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Abstract: Fabricating polymeric scaffolds using cost-effective manufacturing processes is still chal-
lenging. Gas foaming techniques using supercritical carbon dioxide (scCO2) have attracted attention
for producing synthetic polymer matrices; however, the high-pressure requirements are often a tech-
nological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a,
offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature
conditions and the use of low-cost equipment. Here, we report for the first time the use of Freon
R134a for generating porous polymer matrices, specifically polylactide (PLA). PLA scaffolds pro-
cessed with Freon R134a exhibited larger pore sizes, and total porosity, and appropriate mechanical
properties compared with those achieved by scCO2 processing. PLGA scaffolds processed with Freon
R134a were highly porous and showed a relatively fragile structure. Human mesenchymal stem cells
(MSCs) attached to PLA scaffolds processed with Freon R134a, and their metabolic activity increased
during culturing. In addition, MSCs displayed spread morphology on the PLA scaffolds processed
with Freon R134a, with a well-organized actin cytoskeleton and a dense matrix of fibronectin fibrils.
Functionalization of Freon R134a-processed PLA scaffolds with protein nanoparticles, used as bioac-
tive factors, enhanced the scaffolds’ cytocompatibility. These findings indicate that gas foaming using
compressed Freon R134a could represent a cost-effective and environmentally friendly fabrication
technology to produce polymeric scaffolds for tissue engineering approaches.

Keywords: 3D scaffolds; biomaterial engineering; tissue engineering; mesenchymal stem cells;
polymeric foams; surface functionalization; protein nanoparticles; cell growth; compressed fluids;
Freon R134a

1. Introduction

Scaffolds for tissue engineering should be degradable and biocompatible and have
an appropriate porous structure and mechanical properties to allow cell colonization
and growth [1–5]. Indeed, the presence of pores is essential not only for allowing cell
migration and growth but also for enabling the diffusion of nutrients, oxygen and metabolic
waste, which are necessary for the tissue regeneration process. Although cell migration
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and nutrient transport are ensured with the presence of intercommunicated pores of
approximately 150 µm in diameter, larger sizes (>300 µm) are recommended to promote
vascularization and enhance osteogenesis [2]. However, a high degree of porosity usually
implies a reduction in the mechanical properties of scaffolds, which could compromise the
structure’s integrity [4–6]. Consequently, a compromise between the pores’ structure and
dimensions and the mechanical properties is required.

Developing cost-effective procedures to fabricate synthetic polymers with controlled
porous structures is an ongoing challenge in the biomedical engineering field. A variety
of methods are available, including conventional solvent casting/particulate leaching,
thermally induced phase separation, freeze drying, compression molding, electrospinning,
as well as more advanced processing and fabrication methods such as those based on 3D
printing [2,7,8]. However, all such conventional methods entail the use of organic solvents
and high temperatures during the fabrication process, which limit their use when loading
bioactive molecules into the matrices. Indeed, growth factors and other proteins are prone
to denaturation at high temperatures or in the presence of certain organic solvents. In
addition, solvent residues can trigger undesired harmful side effects at the implantation site.
Salt leaching with sodium chloride is a common strategy for obtaining porous scaffolds;
however, pore size distributions are difficult to reproduce, and therefore the scale-up of
this procedure is highly challenging. Moreover, additive manufacturing methods such
as rapid prototyping, which enables the generation of patient-customized, precise, and
complex architectures, face several scale-up and cost-related difficulties that limit their
massive clinical application.

An attractive alternative for overcoming the limitations associated with conventional
methods is the “gas foaming” technique, which uses supercritical carbon dioxide (scCO2) to
obtain materials with a high degree of porosity (up to 80%) [9–11]. This organic solvent-free
process can occur at physiological temperatures, allowing the incorporation of biological
agents [12–16]. scCO2 is an attractive solvent because it is non-toxic, non-flammable
and relatively inert [5,17]. Foaming with scCO2 requires pressures above the critical
value (around 10 MPa) to achieve the gas’ supercritical state. To achieve these processing
conditions (Tc of 304 K and Pc of 7.38 MPa), high-pressure equipment is required [18].
An alternative to scCO2 is 1,1,1,2-tetrafluoroethane, commercially known as Freon R134a
or norflurane, which despite its higher price provides significant advantages over CO2
in supercritical processing, including a much lower pressure and temperature setting to
become liquid (<2 MPa at room temperature), resulting not only in a reduction of the
risks associated with working at high pressures but also in the cost of the equipment,
with less specialized units and fittings, thereby facilitating its industrial application [19].
Similar to scCO2, Freon R134a is non-toxic and non-flammable, with insignificant ozone
depletion potential compared with other freons, and it is currently used in numerous
biomedical applications [20]. Freon R134a can be more easily compressed and recycled in
a gas-foaming process than CO2 due to the lower Pc of Freon R134a. To our knowledge,
however, its use for preparing polymeric scaffolds using the gas foaming technique has not
been attempted to date.

The functionalization of scaffold surfaces with bioactive factors has been investigated
as a strategy to enhance cell colonization and growth [3,21–23]. Inclusion bodies like
protein nanoparticles (pNPs) are deposits formed in bacteria due to recombinant protein
overexpression [24]. These pNPs (in the range of few hundreds of nanometers) are com-
monly found in the bacteria cytoplasm [25]. In the past, such pNPs have been described as
an obstacle in recombinant processes and considered as non-desired products. However,
recent studies have demonstrated their potential as bioactive factors for tissue engineering.
These protein aggregates not only are non-cytotoxic but, when incorporated to surfaces,
also generate mechanical and biochemical signals that stimulate cell adhesion and prolif-
eration [26–32]. The addition of bioactive factors to scaffolds can be achieved by various
strategies, with direct surface adsorption being the most frequently used [4,21].
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Due to their biocompatibility and biodegradability, polylactide (PLA) and poly(lactide-
co-glycolide) (PLGA) saturated aliphatic polyesters stand out among the synthetic polymers
used for tissue engineering [33–38]. In this study, we explored the use of compressed Freon
R134a for processing PLA matrices at low pressure and compared the results with the
same polymeric matrices processed at higher pressure using the well-implemented scCO2.
For comparative purposes, we also fabricated PLGA matrices using compressed Freon
R134a. To enhance their bioactivity, pNPs derived from green fluorescence protein (GFP),
a commonly used marker for live-cell imaging, were used to functionalize the surface
of the resulting porous scaffolds by means of a filtration process. Lastly, to explore the
suitability of scaffolds processed with compressed fluids and functionalized with pNPs for
bone tissue engineering applications, we investigated their cytocompatibility using human
mesenchymal stem cells (MSCs) as precursors of osteoblasts, the bone-forming cells.

2. Materials and Methods
2.1. Materials

We employed semicrystalline polylactide (PDL, LLA; abbreviated as PLA) and amor-
phous PLGA with different molecular weights and inherent viscosities. The PDL, LLA
(70:30, with inherent viscosity between 5.7–6.5 dL/g), Resomer® LR 708 (molecular weight,
150,000 Da), and PLGA (50:50, with inherent viscosity between 0.32–0.44 dL/g), and RE-
SOMER RG503 (molecular weight, 30,000 Da) were purchased from Evonik Röhm GmbH
(Darmstadt, Germany). Carbon dioxide (purity 99.995%) and Freon R134a were supplied
by Carburos Metálicos-Air products S.A. (Barcelona, Spain).

2.2. Methods
2.2.1. Preparation of Polymer Disks

The desired mass of polymer was weighed and placed in a special polytetrafluoroethy-
lene mold with a diameter of 13 mm and formed by two detachable parts, allowing for
disk removal after preparation. The polymer pellets were then compressed with 3 tonnes
for 20 s to form compressed non-porous polymer disks using a hydraulic press (Perkin
Elmer, Waltham, MA, USA). Due to the lower diffusion of compressed fluids in semicrys-
talline polymers than in amorphous ones [9], an annealing pretreatment to amorphize the
crystalline region of PLA was performed. As shown by the thermograms of the differential
scanning calorimetry (DSC) (PerkinElmer DSC 8500 Lab System) (Supplementary Materials,
Figures S1 and S2), the PLA crystalline phase was removed by thermal annealing of the
disks in an oven at 150 ◦C. Fifteen minutes were sufficient for the complete amorphization
of the PLA prior to its processing with compressed fluids. DSC analysis of the annealed
PLA was performed from 20 ◦C to 250 ◦C at a heating rate of 10 ◦C/min. One mg of the
sample was sealed into a 40-µL aluminum pan and heated under a nitrogen purge of 50
mL/min. the temperature calibrations were performed using indium as the standard.

2.2.2. 3D Porous Scaffold Fabrication Using Compressed Fluids

We prepared 3D porous scaffolds from the polymer disks using a foaming process with
compressed fluids in a high-pressure plant at a laboratory scale (Figure 1). Several polymer
disks were placed in a high-pressure vessel using a special stainless-steel basket divided
into seven levels. The vessel, R (300 mL), was pre-heated to the working temperature
(Tw) and then pressurized to the desired pressure (Pw) by adding the corresponding
compressed fluid (scCO2 or Freon R134a). A high-pressure pump (P1 or P2) was used to
introduce the compressed fluid into the vessel up to the desired working pressure. The
polymer/compressed-fluid mixture was maintained at Pw for a specific soaking time (ts).
The vessel was then depressurized from Pw to ambient pressure at a constant flow rate
by opening valve V-7 to 60% of its aperture. The foaming process occurs in three different
steps. First, the polymer matrix is saturated with the corresponding compressed fluid at the
working pressure and temperature. Second, once saturation is achieved, the diffusion of
the compressed fluid forms a single phase of polymer/compressed fluid. Third, a decrease
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in pressure causes phase segregation, and the compressed fluid evaporates, leading to the
generation of pores or foaming of the polymer. The resulting foamed polymeric matrices
were then cut with a diamond saw to eliminate the generated outer non-porous layer
and to shape the specimens as cylinders with a radius of 15 mm and thickness of 3.5 mm.
Non-complete foaming of the polymer disks was detected visually by the non-expansion
of the disk and by the presence of non-foamed polymer at the center of the disk, once it
was cut with the diamond saw (Supplementary Materials, Figure S3). The resulting porous
specimens were stored for 1 week at room temperature until no loss of weight (due to gas
release) was registered, the specimens were then kept at 4 ◦C until use.
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Figure 1. Diagram of the equipment used for preparing 3D porous polymeric scaffolds with compressed CO2 or Freon
R134a. P1 and P2: pumps for compressing the fluids; DR1 and DR2: rupture disks; F1: mass flow meter; V-1/V-7: valves;
H1: heater; R: high-pressure vessel; F1 and FCO2: filters; PI1 and PI2: pressure indicators; PIC: pressure controller; TI:
temperature indicator.

2.2.3. Porous Scaffold Characterization
Solid Density and Porosity

We calculated the density of the foamed (“apparent”) and unfoamed (“absolute”)
scaffolds with a helium pycnometer (Ultrapycnometer 1200e, Quantachrome Instruments,
Boynton Beach, FL, USA). For the foamed disks, the pycnometer determined the volume oc-
cupied by the solid material plus the volume of the closed porosity, while for the unfoamed
disks, the device determined the volume of solid material without pores.

The porosity, including the closed and open porosity, was estimated by correlating the
porosity (P) to the density (ρ) of the foamed and unfoamed materials [39]. We calculated
the total porosity (PT) of the prepared materials by dividing the geometric density (ρgeometric)
by the unfoamed density (ρunfoamed), using the formula PT = [1 − (ρgeometric/ρunfoamed)]·100,
where the geometric density (ρgeometric) refers to the density of the foamed disk, once the
outer layer was removed, and using the foamed mass and geometric volume. We calculated
this volume with the theoretical volume of a cylinder (v = π·r2·h, where r is the radius of
the disk and h is the height). The diameter and height of each disk was measured using a
standard caliper (Mitutoyo, Tokyo, Japan). Similarly, we calculated the closed porosity (Pclosed)
by dividing the foamed density (ρpycnometry) by the unfoamed density (ρunfoamed), using the
formula Pclosed = (1 − ρpycnometry/ρunfoamed)·100. We then obtained the open porosity (PO)
simply as the difference between the total and closed porosity (i.e, PO = PT − Pclosed).
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We calculated the mean porosity values and corresponding standard deviations from
the experimental measurements performed on three samples of each type of scaffold.

Morphology by Scanning Electron Microscopy (SEM)

We analyzed the microscopic and nanoscopic morphologies of the porous polymeric
matrices by scanning electron microscopy (Quanta 200 FEG-ESEM, FEI, Hillsboro, OR,
USA). Prior to the analysis, the porous disks were coated with gold for 4 min at 20 mA in a
sputter coater (K550X, Emitech, Surrey, UK) by modifying the inclination of the holder to
achieve a homogeneous coverage of the scaffolds.

Micro X-ray Computed Tomography

All scaffolds were characterized using X-ray micro-computed tomography (SkyScan-
1272; Bruker, Kontich, Belgium), a non-destructive analysis in which the pore size distri-
bution and 3D visualization can be simultaneously obtained. Cylindrical scaffolds with a
thickness 3.5 mm and diameter of 15 mm were mounted in the equipment. Analyses were
performed with a charged-couple device camera at a pixel size of 9 µm, using a source
voltage of 50 kV and a current of 200 µA. All generated images were saved in TIFF format
with a pixel size of 12 µm. We employed NRecon software (Micro Photonics, Allentown,
PA, USA) to reconstruct cross-section images from the tomography projection images.

Rheological Properties

We measured the rheological properties of the porous scaffolds through the small-
amplitude oscillatory shear technique, as previously shown [40–42], using a rheometer
(HAAKE RheoStress RS600, Thermo Electron Corporation, Waltham, MA, USA) with a
rotor diameter of 10 mm. This technique consists of applying a small-amplitude torsional
oscillation that generates a shear flow on the sample. Strain and frequency sweeps were
performed to determine the range of pressure and frequency where the scaffolds maintain
their viscoelastic behavior and achieve the value of the shear modulus (G’).

2.2.4. pNPs Production and Purification

pNPs were produced in the E. coli strain MC4100, transformed with the expression
vector pTV1GFP. E. coli was grown in LB-rich medium supplemented with 100 µg/mL of
ampicillin and 30 µg/mL of streptomycin at 37 ◦C and 250 rpm. Production of pNPs was
induced when reaching an optical density at 550 nm of 0.5 by adding 1 mM isopropyl Beta-
D-1-thiogalactopyranoside. After 3 h, the cell cultures were harvested for pNPs purification
with a combination of mechanical and enzymatic procedures, as previously described [43].

2.2.5. Porous Scaffold Functionalization with pNPs

Surface functionalization of the porous scaffolds was performed using a filtration
procedure in which an aqueous suspension of pNPs was forced through the porous ma-
terial. We first resuspended 600 µg of pNPs in 20 mL of phosphate-buffered saline (PBS)
supplemented with a mixture of 1.6 mL of tetracycline, kanamycin and chloramphenicol
to prevent microbial contamination of the scaffolds during their manipulation. The sus-
pension was sonicated for 10 min, and 5 mL of the suspension was then filtered through
the porous specimen to decorate the material. To increase the efficiency of the process, the
procedure was repeated 3 times, each time using the same previously filtrated 5 mL. The
pNPs-loaded scaffolds obtained were dried with compressed air and weighed before (m0)
and after filtration and after the drying process (mf). The scaffolds were kept at −20 ◦C
until use. pNPs loading was calculated using the following equation: (mf−m0)/m0.

We estimated the amount of pNPs retained on the surface of the functionalized scaf-
folds using a fluorescence spectrophotometer (Cary Eclipse Fluorescence Spectrometer,
Santa Clara, CA, USA) by comparing the fluorescence intensities at 510 nm of the sus-
pension before and after the decoration process. To study the penetrability of pNPs into
PLA-based scaffolds, we cut a cross-section of the scaffold using a diamond wire saw and
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mounted it on glass-bottom slides (Nunc, Wiesbaden, Germany). Images were taken using
a TCS SPE confocal microscope (Leica, Wetzlar, Germany). The fluorescence from pNPs
was excited with a 488-nm laser line and collected at the emission range of 495–590 nm.

2.2.6. Cell Culture and Viability Assay

Purified human bone marrow-derived MSCs (CD105+, CD29+, CD44+, CD14−, CD34−

and CD45−) were purchased from Lonza (Basel, Switzerland). The cells were cultured in
a defined medium (Lonza) consisting of basal medium and SingleQuots growth supple-
ments containing fetal bovine serum (FBS), L-glutamine, penicillin, and streptomycin. All
experiments were performed below seven cell passages. The experiments were performed
in duplicate using cells isolated from three different donors aged 20–31 years. Before cell
seeding, scaffolds decorated or not with pNPs were incubated in DMEM containing 15%
FBS and antibiotics (DMEM-15%FBS) for 24 h. We seeded 2 × 105 MSCs on scaffolds
placed in 24-well plates and cultured them in DMEM-15%FBS for 1–18 days. Cell viability
was evaluated using the alamarBlue assay (Biosource, Nivelles, Belgium). Cells were
incubated in DMEM containing 10% alamarBlue dye; 3 h later, the fluorescence emitted
by the cell-reduced alamarBlue was quantified using a spectrofluorometer (Synergie4,
Evry, France).

2.2.7. Immunofluorescence Assays

The MSCs cultured for 8 days on the scaffolds were washed with PBS followed by
fixation in 4% (w/v) paraformaldehyde in PBS and permeabilization with 0.1% Triton X-100
in PBS. For fibronectin immunostaining, the cells were blocked in 2% bovine serum albumin
(BSA) in PBS containing 0.05% Tween 20 and then incubated with mouse anti-human
fibronectin monoclonal antibody (Santa Cruz, Heidelberg, Germany) diluted 1:50 in 1% BSA
in PBS. The cells were washed with 0.05% Tween 20 in PBS followed by incubation with goat
anti-mouse Alexa-Fluor 488 (Molecular Probes, Leiden, The Netherlands) diluted 1:1000
in 1% BSA in PBS. To label actin cytoskeleton, the cells were stained with PBS containing
4 × 10−7 M phalloidin-TRITC (Sigma-Aldrich, Madrid, Spain). For nuclei staining, the
cells were incubated in PBS containing 3 × 10−6 M 4,6-diamidino-2-phenylindole (DAPI;
Sigma) before the confocal microscopy examination.

2.2.8. Statistical Analysis

Experiments were conducted in duplicate, and the data are presented as mean values
± SD of four independent experiments. The statistical analyses were performed using the
Statistical Package for the Social Sciences, version 15.0 (SPSS Inc., Chicago, IL, USA). The
quantitative data were tested using the Kruskal-Wallis test followed by Dunn’s multiple
comparison test, and the level of significance was set at p < 0.05.

3. Results and Discussion

We studied the processing conditions of PLA with CO2 and Freon R134a compressed
fluids and their influence on the physicochemical and mechanical properties of the resulting
porous matrices. We also functionalized the surface of the obtained 3D porous matrices
with bioactive pNPs and evaluated their in vitro cytocompatibility by culturing MSCs on
them. Given that the bioactivity of 3D porous scaffolds depends not only on the fabrication
routes and processing media but also on the nature of the material, we processed PLGA (a
polymer widely used in the biomedical field) with Freon R134a.

3.1. Preparation of 3D Porous Scaffolds

The three most common options for polymer foaming with compressed fluids are
batch foaming, foam extrusion and the injection foam molding [9]. The methodology used
in this study for preparing 3D porous scaffolds was based on batch foaming process, which
is extensively employed in research because it allows for a fine control of the processing
variables and is relatively simple to perform. However, extrusion foaming is the industrially
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preferred option for foaming due to its adaptability for continuous production and easier
scaling-up potential [44].

The general experimental procedure employed in this study to prepare the various
types of porous polymeric matrices consisted of several steps (Figure 2). In a high-pressure
vessel, polymer disks were exposed to compressed fluids (either Freon R134a or scCO2) at a
given working pressure (Pw) and temperature (Tw) to ensure the compressed fluid reached
a supercritical state for a suitable soaking time (t), depending on the polymer/compressed
fluid mutual diffusivity, to allow sorption and fluid solubilization in the polymeric matrix.
This was then followed by a depressurization step, which induced gas bubble nucleation
and growth and the formation of the porous structure.
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Figure 2. Scheme of the experimental procedure for preparing 3D porous scaffolds. (a) First, polymeric disks were prepared
from PLA or PLGA polymer pellets. (b) The disks were then transformed into porous scaffolds using compressed fluid
processing in a high-pressure plant. (c) The non-porous skin layer was cut out, obtaining a porous scaffold disk. (d) The
disk was subsequently loaded with bioactive pNPs by a filtration procedure.

While scCO2 requires working pressures >10 MPa, Freon R134a requires almost an
order of magnitude lower pressure (2 MPa) [45]. Although all resulting 3D scaffolds
showed a porous structure, they also presented an outer non-porous layer. Outer layer
formation, previously reported for the CO2 foaming process [16,46,47], has been attributed
to rapid gas diffusivity as the gas escapes from the scaffold surface during depressurization
and to the solubility of the CO2 at the pressure employed, the effects of which have been
previously described [48]. The same mechanism could explain the formation of the outer
non-porous layer in the case of the dense Freon. When depressurizing, the solubility of
the Freon decreases, and, consequently, the diffusivity increases, resulting in the formation
of this undesirable layer, which acts as a barrier for deep cell colonization and for the
delivery of inductive factors to the inner part of the scaffold. We therefore developed a
cutting procedure to remove the outer layer of the scaffold using a diamond saw, obtaining
porous disks with the desired thickness of 3.5 mm. Lastly, the resulting 3D porous scaffolds
were internally functionalized with controlled amounts of GFP-based pNPs. The gas
foaming processing conditions evaluated for PLA and PLGA are shown in Table 1, which
lists the operational process values for the pressure, temperature and soaking times that
yielded complete foaming of the polymer disks and appropriate scaffold characteristics,
such as a high degree of porosity and mechanical strength, to behave as scaffolds for
tissue engineering. Foaming with Freon R134a required a slightly higher temperature than
foaming with scCO2, as well as a longer soaking time.

Given that the molecular weight and viscosity of PLGA is lower than that of PLA, the
solubility of dense Freon inside the polymer increases. Consequently, a lower Tw is needed
to produce the expansion of PLGA disks inside the vessel. Indeed, a smaller mass of PLGA
was employed to prepare the polymer disk due to the higher expansion during processing.
It is known that the diffusion of compressed fluids is much lower in semicrystalline poly-
mers than in amorphous ones, due to the free volume effect [9]. Therefore, the annealing
pretreatment causing an amorphous transformation of the crystalline region of PLA was
essential for achieving a complete polymer expansion by gas foaming. This pre-treatment
was not needed for PLGA due to its amorphous nature.
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Table 1. Experimental conditions for preparing the porous polymeric matrices.

Stage Processing Parameters
Material

PLA PLA PLA PLA PLGA

Polymer disk
preparation

Thermal annealing Yes Yes Yes Yes No

m (g) 0.4 0.4 0.8 0.8 0.3

T (◦C) 150 150 150 150 -

Applied pressure (Kg) 3000 3000 3000 3000 500

Porous scaffold
fabrication

Compressed fluid Freon R134a Freon R134a scCO2 scCO2 Freon R134a

Tw (◦C) 40 40 35 35 35

Pw (MPa) 2 2 10.3 10.3 2

Soaking time, t (h) 3 3 2 2 2

pNP Scaffold
decoration - No Yes No Yes No

3.2. 3D Porous Scaffold Characterization

Using SEM and micro-computed tomography, we characterized the morphology and
pore size distribution of PLA processed with Freon R134a or scCO2 and of PLGA scaffolds
processed with Freon R134a.

The SEM images of the longitudinal and cross-sections of the processed polymers
revealed porous structures for the three materials (Figure 3), confirming that dense Freon
can be used to successfully prepare 3D porous scaffolds of PLA and PLGA. Moreover,
PLA-based scaffolds processed with Freon R134a showed larger pores with thinner walls
than those processed with CO2.
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The microtomography analysis confirmed the heterogeneous pore size distributions
in the three fabricated 3D structures, which were especially wide when Freon R134a was
employed as the processing media. Indeed, the PLA and PLGA scaffolds processed with
Freon R134a showed a heterogeneous pore size distribution, with high proportions of pores
larger than 500 µm (Figure 4). Conversely, PLA processed with scCO2 exhibited a more ho-
mogeneous pore size distribution, with a high proportion of 50–500-µm pores. The impact
of pressure on the diffusivity is linked to the plasticization effect and hydrostatic pressure,
which is a key factor at higher pressure because it decreases the available free volume in the
polymer mixture leading to a reduced diffusion coefficient. However, the plasticizing effect
of the foaming agent at lower pressure is the key factor because it increases the polymer
chain mobility, which in turn results in a higher diffusion coefficient [49,50].
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A valuable processing aid in any gas foaming process is the plasticization of the
polymer brought about by the dissolved blowing agent, which could induce a significant
reduction in the melting and glass transition temperatures. In the case of CO2, this effect is
well-reported [9]. Taking into account these considerations, the larger pore size and the
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larger total porosity of PLA achieved with Freon R134a at low pressure, compared with
that achieved by scCO2 processing, is likely due to the larger Tm reduction and larger
plasticization of the PLA upon exposure to Freon R134a. This could also be linked to the
hydrostatic pressure under high pressure scCO2 processing, which might cause a decrease
in gas diffusivity due to the reduction in the available free volume in the system.

Given that the minimum pore size that allows cell growth within scaffolds is ap-
proximately 150 µm [51–53] and that bone regeneration is enhanced with pore sizes of
approximately 300 µm and higher [54], the pore structures obtained by the mild and
environmentally friendly processing with Freon R143a seem to be adequate for tissue
engineering applications.

To further characterize the scaffolds porosity and pore size, mercury intrusion may
be considered. Due to the high pressures applied to the materials under study, however,
mercury intrusion is not recommended when working with non-rigid materials, like those
in this study, because of potential pore re-arrangement [55,56]. Thus, as detailed in the
Methods section, the porosity of the three different materials was finally evaluated through
the absolute density of unfoamed disks, the apparent density of foamed disks and the
geometric densities as determined by helium pycnometry (Table 2 and Supplementary
Materials (Figure S4)). Open porosity values were not directly measured. Instead, they
were calculated by subtracting the closed porosity from the total porosity, which explains
their relatively high errors compared with those of Pclosed and PT. As expected, the
three tested materials were found to be highly porous, with values >80% in terms of
total porosity. PLGA-based scaffolds presented the highest degree of total porosity, while
the lowest corresponded to the PLA-based scaffolds processed with scCO2. However,
large percentages of closed pores (>80%) were obtained in the PLA and PLGA scaffolds
produced with Freon R134a, because of the gas foaming technique. In contrast, the PLA-
based scaffolds processed with scCO2 exhibited lower closed porosity values (56.9%) and,
therefore, a higher volume of open pores. At the explored processing conditions, the
pore size was larger in the Freon R134a-processed materials, although scCO2 led to larger
degrees of internal connectivity.

Table 2. Porosities of the studied 3D porous scaffolds.

Material Total Porosity, PT
(%)

Closed Porosity,
Pclosed (%)

Open Porosity, PO
(%)

PLA-Freon R134a 92.8 ± 2.0 83.2 ± 3.3 9.6 ± 1.3
PLA-scCO2 82.3 ± 0.9 56.9 ± 7.5 25.4 ± 6.6

PLGA-Freon R134a 96.7 ± 0.8 89.1 ± 3.3 7.6 ± 3.4
Mean porosity values and the corresponding standard deviations were calculated, as described in Methods
section, from experimental measurements performed over 3 samples of each type of scaffold.

Although a high degree of porosity, as well as large and open pores, are generally de-
sired to facilitate cell ingrowth and vascularization, these characteristics might result in the
scaffolds’ loss of mechanical properties due to the increased void volume, compromising
their structural integrity. We performed a rheological analysis of the scaffolds to character-
ize their structural integrity by determining the dynamic (G’) and loss modulus (G”) in the
linear-viscoelastic regime (Figures 5 and S5). Strain sweeps were performed at a constant
frequency of 1.0 Hz, and the pressure was varied from 100 Pa to 2000 Pa to study the range
in which the scaffolds show a constant G’. We then fixed a value of 500 Pa and performed
frequency sweeps from 0.1 Hz to 100 Hz. All scaffolds showed a linear G’ behavior from
100 Pa to 1500 Pa, except PLA processed with Freon R134a, whose linear range was 100–550
Pa (Figure 5A). The frequency varied from 0.1 Hz to 15 Hz for all samples (Figure 5B).
The modulus achieved showed that the PLA processed with scCO2 was the hardest and
most compact scaffold, reaching stability at 4.52 ± 0.58 MPa, followed by PLA processed
with Freon R134a, which is also hard (G’ = 1.08 ± 0.49 MPa) within a similar range. The
morphology, degree of heterogeneity and orientation of the pores, as well as the pore size
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distribution and open porosity, strongly influence the scaffold’s mechanical behavior. In
this regard, differences in the shear moduli of PLA processed with CO2 and Freon134a
can be related to their differences in porosity and pore size and distribution. As expected,
the PLGA scaffold was the softest (G’ = 0.52 ± 0.08 MPa), resulting in a relatively fragile
structure (see Supplementary Materials, Figure S5). Bone shows a complex, anisotropic
structure in which highly different types of non-homogeneously distributed organic and
inorganic matter are present. In addition, changes related to anatomical location, shape and
physiopathological conditions result in major variations of the measured mechanical pa-
rameters, with the shear modulus values of trabecular bone ranging from 8 to 40 MPa [57].
Although the G’ values of the PLA scaffolds processed with scCO2 and FreonR134 are close
to those measured in bone, these scaffolds might not meet the mechanical requirements for
repairing load-bearing defects. However, there might be a window of opportunity in the
treatment of non-load-bearing defects (e.g., for repairing craniofacial defects). Reinforced
porous matrices could be obtained by preparing composites of polymer and bioceramic
fillers. In fact, supercritical CO2 foaming allowed for the manufacture of porous com-
posites of PLA and hydroxyapatite or β-TCP microparticles with superior viscoelastic
properties [58].
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3.3. Surface Functionalization of 3D Porous Scaffolds with GPF-Based pNPs

We next attempted to decorate the PLA scaffolds processed with Freon R134a or scCO2
with pNPs that promote cell growth [43]. GFP-based pNPs were adsorbed on the surface of
the inner and external porous walls by means of a filtration step, and their localization was
observed by confocal microscopy taking advantage of the pNP fluorescence, confirming
that the internal connectivity of the pores created with Freon R134a or scCO2 allowed pNPs
to reach the inner pores of the scaffold (Supplementary Materials, Figure S6). However, we
observed slightly higher loading of pNPs in the scaffolds generated with scCO2 than with
Freon R134a, both on the surface and inside the material. Quantification of retained pNPs in
the functionalized scaffolds revealed that 69.8 ± 3.8% and 75.4 ± 2.2% of the loaded pNPs
were adsorbed into the PLA scaffolds processed with Freon R134a and scCO2, respectively.
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3.4. Cytocompatibility of 3D Porous Scaffolds

To evaluate the cytocompatibility of the PLA and PLGA scaffolds processed with
Freon R134a, we cultured MSCs on these materials for 1–18 days (Figure 6). The metabolic
activity data after culturing for one day showed that both polymeric matrices support
MSC attachment, as observed in previous studies in which this cell type was cultured on
polymeric scaffolds developed by conventional techniques [59,60]. The composition of
the polymer has been shown to influence the scaffold’s structure [61]. In fact, processing
of PLA and PLGA polymers with Freon R134a led to the generation of scaffolds with
different structures, which might affect MSC behavior. The MSCs’ metabolic activity at day
1 was notably higher on the PLA scaffolds than on the PLGA scaffolds. The MSC viability
on the PLGA scaffolds also did not increase over culture time (Figure 6A), suggesting
that the physicochemical properties of PLGA scaffolds, including sharp edges (Figure 3C)
and fragile microstructure (Figure S2), were inadequate for supporting MSC attachment
and growth. In contrast to that observed for PLGA, the physicochemical properties of
the PLA scaffolds processed with Freon R134a provided a more suitable environment
for cell growth. A comparison between the PLA scaffolds processed with Freon R134a
and with scCO2 revealed that the metabolic activity of the MSCs cultured for 1 day was
reduced on the matrices processed with Freon R134a, which could be attributed to lower
cell adhesion. The morphological features of the porous interfaces and, in particular, the
pore sizes have an important effect on the number of cells that can attach and adhere to
the materials. Regardless of the biomaterial or adherent cells tested, seeding efficiency
decreases as the pore size increases [62–64]. Increased pore size reduces the surface area
within the structure, lowering the available space for cell adhesion and limiting the cell
attachment sites. In our study, MSCs likely attached at a higher extent to the surface of
the PLA scaffolds processed with scCO2, with a higher proportion of 50–500-µm pores,
than to scaffolds processed with Freon R134a, with a higher proportion of pores >500 µm
(Figure 4). In addition to increased pore size, the PLA scaffolds processed with Freon R134a
exhibited topographical features consisting of curved surfaces limited by sharp ridges
(Figure 3), which could hinder the formation of focal adhesions, structures providing cell
anchoring to attachment sites in the substrate. MSC viability increased from day 1 to day 8
on the PLA scaffolds processed with Freon R134a, and the increase was more pronounced
than that observed on the matrices processed with scCO2. The metabolic activity of the
MSCs cultured on the PLA scaffolds remained constant at day 13 and decreased at day
18. The microscopic examination revealed that the MSCs cultured for 8 days reached
confluence on the PLA scaffolds processed with Freon R134a or scCO2 and displayed
spread morphology with a similarly well-organized actin cytoskeleton and a dense matrix
of fibronectin fibrils (Figure 6B). Lastly, we studied the impact of functionalized PLA
scaffolds with pNPs [27,28,65]. There were no signs of toxicity promoted by pNPs in
the cells cultured on the pNP-decorated scaffolds, as revealed by alamarBlue assay and
DAPI staining. On the contrary, the functionalization of the PLA scaffolds processed with
Freon R134a or scCO2 improved MSC viability, an effect observed at all studied periods.
High tunability regarding protein composition, as well as the architectural features of
pNPs, provides a huge range of possibilities for combining mechanical, biochemical and
temporal stimulation of selected cellular responses such as adhesion, proliferation and
differentiation [43,66,67].

Although the pore interconnectivity and open porosity of the fabricated structures
is low, open porosity is expected to increase as the scaffold degrades, facilitating cell
migration to the inside. Scaffolds processed with Freon R134a show a high percentage of
pores larger than 500 µm (Figure 4) and with a wall width between pores much smaller
than the pore size, as clearly observed in the SEM images of longitudinal and cross-sections
of the processed polymers (Figure 3). The features of Freon R134a-processed PLA are
ideal for the rapid formation of open porosity, which depends on the rate of polymer
degradation and on the microscopic structural characteristics of the separation between
the scaffold’s pores.
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maximum projections showing nuclei (blue), actin (red) or fibronectin (green) of MSCs cultured on
the scaffolds for 8 days. * p < 0.05 compared with the scaffolds without pNPs. # p < 0.05 compared
with PLA-Freon.

4. Conclusions

Scaffolds consisting of PLA can be successfully engineered by compressed fluid
technology using dense Freon R134a as a solvent media, obtaining desirable structural
characteristics such as a high degree of total porosity (>80%) with high proportions of
pores larger than 500 µm and a G’ of 1.08 ± 0.49 MPa. This manufacturing method is
performed at a working pressure of 2 MPa, nearly one order of magnitude lower than
that employed in scaffold manufacturing with scCO2 (>10 MPa). CO2 is a gas at 2 MPa
and above 25 ◦C; therefore, polymer foaming at such low pressures cannot be achieved
with this compressible gas. This reduced operating pressure will have a positive impact
in terms of reduced equipment and operational costs and increased safety and on process
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scalability of industrially relevant foaming technologies, such as extrusion foaming and
bead foaming, performed up to now with scCO2 at higher pressures.

In this study, we produced for the first time polymeric porous materials for biomedical
applications using dense Freon R134a as a solvent media and demonstrated its processing
advantages, which could be further improved upon through technological development.
Further research on optimizing the processing parameters such as the working pressure
and depressurization flow, which have been shown to have a significant impact on CO2-
processed polymeric scaffolds and could likely lead to enhanced results in terms of a higher
percentage of open porosity with dense Freon R134a and even higher cytocompatibility.
The presented method could also be employed for polymers in which the compressed
gas can diffuse and plasticize. Freon R134a has been shown to be a good plasticizer,
and it can solubilize in polyvinyl acetate, cellulosic polymers, and certain vinylidene
fluoride polymers, in addition to saturated aliphatic polyesters, such as PLA and PLGA,
thereby promising a wide applicability of the methodology reported herein [68]. In vitro
studies using human MSCs have shown that PLA scaffolds processed with Freon R134a are
cytocompatible. This study also demonstrates for the first time that pNP functionalization
of PLA scaffolds processed with Freon R134a is an effective approach for increasing the
viability of osteoprogenitor cells, taking into account its processing advantages.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13203453/s1, Figure S1: DSC thermogram of raw PLA before annealing, Figure S2:
DSC thermogram of PLA after annealing at 150 ◦C, Figure S3: Picture of a PLA scaffold with a
non-complete foaming visually observed at the center of the disk., Figure S4: Absolute and apparent
densities of the studied porous scaffolds, Figure S5: (A) Strain and (B) frequency sweeps of PLA
processed with Freon R-134a (blue) and scCO2 (red) as well as PLGA processed with Freon R-134a
(grey squares), Figure S6: pNPs penetrability in PLA-based scaffolds.
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49. Markočič, E.; Škerget, M.; Knez, Ž. Effect of Temperature and Pressure on the Behavior of Poly(ε-caprolactone) in the Presence of
Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2013, 52, 15594–15601. [CrossRef]

http://doi.org/10.1016/j.tibs.2017.01.005
http://doi.org/10.1016/j.jconrel.2013.06.034
http://www.ncbi.nlm.nih.gov/pubmed/23830980
http://doi.org/10.1021/acsami.8b06821
http://doi.org/10.1021/nn400907f
http://doi.org/10.2217/nnm.11.83
http://doi.org/10.1016/j.ijpharm.2014.07.016
http://doi.org/10.2217/nnm.13.43
http://www.ncbi.nlm.nih.gov/pubmed/23631503
http://doi.org/10.1021/acsbiomaterials.9b01085
http://www.ncbi.nlm.nih.gov/pubmed/33464066
http://doi.org/10.1016/j.msec.2017.05.017
http://www.ncbi.nlm.nih.gov/pubmed/28575964
http://doi.org/10.1016/j.biomaterials.2006.01.039
http://doi.org/10.1016/j.progpolymsci.2013.06.001
http://doi.org/10.1016/b978-0-12-396983-5.00022-3
http://doi.org/10.3390/ijms15033640
http://doi.org/10.1016/j.addr.2016.06.009
http://doi.org/10.1016/j.biomaterials.2003.10.023
http://doi.org/10.1002/jbm.b.33088
http://doi.org/10.1002/jbm.a.33307
http://doi.org/10.1016/j.msec.2013.07.037
http://doi.org/10.1016/j.jconrel.2018.04.004
http://doi.org/10.1016/j.supflu.2016.05.043
http://doi.org/10.1021/cg0155090
http://doi.org/10.1016/0142-9612(96)87284-X
http://doi.org/10.1016/j.cossms.2003.12.004
http://doi.org/10.1021/acs.iecr.0c04372
http://doi.org/10.1021/ie402256a


Polymers 2021, 13, 3453 17 of 17

50. Hatami, T.; Mei, L.H.I.; Shabanian, S.R. Modeling of Two-Step Supercritical CO 2 Foaming to Fabricate Poly(ε-caprolactone)
Scaffolds. Chem. Eng. Technol. 2021, 44, 1233–1240. [CrossRef]

51. Kuboki, Y.; Jin, Q.; Takita, H. Geometry of Carriers Controlling Phenotypic Expression in BMP-Induced Osteogenesis and
Chondrogenesis. J. Bone Jt. Surg.-Am. Vol. 2001, 83, S105–S115. [CrossRef]

52. Tsuruga, E.; Takita, H.; Itoh, H.; Wakisaka, Y.; Kuboki, Y. Pore Size of Porous Hydroxyapatite as the Cell-Substratum Controls
BMP-Induced Osteogenesis. J. Biochem. 1997, 121, 317–324. [CrossRef]

53. Götz, H.; Müller, M.; Emmel, A.; Holzwarth, U.; Erben, R.; Stangl, R. Effect of surface finish on the osseointegration of laser-treated
titanium alloy implants. Biomaterials 2004, 25, 4057–4064. [CrossRef]

54. Murphy, C.M.; O’Brien, F.J.; Little, D.G.; Schindeler, A. Cell-scaffold interactions in the bone tissue engineering triad. Eur. Cells
Mater. 2013, 26, 120–132. [CrossRef] [PubMed]

55. Sarazin, P.; Roy, X.; Favis, B.D. Controlled preparation and properties of porous poly(l-lactide) obtained from a co-continuous
blend of two biodegradable polymers. Biomaterials 2004, 25, 5965–5978. [CrossRef] [PubMed]

56. Oh, S.H.; Kang, S.G.; Kim, E.S.; Cho, S.H.; Lee, J.H. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic
acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 2003, 24, 4011–4021.
[CrossRef]

57. Wirtz, D.C.; Schiffers, N.; Pandorf, T.; Radermacher, K.; Weichert, D.; Forst, R. Critical evaluation of known bone material
properties to realize anisotropic FE-simulation of the proximal femur. J. Biomech. 2000, 33, 1325–1330. [CrossRef]

58. Mathieu, L.M.; Mueller, T.L.; Bourban, P.-E.; Pioletti, D.; Müller, R.; Månson, J.-A.E. Architecture and properties of anisotropic
polymer composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 905–916. [CrossRef]

59. Chastain, S.R.; Kundu, A.K.; Dhar, S.; Calvert, J.W.; Putnam, A.J. Adhesion of mesenchymal stem cells to polymer scaffolds
occurs via distinct ECM ligands and controls their osteogenic differentiation. J. Biomed. Mater. Res. A 2006, 78, 73–85. [CrossRef]
[PubMed]

60. Marei, N.H.; El-Sherbiny, I.M.; Lotfy, A.; El-Badawy, A.; El-Badri, N. Mesenchymal stem cells growth and proliferation enhance-
ment using PLA vs PCL based nanofibrous scaffolds. Int. J. Biol. Macromol. 2016, 93, 9–19. [CrossRef]

61. Milovanovic, S.; Markovic, D.; Mrakovic, A.; Kuska, R.; Zizovic, I.; Frerich, S.; Ivanovic, J. Supercritical CO2-assisted production
of PLA and PLGA foams for controlled thymol release. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 394–404. [CrossRef]

62. Murphy, C.M.; Haugh, M.G.; O’Brien, F.J. The effect of mean pore size on cell attachment, proliferation and migration in
collagen—Glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010, 31, 461–466. [CrossRef] [PubMed]

63. Amini, A.R.; Adams, U.J.; Laurencin, C.T.; Nukavarapu, S.P. Optimally Porous and Biomechanically Compatible Scaffolds for
Large-Area Bone Regeneration. Tissue Eng. Part A 2012, 18, 1376–1388. [CrossRef] [PubMed]

64. Bobbert, F.S.L.; Zadpoor, A.A. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and
structure of new bone. J. Mater. Chem. B 2017, 5, 6175–6192. [CrossRef]

65. Seras-Franzoso‡, J.; Tatkiewicz‡, W.I.; Vazquez, E.; García-Fruitós, E.; Ratera, I.; Veciana, J.; Villaverde, A. Integrating mechanical
and biological control of cell proliferation through bioinspired multieffector materials. Nanomedicine 2015, 10, 873–891. [CrossRef]
[PubMed]

66. Seras-Franzoso, J.; Peebo, K.; García-Fruitós, E.; Vázquez, E.; Rinas, U.; Villaverde, A. Improving protein delivery of fibroblast
growth factor-2 from bacterial inclusion bodies used as cell culture substrates. Acta Biomater. 2014, 10, 1354–1359. [CrossRef]

67. Vázquez, E.; Corchero, J.L.; Burgueño, J.F.; Seras-Franzoso, J.; Kosoy, A.; Bosser, R.; Mendoza, R.; Martínez-Láinez, J.M.; Rinas,
U.; Fernández, E.; et al. Functional Inclusion Bodies Produced in Bacteria as Naturally Occurring Nanopills for Advanced Cell
Therapies. Adv. Mater. 2012, 24, 1742–1747. [CrossRef] [PubMed]

68. Wood, C.D.; Cooper, A.I. Synthesis of Polystyrene by Dispersion Polymerization in 1,1,1,2-Tetrafluoroethane (R134a) Using
Inexpensive Hydrocarbon Macromonomer Stabilizers. Macromolecules 2003, 36, 7534–7542. [CrossRef]

http://doi.org/10.1002/ceat.202100006
http://doi.org/10.2106/00004623-200100002-00005
http://doi.org/10.1093/oxfordjournals.jbchem.a021589
http://doi.org/10.1016/j.biomaterials.2003.11.002
http://doi.org/10.22203/eCM.v026a09
http://www.ncbi.nlm.nih.gov/pubmed/24052425
http://doi.org/10.1016/j.biomaterials.2004.01.065
http://www.ncbi.nlm.nih.gov/pubmed/15183611
http://doi.org/10.1016/S0142-9612(03)00284-9
http://doi.org/10.1016/S0021-9290(00)00069-5
http://doi.org/10.1016/j.biomaterials.2005.07.015
http://doi.org/10.1002/jbm.a.30686
http://www.ncbi.nlm.nih.gov/pubmed/16602124
http://doi.org/10.1016/j.ijbiomac.2016.08.053
http://doi.org/10.1016/j.msec.2019.01.106
http://doi.org/10.1016/j.biomaterials.2009.09.063
http://www.ncbi.nlm.nih.gov/pubmed/19819008
http://doi.org/10.1089/ten.tea.2011.0076
http://www.ncbi.nlm.nih.gov/pubmed/22401817
http://doi.org/10.1039/C7TB00741H
http://doi.org/10.2217/nnm.15.5
http://www.ncbi.nlm.nih.gov/pubmed/25816885
http://doi.org/10.1016/j.actbio.2013.12.021
http://doi.org/10.1002/adma.201104330
http://www.ncbi.nlm.nih.gov/pubmed/22410789
http://doi.org/10.1021/ma030063c

	Introduction 
	Materials and Methods 
	Materials 
	Methods 
	Preparation of Polymer Disks 
	3D Porous Scaffold Fabrication Using Compressed Fluids 
	Porous Scaffold Characterization 
	pNPs Production and Purification 
	Porous Scaffold Functionalization with pNPs 
	Cell Culture and Viability Assay 
	Immunofluorescence Assays 
	Statistical Analysis 


	Results and Discussion 
	Preparation of 3D Porous Scaffolds 
	3D Porous Scaffold Characterization 
	Surface Functionalization of 3D Porous Scaffolds with GPF-Based pNPs 
	Cytocompatibility of 3D Porous Scaffolds 

	Conclusions 
	References

