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Abstract: Three-dimensional printing (3DP), also known as additive manufacturing (AM), has
rapidly evolved over the past few decades. Researchers around the globe have been putting their
efforts into AM processes improvement and materials development. One of the most widely used
extrusion-based technology under AM processes is Fused Deposition Modeling (FDM), also known
as Fused Filament Fabrication (FFF). Numerical simulation tools are being employed to predict the
FFF process complexities and material behavior. These tools allow exploring candidate materials
for their potential use in the FFF process and process improvements. The prime objective of this
study is to provide a comprehensive review of state-of-the-art scientific achievements in numerical
simulations of the FFF process for polymers and their composites. The first section presents an in-
depth discussion of the FFF process’s physical phenomena and highlights the multi-level complexity.
The subsequent section discusses the research efforts, specifically on numerical simulation techniques
reported in the literature for simulation of the FFF process. Finally, conclusions are drawn based on
the reviewed literature, and future research directions are identified.

Keywords: additive manufacturing; 3D printing; computational modeling; simulation technique;
computational fluid dynamics

1. Introduction

Three-dimensional printing, also known as additive manufacturing (AM), has rapidly
evolved over the past few decades [1,2]. AM processes allow the fabrication of three-
dimensional and functional components through successive additions of 2D layers [3].
AM was first introduced by Hull [3], since then, researchers have established several
process technologies and novel materials [4]. These processes have attracted the research
interest due to higher flexibility in the design and the manufacturing of highly customizable
parts, rapid prototyping of conceptual products, waste reduction, lower risk of human
error, and higher precision and accuracy than conventional manufacturing processes [5–7].
AM processes are now being widely adopted in several industrial sectors owing to these
advantages [8,9].

Fused Deposition Modeling (FDM), also known as Fused Filament Fabrication (FFF),
one of the most widely used AM processes, was proposed and developed by Scott Crump
at Stratasys [10]. In the FFF process, the material is supplied to the 3D printer in the
form of filaments. The extruder in any FFF-based 3D printer generally contains a feed
material control mechanism, heating chamber, and nozzle. The material in the filaments
form is fed to the control system, which controls the feed rate. Then the filament moves
through the heating chamber, which converts it into a semi-solid phase and then passes
through the nozzle for deposition on the printing bed [11]. The mechanical and thermal
controls in the extruder govern the overall printing process and depend upon the feed-stock
material properties. Thermoplastics, particles reinforced polymers, and hydrogels have
been fabricated using the FFF process [12].
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Researchers around the globe have been putting their efforts into AM processes im-
provement and novel materials over the past few decades [13,14]. The research efforts
include process printing speed, printer build volume, and production rate [15]. The materi-
als portfolio has also included short and continuous fiber-reinforced polymer composites
for the FFF process [16–18]. Aside from the extensive experimental investigations on the
FFF process reported in the literature, the numerical tools employed are still limited.

The prime objective of this study is to provide a comprehensive review of the state-of-
the-art scientific achievements in numerical simulations of the FFF process for polymers
and their composites. The first section presents an in-depth discussion of the FFF process’s
physical phenomena and highlights the multi-level complexity. The subsequent section
discusses the research efforts, specifically on numerical simulation methods reported in the
literature for simulation of the FFF process. Finally, conclusions are drawn based on the
reviewed literature, and future research directions are identified.

2. Physics Involved in Fused Filament Fabrication Process

This section presents the physical phenomena involved in the FFF process. An in-
depth understanding of this phenomenon is essential to improve the process and 3D
printed part quality. The overall FFF process can be divided into three phases; material
flow through the nozzle and deposition on the print bed or already deposited material
(extrusion), interaction of deposited beads to make a bond (fusion), and the cooling process
(solidification), as elaborated in Figure 1.

The first process involves material flow through the nozzle body, nozzle orifice, and
deposition [19]. This phase is of great interest, especially in the 3DP of fiber-reinforced
polymer composites, as fiber orientation results from material flow through the orifice
and regulates mechanical behavior (anisotropy) of the fabricated part. The flow behavior
and fiber orientation are interdependent, as a viscous fiber-suspension flow is obtained
for materials with considerable fiber volume fractions. Shear alignment phenomena and
converging zone in nozzle determine the fiber orientation in printed beads. The viscosity
of the material is also dependent upon fiber orientation. For example, the extensional
viscosity parallel to fiber alignment is multiple folds higher than in the transverse direction.
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In the second phase, the deposited material reheats or re-melts the already deposited
material beads [21]. The bonding between the extruded filaments is highly dependent
on this wetting phenomenon [22]. The wetting phenomena regulate the contact area
between the deposited filaments, as prolonged interface exposure at elevated temperatures
assists the merging of adjacent beads and polymer chains diffusion [23]. The viscosity of
beads in the transverse direction and surface tension of the material controls this wetting
process. A limited temperature range is available for perfect bead formation between the
layers, as viscosity is temperature-dependent [24]. Diffusion-based fusion is observed
between the beads at higher temperatures after an interface has been formed. However, the
diffusion process is obstructed due to reduced molecular mobility at lower temperatures.
Therefore, a critical factor for adequate bonding is the temperature history of printed
material. Additional complexity arises for semi-crystalline materials, as the viscosity of
such materials rapidly increases at crystallization temperature, interrupting the bond
formation process [25].

Lastly, the deposited material begins to solidify as it cools down. The cooling process
during and post-printing is governed by convective and radiative heat losses on external
surfaces of the beads and conductive heat transfer at beads contact points and printing bed.
If the material is deposited at a higher speed, i.e., a large amount of material is deposited
in a shorter time, it will not allow the pre-laid layer to cool down sufficiently before
depositing the next layer [26]. It will result in sagging due to gravity and print failure. The
material converts to a viscoelastic solid from a viscous fluid during the cooling process and
starts shrinking depending upon the coefficient of thermal expansion (CTE). The internal
stresses begin to develop due to material stiffness produced by the solidification process
and restriction due to bead fusion. Viscoelastic relaxation and material deformations
assist a fraction of internal stresses to be released. However, for semi-crystalline polymers,
the mechanical and thermal properties change during the crystallization process. For
such materials, additional strains are observed that further cause internal stresses and
part deformations, resulting in altered mechanical properties [27]. The presence of fibers
aligned in the printing direction also affects the thermal properties due to increased thermal
conductivity. Thermomechanical and crystallization effects constraints the shrinkage
process in the bead direction, but not to the same degree in the lateral direction [28]. The
physical phenomena involved in the FFF process highlight its complexity. Therefore, the
above-discussed process physics and interactions must be considered for more realistic
process simulation and modeling.

3. Numerical Simulation Techniques

There has been an increasing interest in modeling and simulation of the FFF process
since the commercial availability of 3D printers. The past and ongoing research related
to computational modeling of the FFF process can be broken down into two domains. In
the first domain, thermal variations and fluid flow behavior of the material in the heating
zone are modeled. Overall melt flow behavior of the material inside the printer extruder
depends upon the heat capacities of the nozzle and liquefier and the thermal properties of
the material. Secondly, when the material is extruded through the nozzle, sudden pressure
change causes swelling following the deposition. This stage is of great interest as material
flow outside the nozzle, bead shape, bonding of beads, and residual stresses are governed
by these factors. Following, we present the computational works related to the FFF of
polymers and polymer composites, also reported in Table 1.
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Table 1. Summary of studies reported on the numerical modeling of fused filament fabrication process.

Material Additives Analysis Tools Highlights Ref.

PCL - Melt Flow
Behavior ANSYS©

Observation of velocity, pressure, and thermal
variations.
Filament velocity at the inlet of the channel
was varied.
Variation in nozzle shape and the angle at
the exit.
Material liquified within 35% of the
channel length.

[29]

ABS Iron Particles
(10%)

Melt Flow
Behavior ANSYS©

Study of velocity, temperature, and pressure
variations.
Fabrication and characterization of composites.
Promising simulation results for melt flow
behavior and process optimization.

[30]

ABS -
Swelling and

Filament
Cooling

Dieplast© and
EFD Lab

Potential for using fine nozzle diameters for
MAFD.
Nozzle temperature regarded as primary
contributor to die swelling.
Temperature variations along the nozzle length.
Volume of flow 215 times lower than
conventional nozzles.

[31]

ABS - Melting Inside
Nozzle

Mathematical
Model

Analytical model for melting inside the nozzle.
Material flow was controlled by applied force.
Experimental validation of proposed model.
Good prediction of material behavior for force
up to 40 N.

[32]

ABS - Warpage Mathematical
Model

Simple model for warpage deformation was
developed.
All influencing parameters (layer number,
chamber temperature, material shrinkage rate)
were quantitatively analyzed.
Recommendations to avoid warp deformation.

[33]

ABS - Warpage Mathematical
Model

Analytical model based on experimental
observations was developed.
Model can predict multi-layer deformation of
3D printed parts.
Strong effect of layer thickness on warpage
was observed.

[34]

ABS CF Fiber
Orientation

COMSOL©
MATLAB©

Effect of nozzle geometry and extrudate swell.
Used Floger-Tucker [35] and Advani and
Tucker [36] models.
Comparable results to previously reported
studies [37,38].

[39]

ABS CF Fiber
Orientation SPH-DEM

Both short and continuous fiber composites.
Highly aligned short fibers with material flow
over time.
Lower printing speeds recommended for
continuous fiber composites to avoid nozzle
wear and fiber breakage.

[40]

ABS - Solidification ANSYS©

Rectangular cross-section of deposited beads.
3D model to investigate thermal behavior.
Similar stepwise activation, as reported by [41].
Thermal properties of the material were found
to have a significant effect on the
solidification process.

[42]
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Table 1. Cont.

Material Additives Analysis Tools Highlights Ref.

ABS - Solidification Mathematical
Model

Both convective and radiative heat transfer
phenomena were considered to develop a
3D model.
The numerical model results found sound
agreement with experimental results.

[43]

ABS - Bond
Formation

Mathematical
Model

First model to predict the bond
formation mechanism.
1D lumped heat transfer model was used.
The model also considered the effect of
printing parameters.
Concluded better control of the cooling process
to control mechanical properties of FFF parts.

[44]

PLA - Melt Flow
Behavior ANSYS©

Experimentally obtained liquefier temperature
profile and heating element power output.
Detailed 3D model with all assemblies.
External heat transfer mechanisms were found
more significant.

[45]

PLA CNF
(0–1%)

Melt Flow
Behavior ANSYS©

Rheological and mechanical properties
obtained experimentally.
Simulation of non-Newtonian fluid flow using
3D model.
Results agreed well with existing
numerical models.

[46]

PLA - Warpage
Mathematical

Model
Statistical Analysis

2D analytical model based on theory of thin
plates.
Taguchi’s method was used for design of
experiments.
ANOVA and S/N ratio were used to optimize
the process parameters.
Proposed model was found efficient but
thermal stresses were ignored.

[47]

PLA - Warpage Mathematical
Model

Successful prediction of distortion for PLA
thin walls.
Limitation in terms of warpage magnitude.

[48]

PLA -
Bead

Deposition and
Solidification

Mathematical
Model

A model for viscoelastic materials
The front-tracking/finite volume method
was used.
Three extruded filaments built vertically were
simulated considering viscoelastic stresses.
The model was also employed to larger objects.

[49]

ABS,
PCL,
PLA

-
Swelling and

Process
Conditions

SolidWorks©

Nozzle equipped with pressure and
temperature sensors.
High shear rates resulted in a higher swell.
Viscosity models were obtained from
experimental analysis.
Simulations agreed well with experimental
data.

[50]

PP -

Melt Flow
Bead Shape

Residual
Stresses

Warpage

ANSYS©

Experimental and numerical investigation.
Special focus on warpage and
mechanical properties.
Good agreement of numerical simulation
results with experimental observations.

[51]
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Table 1. Cont.

Material Additives Analysis Tools Highlights Ref.

PPS AIN Warpage ANSYS©

Extended work from Watanable [51].
Analysis of most significant material parameter.
CTE concluded most significant for
part warpage.
Composite materials with lower CTE can
reduce warpage.

[28]

PPS CF Solidification
Crystallization COMSOL©

2D model for thermal history and
crystallization behavior.
Used non-isothermal dual crystallization
kinetics model.
Individual activation of beads.
Thermal variations of the beads in the printing
direction were not considered.

[41]

Photo
Poly-
mer

AgNWs
(1.6 vol%)

Nanofiller
orientation ANSYS©

Nozzle geometry effect on fiber orientation.
Aligned nanowires for circular nozzle.
Different velocity profiles at nozzle exits.

[52]

Epoxy CF
(8 vol%)

Fiber
Orientation STARCCM+

Melt flow within the nozzle.
Fibers interactions with other fibers, epoxy,
and wall.
Higher fiber orientation near to the wall.

[53]

3.1. Melt Flow Behavior

The first study on modeling and characterization of material flow inside the liquefier
and nozzle in the FFF process was conducted by Bellini [54]. The material flow through the
FFF extrusion system (i.e., liquefier, nozzle, and die) for ceramic materials were modeled
and discussed for PZT/ECG9 material. The pertinent achievement of this study included a
tool for the controlled deposition process. A model was developed for the selection of the
optimal nozzle shape from extensive experimental results. The velocity and temperature
fields of the material during the deposition process were simulated and compared with
experimental results. Moreover, the incorporated particles were observed to be aligned in
the printing direction of extruded strands, but this effect was not included in simulations.

Although the first study in this area considered ceramic materials, it laid the founda-
tion for the numerical analysis of 3D printed polymers. Ramanath et al. [29] numerically
investigated the melt flow behavior of Poly-ε-caprolactone (PCL) biomaterial processed
via the FFF process. PCL is an emerging material in the biomedical field, as it has found
its applications in this sector due to its biodegradability [55]. An accurate channel model
was employed to study the velocity gradient, pressure variations, and thermal behavior
by varying filament velocity at entry and nozzle shape and the angle at the exit. From
mathematical and numerical results, velocity profiles and pressure gradients strongly
depended on the flow channel parameters. Temperature profiles revealed that material
completely liquefied within 35% of the channel length, which is an important outcome and
can be implemented to predict the melt flow behavior of other materials.

Researchers have also considered ABS material for numerical studies. ABS material
can is widely regarded for the synthesis of polymer composites [56]. This material has
found its mechanical applications due to its impressive mechanical and physical properties
and chemical resistance [57,58]. Monzón et al. [31] conducted a theoretical and experimental
study to evaluate the potential of using a 0.05 mm diameter nozzle for the FFF process. The
material swelling and filament cooling during the deposition process was studied for ABS.
A conventional FFF printer was used to extrapolate the information for micro-additive
fused deposition (MAFD). Die swelling was attributed to nozzle and envelope temperature,
where nozzle temperature plays a more significant role. In addition, due to the location of
the heating element, temperature variations were observed along the nozzle length with
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the lower temperature at the nozzle exit. The nozzle diameter and extrudate diameter
ratio were used for the proposed extrapolation and termed the swelling diameter factor.
It was concluded that the flow volume could be reduced multiple folds using fine nozzle
diameters (i.e., up to 215 times).

In another study, Bellini et al. [59] studied the response of the extrusion system that
was analyzed to design a control system for controlling the material flow. A dynamic sys-
tem model was developed from a derived analytical model to study the system response
based on a defined input. The results from this model were compared with experimental
data for ABS material. Steady-state error in the dynamic model was observed due to
slippage between filament and extruder rollers. In addition, the limitation in the motor
torque and power and temperature variation in the liquefier was identified as the reason
for the time-delay in response. Likewise, the most appropriate operating temperatures and
shear rates for MAFD were explored by Ortega et al. [50]. The analyses were performed
on acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), polycaprolactone (PCL),
and poly (vinyl alcohol) (PVA). A MAFD nozzle (300 µm) was used to obtain the viscosity
models used in the simulation of materials under different operating conditions. The
simulation results agreed well with the experimental data. Osswald et al. [32] proposed an
analytical model for material melting inside the nozzle, where the applied force governed
the maximum melting rate. The model included effects of initial filament temperatures,
heater temperature, applied force, nozzle tip angle, capillary diameter, length, and rheolog-
ical and thermal properties. Experiments performed on ABS material were used to validate
the analytical model (Figure 2), and it was concluded that the model accurately predicts
melting behavior for forces up to 40 N.
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Other than PCL and ABS, Polylactic acid (PLA) is also a widely explored polymer in
materials science due to its sustainability and biodegradability [60]. PLA is also an FDA-
approved biocompatible material used in medical and food packaging applications [61,62].
Stewart et al. [45] numerically and experimentally investigated the melt flow behavior of the
PLA material in the FFF process. The power output of the heating element and temperature
profiles within the liquefier were recorded experimentally. The material properties and
initial conditions calculated from experimental data were used for 3D modeling of the fluid
flow using an accurate extruder geometry. The simulation results concluded that external
convective and radiative heat losses play a significant role in material flow realistically.

3.2. Fiber Orientation in Polymer Composites

Numerical studies on fused filament fabrication of fiber-reinforced materials are lim-
ited. Fiber orientation during the FFF process and mechanical properties are strongly
affected by nozzle shape, fiber concentration, material flow rate, and pressure differ-
ence. The use of computational modeling software, such as ANSYS®, COMSOL®, and
Moldflow®, is reported in the literature. Mostafa et al. [30] investigated the melt flow
behavior of iron particle-reinforced Acrylonitrile butadiene styrene (ABS) composites. Two-
and three-dimensional numerical simulations were performed using computational fluid
dynamics (CFD) software to analyze the temperature, pressure, and velocity changes.
Both techniques provided a good correlation in predicting the melt flow behavior. Finally,
ABS-iron particle composites were produced and processed to fabricate the samples. Papon
et al. [46] studied the effect of FFF process parameters on the melt flow behavior of carbon
nanofiber (CNF)-reinforced PLA nanocomposites. A numerical model for non-Newtonian
flow was developed to investigate the effect of material properties and different nozzle
geometries. Experiments were performed to identify the material rheological properties,
and a 3D model of the FFF extrusion channel was developed for simulation. Temperature,
pressure, and velocity profiles were obtained, compared with the existing literature, and
provided sound agreement.

Fiber orientation in short or continuous fiber-reinforced composites is critical to
achieving desired mechanical, thermal, or electrical properties in 3D printed materials.
Several experimental studies provided insight into fiber orientation and fiber flow behavior
within the nozzle and deposition of extruded beads [63–66]. However, reported work
related to numerical studies will be focused here; readers are referred to the mentioned
literature for more details on experimental studies. Kim et al. [52] synthesized silver
nanowire (AgNWs)-reinforced photopolymer composites and investigated the effect of
nozzle geometry on nanoparticles orientation. Nanocomposites revealed higher dielectric
permittivity when 3D printed using a circular nozzle than the flat nozzle, owing to aligned
nanowires in the printing direction. Different velocity profiles at nozzle exits obtained from
numerical simulations also evidenced the orientation of the nanowires along with the fluid
flow for a circular nozzle.

Heller et al. [39] studied the effect of nozzle geometry and extrudate swell on fiber
orientation of carbon fiber (CF)-reinforced ABS composites. The numerical model was
developed in COMSOL integrated with a MATLAB interface. An incompressible fluid
flow was modeled considering a Newtonian fluid melt. Fiber orientation was explained
using Floger-Tucker [35] and Advani and Tucker [36] models for orientation and isotropic
rotary diffusion, respectively. The obtained results were comparable to previously reported
studies [37,38]. The authors also performed a parametric analysis to optimize the nozzle
geometry for the best achievable modulus in the printing direction. Lewicki et al. [53]
performed numerical simulation for CF-reinforced epoxy composites to investigate the melt
flow behavior and fiber orientation during the extrusion process. The fibers’ interactions
with other fibers, epoxy, and wall were also considered. Randomly oriented fibers were
considered at the start, and fiber alignment during the flow was modeled, as shown in
Figure 3. The wall-dominated shear alignment was observed from simulation results,
resulting in higher fiber orientation along with the flow near to the wall.
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In addition to the numerical simulations of fiber-reinforced material flow within the
nozzle, several studies have reported the fiber orientation within the deposited beads.
Bertevas et al. [67] were the first ones to model fiber orientation of 3D printed beads. A
Smoothed Particle Hydrodynamics (SPH) framework was employed using a microstructure-
based model. The fiber orientation prediction near the nozzle complemented the results
from Lewicki et al. [53]. However, it was concluded that fiber orientation near the nozzle
should not be approximated as the expected fiber orientation of deposited beads due to
significant variations in orientations during deposition. The 3DP process parameters were
also identified as critical in fiber orientation within the beads. Yang et al. [40] reported
an SPH and discrete element method (DEM) approach to model fiber orientation of short
and continuous fiber-reinforced composites. The fiber orientation simulation results for
discontinuous fiber composites agreed well with Bertevas et al. [67] observations. The
short fibers aligned with the flow direction over time and were supported by the literature,
whereas continuous fibers experienced high bending deformations and contact with the
nozzle (Figure 4).
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3.3. Solidification Behavior

The solidification behavior of material governs the bonding between deposited beads,
polymer crystallization, and ultimately the mechanical properties of the 3D printed part.
When two adjacent beads are deposited, they contact and form necking at the interface [68]
(Figure 5). The resulting mechanical properties of 3D printed parts depend upon process
parameters and type of polymer. In this section, the numerical and analytical studies
related to solidification behavior are presented. Yardimci et al. [69] were the first to
model the deposited beads bonding and their thermal interaction with surroundings. A
one-dimensional heat transfer model was used, considering beads as grid blocks. Beads
surfaces were modeled under convective conditions. Peclet and Biot’s numbers were
identified as significant parameters for thermal distributions. Brenken et al. [41] reported a
2D model for CF-reinforced PPS composites’ thermal history and crystallization behavior. A
non-isothermal dual crystallization kinetics model was employed to predict crystallization
during the solidification process, where beads were individually activated. This model did
not consider the thermal variations of the beads in the printing direction. Figure 6 shows
the crystallinity distribution of two adjacently deposited beads.



Polymers 2021, 13, 3534 11 of 20

Polymers 2021, 13, x FOR PEER REVIEW 10 of 18 
 

 

model did not consider the thermal variations of the beads in the printing direction. Figure 
6 shows the crystallinity distribution of two adjacently deposited beads. 

Zhou et al. [42] considered a rectangular cross-section of deposited beads and devel-
oped a 3D model to investigate the thermal behavior of ABS material using ANSYS©. A 
similar methodology of step-wise activation, reported by [41], was used for modeling. The 
thermal properties of the material were found to have a significant effect on the solidifi-
cation process. In another study, both convective and radiative heat transfer phenomena 
were considered to develop a 3D analytical model [43]. The numerical model results found 
sound agreement with experimental. 

 
Figure 5. Bead–bead interaction and bond formation mechanism. (1) Contact between deposited 
beads. (2) Neck formation. (3) Polymer chains diffusion. Reprinted with permission from reference 
[44]. Copyright 2004, Elsevier. 

 
Figure 6. Modeled crystallinity distribution during a print simulation of a simple 2 by 2 bead cross 
section. Beads 1–3 are active (deposited), while bead 4 is still inactive. Reproduced with permission 
from reference [20]. Copyright 2018, Elsevier. 

Xia et al. [49] recently presented a bead deposition and solidification model for vis-
coelastic materials, similar to Liu et al. [70]. The FFF process was modeled using the front-

Figure 5. Bead–bead interaction and bond formation mechanism. (1) Contact between deposited
beads. (2) Neck formation. (3) Polymer chains diffusion. Reprinted with permission from refer-
ence [44]. Copyright 2004, Elsevier.

Polymers 2021, 13, x FOR PEER REVIEW 10 of 18 
 

 

model did not consider the thermal variations of the beads in the printing direction. Figure 
6 shows the crystallinity distribution of two adjacently deposited beads. 

Zhou et al. [42] considered a rectangular cross-section of deposited beads and devel-
oped a 3D model to investigate the thermal behavior of ABS material using ANSYS©. A 
similar methodology of step-wise activation, reported by [41], was used for modeling. The 
thermal properties of the material were found to have a significant effect on the solidifi-
cation process. In another study, both convective and radiative heat transfer phenomena 
were considered to develop a 3D analytical model [43]. The numerical model results found 
sound agreement with experimental. 

 
Figure 5. Bead–bead interaction and bond formation mechanism. (1) Contact between deposited 
beads. (2) Neck formation. (3) Polymer chains diffusion. Reprinted with permission from reference 
[44]. Copyright 2004, Elsevier. 

 
Figure 6. Modeled crystallinity distribution during a print simulation of a simple 2 by 2 bead cross 
section. Beads 1–3 are active (deposited), while bead 4 is still inactive. Reproduced with permission 
from reference [20]. Copyright 2018, Elsevier. 

Xia et al. [49] recently presented a bead deposition and solidification model for vis-
coelastic materials, similar to Liu et al. [70]. The FFF process was modeled using the front-

Figure 6. Modeled crystallinity distribution during a print simulation of a simple 2 by 2 bead cross section. Beads 1–3 are
active (deposited), while bead 4 is still inactive. Reproduced with permission from reference [20]. Copyright 2018, Elsevier.



Polymers 2021, 13, 3534 12 of 20

Zhou et al. [42] considered a rectangular cross-section of deposited beads and devel-
oped a 3D model to investigate the thermal behavior of ABS material using ANSYS©. A
similar methodology of step-wise activation, reported by [41], was used for modeling. The
thermal properties of the material were found to have a significant effect on the solidifi-
cation process. In another study, both convective and radiative heat transfer phenomena
were considered to develop a 3D analytical model [43]. The numerical model results found
sound agreement with experimental.

Xia et al. [49] recently presented a bead deposition and solidification model for vis-
coelastic materials, similar to Liu et al. [70]. The FFF process was modeled using the
front-tracking/finite volume method. Three extruded filaments built vertically were simu-
lated considering viscoelastic stresses, and the model was also employed to larger objects
(Figure 7). Bellehumeur et al. [44] were the first to predict the bond formation mechanism
in 3D printed ABS analytically. A 1D lumped heat transfer model was used to predict the
thermal variations. The following governing ordinary differential equation was used:

ρCAv
∂T
∂x

= A
∂
(

k ∂T
∂x

)
∂x

− hP(T − T∞) (1)
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The above equation was solved analytically with defined boundary conditions to
obtain the following solution for temperature variations during the cooling process:

T = T∞ + (T0 − T∞)e−mx (2)

Subsequently, sintering experiments were performed to investigate the dynamics
involved in the bond formation of extruded filaments. The developed model also con-
sidered the effect of different printing parameters. It was suggested that better control
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of the cooling process could assist in controlling the mechanical properties of FFF parts.
Further investigation was conducted in another study [71], where a non-isothermal model
was used to predict the bonding phenomena. This model was highly sensitive to time
and temperature variations. Sun et al. [72] experimentally and numerically investigated
the mechanism involved in controlling the bond formation. Sintering temperature had a
significant effect on the bond formation and, ultimately, the strength. These observations
were also complemented in another work [73]. Costa et al. [74,75] reported a model to
consider transient heat transfer during material deposition. Bead–bead, bead–platform,
and bead–environment contacts were considered in this model. A MATLAB© code was
developed to predict the thermal response and beads adhesion from deposition to complete
solidification. Mcllroy et al. [76,77] thoroughly investigated the polymer chains’ effect on
crystallization behavior. The models included Rolie-Poly formulas to account for polymer
chains diffusion and the impact of shear rate on chains diffusivity, degree of crystallization,
and bead–bead chains diffusion.

3.4. Residual Stresses and Warpage

The strength and dimensional stability of 3D printed parts are affected by induced
residual stresses and warpage. Wang et al. [33] developed a simple analytical model after
rigorous simplifications to predict the warp deformation after the FFF process in ABS and
quantitatively analyzed all the influencing factors. The following expression was derived
to predict the inter-layer warpage (δ):

δ = R
(

1 − cos
L

2R

)
=

n3∆h
6α

(
Tg − Te

)
(n − 1)

∗
{

1 − cos
[

3αL
n∆h

(
Tg − Te

)n − 1
n2

]}
(3)

where R corresponds to the radius of curvature, L represents the section length of the
part, n presents the number of deposited layers, ∆h corresponds to single-layer thickness,
and Tg and Te represent glass-transition and chamber temperatures. Based on the model
analysis, some recommendations were made to reduce the warpage phenomena effectively.
Likewise, Armillotta et al. [34] 3D printed ABS samples with varying process parameters
and observed wrap deformation for each case. Statistical tools were employed to identify
the optimum parameters. The deflection in the 3D printed specimens due to warpage (δT)
was calculated using the following expression:

δT =
3
4

α
(
Tg − Tc

) l2h0

h2

(
1 − h0

h

)
=

3
4

α
(
Tg − Tc

) l2m∆h
h2

(
1 − m∆h

h

)
(4)

An analytical model was also derived for both the elastic and plastic behavior of
multiple-layer deformations based on the experimental observations. Layer thickness
significantly affected the residual stresses, warpage, and surface characteristics.

Xinhua et al. [47] developed a mathematical model for the warpage mechanism in a
thin plate of PLA material based on the elastic theory of thin plates. A special part was
3D printed and analyzed by statistical methods to validate the analytical model. Statistical
methods were found beneficial to optimize the process parameters, and the proposed
model also provided efficient results. However, this model was also based on assumptions,
as beads were assumed to be deposited at once, and thermal stresses were neglected.
Wijnen et al. [48] replaced the temperature step-function in the model presented by Wang
et al. [33] with a physics-based temperature gradient. The proposed model was successfully
applied to predict the warpage in thin walls of PLA; however, the limitation of this model
was predicting the magnitude of the warpage.
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Watanable [51], using a similar 2D model proposed by Bellini [54], performed an
extensive study on polypropylene to predict temperature profiles, deposited bead shapes,
residual stresses, and warpage deformations. The study was extended to investigate the
warpage in PP, and it was suggested to implement PP composites for warpage reduc-
tion. The proposed model can be used to simulate novel materials for exploration and
applications in the FFF process.

Fitzharris et al. [28] extended the work reported by Watanable [51] to investigate the
warpage of high-performance polymer, PPS. Part warpage deformations were obtained
experimentally compared to PP results (from Watanable [51]). Material parameters for PPS
(including coefficient of thermal expansion CTE, thermal conductivity, heat capacity, and
young’s modulus) were individually adjusted to PP values to understand their effect on part
warpage. CTE was regarded as the most significant parameter governing the part warpage,
residual stresses, and shrinkage from simulation results. In addition, simulation was per-
formed considering material parameters for aluminum nitride (AIN)-filler-reinforced PPS.
The incorporation of fillers can alter the CTE, increase thermal conductivity and young’s
modulus of PPS. The simulation results for PPS/AIN composite resulted in reduced part
warpage.

Zhang and Chou [78] presented a 3-dimensional FEA model for distortion analysis in
FFF printed parts. Radiation and conduction heat transfer phenomena were considered in
the model, and residual stresses were analyzed using ANSYS©. However, the model lacked
the beads interaction during solidification. The sensitivity of residual stresses on process
parameters was also studied, and printing speed was identified as an essential parameter
in residual stresses. Xia et al. [79] built a more realistic FFF simulation upon their initial
work on melt flow [80]. The model was also able to predict the part deformations and
material shrinkage over time. The high thermal variations can result in residual stresses;
however, this model did not consider the printing bed temperature. In addition to these
studies, the same authors also analyzed the shapes of the deposited beads [80].

Cattenone et al. [81] developed a framework for 3D simulations on 3D printed parts
deformation using ABAQUS©. The mechanical properties were analyzed by varying time-
step and mesh, and the results agreed with experimental observations. But this model did
not account for bead–bead and bead–print bed interactions. Favaloro et al. [82] were the
first to present residual stresses and warpage analysis on polymer composites. ABAQUS©
was used to simulate PPS/CF composites using the progressive element activation reported
in another work [41]. The model was able to predict the deformations due to crystallization,
residual stresses, and part removal. Figure 8 presents the simulation results of residual
stresses induced in the 3D printed part after cooling.

Talagani et al. [83] explored the potential use of numerical tools to simulate a full-scale
car model. The main aim of this research was to predict the stress concentration areas. The
model was able to predict the part deformations due to thermal and residual stresses.
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4. Future Outlook

The fused filament fabrication process has been under continuous development since
the commercial availability of this technology. Several studies reported experimental
analysis and virtual modeling of different phases involved in the process. The numerical
modeling of material flow inside/outside the printing head and behavior after deposition
with promising outcomes have been reported. Based on the extensive literature review
performed on numerical simulation techniques, the following research challenges and gaps
are identified:

• Fiber Orientation: The fiber orientation in deposited beads depends upon the mate-
rial flow through the nozzle and deposition process. Most of the literature reports the
use of Newtonian isotropic fluid properties; however, these materials should be mod-
eled under anisotropic viscous flow conditions. Current modeling software cannot
solve fourth or higher-order orientation tensors and cannot consider anisotropic flow
characteristics (which is the case with fiber-reinforced composites). Therefore, there
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is a need for better numerical simulation tools to consider realistic fiber orientation
during material flow.

• Beads Deposition: Several heat transfer models have been reported in the literature
to predict the cooling process of the deposited beads. However, due to the anisotropy
involved in the 3DP process, interlayer conduction phenomena need to be considered
as thermal conductivities of deposited beads change with the fiber orientation.

• Interface and Bonding: Bonding between the subsequent layers is highly correlated
with the interface; therefore, the presence of fibers on the bead surface can affect
this process. In addition, the necking phenomenon is derived by the gradients of
surface tension is also influenced by the bead surface morphology. Finally, the material
behavior (crystalline or amorphous) will reflect its viscosity, which ultimately affects
the bonding process; therefore, it must be accounted for accurate process modeling.

• Integrated Simulation Models: The FFF process is a complex multi-stage process as
described in this paper. However, most reported computational work either focused on
the material flow inside the liquefier or material behavior after deposition and is not as
mature as the experimental literature. Therefore, there is a need for integrated studies
considering all these phases of the FFF process (i.e., melt flow behavior inside/outside
the nozzle, material deposition, solidification behavior, bond formation, and warpage
and residual stresses).

• Model Validation: The validation of numerical and analytical models is vital through
experimental studies. Limited studies compared the numerical simulation results with
experimental work, which is essential for validating and broader application of these
models.

• Materials Portfolio: Materials portfolio for the FFF process is rapidly growing. How-
ever, few materials (such as PLA and ABS) are considered for numerical and analytical
modeling of process or material behavior. The researchers should focus on implement-
ing existing models to a broader range of materials or develop models for materials
not yet considered in the literature.

• Polymer Composites: Two-phase materials (composites) are also barely considered
for the numerical modeling of material or the FFF process. The most reported models
address linear amorphous polymers. Different polymers exhibit different character-
istics, such as bare PLA and ABS act as amorphous materials; however, PBT, PA12,
and PEEK exhibit a semi-crystalline nature [84–86]. Moreover, the addition of the
reinforcing phase can alter the nature of the resulting composite material, e.g., PLA
acts as semi-crystalline material with tricalcium phosphate (TCP) [87]. The effect
of reinforcement type and process parameters on polymer nature (amorphous or
crystalline) will be worth addressing.

5. Conclusions

This study provides a comprehensive review of state-of-the-art scientific achievements
in numerical simulations for the FFF process of polymers and their composites. The first
section presents an in-depth discussion on the physical phenomena involved in the FFF
process and highlights the multi-level complexity. The subsequent section discusses the
research efforts, specifically on numerical simulation techniques reported in the literature
for the FFF process.

The future of 3DP processes, specifically the FFF process, is promising due to research
and development interest. However, several challenges are still faced. The focused research
on the gaps mentioned above could further improve the process and material design.

Currently, the FFF process is being explored extensively; however, the numerical
simulation approaches are still empirically calibrated. This work has identified several
issues persisting the wide use of numerical simulation techniques for its development.
Addressing these research challenges will enable a more realistic and reliable prediction of
the FFF process.
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