denaturation plot of collagen solutions.
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The denaturation temperature of collagen dissolved in three aqueous solvent solutions
such as AA, AA/NaCl, and CB was calculated using temperature induced change in the
reduced viscosity plot. As shown in Figure 2, the reduced viscosity of the collagen solution
in AA decreased as temperature increased from approximately 35 ◦C to 40 ◦C, while the
reduced viscosity decreased from approximately 31 ◦C to 37 ◦C for the collagen solution in
CB and from approximately 31 ◦C to 34 ◦C the collagen solution in AA/NaCl. Thus, the
denaturation temperature is the biggest for collagen in acetic acid solution and it changes as
Td AA (38 ◦C) > Td CB (35 ◦C) > Td (33 ◦C) AA/NaCl. The addition of salt to the aqueous
acidic solution of collagen decreases the thermal stability of the collagen triple helix in the
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solution. After the addition of salt, the collagen molecules conformation reduces to the
statistical coil conformation. The helix to coil transition of salt treated collagen depends on
the degree of hydration and the additive concentration. According to the literature data
and results of this study, the viscosity of collagen solution decreases with the addition of
the denaturing agents, and it depends on the additive concentration [26].

3.3. Influence of UV Irradiation on Dilute Collagen Solutions

Figure 3 shows the reduced viscosity as a function of time of UV irradiation for the
collagen solution in AA and CB. The addition of NaCl to the aqueous acidic solution
of collagen leads to the decrease in the thermal stability of collagen triple helix in the
solution (as shown in Figure 2), and for this reason the irradiation of collagens in already
partially denatured collagen solution in acetic acid, with the addition of sodium chloride
(AA/NaCl), was not conducted.
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As shown in Figure 3, the plot shapes are similar, and the curves are only shifted
relatively to each other. It is clear that the reduced viscosity of collagen solution decreased
by approximately 10% when the time of irradiation increased from 0 to 10 min. A time
increase of 10 min leads to the approximately 30% viscosity drop. After one hour of
irradiation, the viscosity of the collagen solution decreased by 93%. This suggests that
after one hour of UV irradiation, collagen molecules are fully denatured. Thus, both
collagen solutions showed a similar sensitivity to UV irradiation. It is well known that
UV irradiation leads to partial cleavage of the hydrogen bonds responsible for the ternary
structure of collagen [27].

4. Conclusions

In this study, the effect of various solvents (AA, AA/NaCl, FA, LA, CA, and CB) on
the hydrodynamic properties and denaturation temperature of collagen solutions were
examined. It was found that the kinds of solvents show a great influence on viscosity
behavior and denaturation temperature. According to the intrinsic viscosity and Huggins
coefficient values, AA is a very good solvent for the collagen molecules. For the collagen
solution in CB, the intrinsic viscosity was found to be 10.52 ± 0.19 dL/g. The denaturation
temperature is maximum for collagen solution in acetic acid, and it changes as Td AA
(38 ◦C) > Td CB (35 ◦C) > Td (33 ◦C) AA/NaCl. Moreover, both collagen solutions in AA
and CB showed similar sensitivity to UV irradiation. The results of this research can be
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useful for preparation of collagen solution for several applications, as the choice of the
solvent and pH of solution may influence the collagen stability and performance.
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