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Abstract: The dynamic mechanical response of high-performance thermoplastic composites over
a wide range of strain rates is a challenging research topic for extreme environmental survivabil-
ity in the field of aerospace engineering. This paper investigates the evolution of the dynamic
properties of woven thermoplastic composites with strain rate and damage process at elevated
temperatures. Out-of-plane dynamic-compression tests of glass-fiber (GF)- and carbon-fiber (CF)-
reinforced polyphenylene sulfide (PPS) composites were performed using a split Hopkinson pressure
bar (SHPB). Results showed that thermoplastic composites possess strain-rate strengthening effects
and high-temperature weakening dependence. GF/PPS and CF/PPS composites had the same
strain-rate sensitivity (SRS) below the threshold strain rate. The softening of the matrix at elevated
temperatures decreased the modulus but had little effect on strength. Some empirical formula-
tions, including strain-rate and temperature effects, are proposed for more accurately predicting
the out-of-plane dynamic-compression behavior of thermoplastic composites. Lastly, the final fail-
ure of the specimens was examined by scanning electron microscopy (SEM) to explore potential
failure mechanisms, such as fiber-bundle shear fracture at high strain rates and stretch break at
elevated temperatures.

Keywords: thermoplastic composites; mechanical properties; strain-rate effects; failure mechanism

1. Introduction

There is strong interest in accurately describing the mechanical response of high-
performance thermoplastic composite structure at high strain rates in aerospace-engineering
applications [1–5]. To adequately understand the evolution of dynamic properties with
strain-rate and damage processes, experimental data on the mechanical properties of ther-
moplastic composites under high-strain-rate compressive loads in service environments
are required. Composite structures are greatly sensitive to environmental temperature,
especially for dynamic problems [6–10]. Thus, it is essential to investigate the mechanical
properties and failure mechanisms of thermoplastic composites under dynamic loads at
elevated temperatures.

Considerable attention was paid upon characterizing the dynamic behavior of com-
posite in the strain rate range of 100–10,000/s using a split Hopkinson pressure bar
(SHPB) [11–15]. Tarfaoui et al. [11] carried out inplane and out-of-plane high-strain-rate
compressive behavior of angle-ply plain weave composite laminates, and found that the
dynamic behavior of the composite was sensitive to fiber orientation and loading direction.
Similar work was performed by Kara et al. [12], Hosur et al. [13], and Song et al. [14].
In these studies, the peak stress and modulus of the composite in both directions increased
with the increase in strain rate, while strain-rate sensitivity in the inplane direction was
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more noticeable than that in the out-of-plane direction. In addition, Woldenbet and Vin-
son [15] experimentally studied the effect of specimen geometry on the high-strain-rate
compressive behavior of graphite/epoxy laminates, and indicated that the difference in the
experiment results of cube and cylinder specimens was not apparent. The above-mentioned
dynamic compressive responses of fiber-reinforced composites were mainly focused on
thermoset composites. There are few studies on thermoplastic composites [6,10,16–18].

Montes et al. [16], and Brown et al. [17] found that the high-strain-rate inplane compres-
sive strength of thermoplastic composites significantly increased in comparison with qua-
sistatic compressive strength, while an opposite conclusion was reported by Qian et al. [6]
for the out-of-plane compressive strength of aramid-fabric-reinforced polyamide com-
posite. Massaq et al. [18] conducted quasistatic and dynamic-compression testing on a
PA6/glass composite in three directions and found that strain-rate sensibility depended on
compressive direction. Recently, Wang et al. [10] further studied the mechanical properties
and failure modes of a carbon-fiber (CF)/polyphenylene sulfide (PPS) composite in the
inplane and out-of-plane directions with different strain rates in the range of 350–1550/s,
while the effect of temperature on the failure mechanisms of the CF/PPS composite was
not studied in detail.

Although thermoplastic composites were extensively characterized under quasistatic
tensile, compressive, shear, and fatigue loading conditions [19–27], few studies concerned
the dynamic mechanical behavior of thermoplastic composites at elevated temperatures.
Thermoplastic composites are significantly sensitive to temperature. The matrix softening
results in a decrease in the modulus and strength of composites, especially above the
glass-transition temperature [28–30]. Schoßig et al. found that the dynamic tensile strength
and modulus of thermoplastic composites decreased with the increase in temperature [31].
Barba et al. [32] also expounded that thermoplastic composites have strain-rate enhance-
ment and high-temperature weakening dependence via the dynamic tensile testing of a
CF/PEEK composite. In general, the coupling effect of strain rate and temperature on
the mechanical properties of composites is more complicated. Thus, there is a lack of
systematic research on the dynamic-compression behavior of thermoplastic composites at
elevated temperatures.

In this paper, the evolution of dynamic properties of woven thermoplastic composites
with strain rate and damage process at elevated temperatures is investigated. The effects
of strain rate and temperature on the out-of-plane dynamic mechanical properties and
failure mechanisms of thermoplastic composites are studied. High-strain-rate out-of-plane
compression tests for two kinds of woven composites (CF/PPS and glass fiber (GF)/PPS)
were conducted over a wide range of temperature (23–150 ◦C) and strain rate (650–3500/s).
The damage and fracture morphologies of specimens after failure of these two kinds of
composites were analyzed to reveal their failure mechanisms. Some empirical formulations,
including strain rate and temperature effects, are proposed for predicting the out-of-plane
dynamic compression responses of these two kinds of composites. This study is helpful
in comprehensively understanding the dynamic mechanical properties of thermoplastic
composites and guiding their engineering application.

2. Materials and Experiments
2.1. Materials

The thermoplastic woven composites used in this study were provided by TenCate Ad-
vanced Composites Company. The matrix material was semicrystalline high-performance
PPS (Fortron 0214 PPS), and the reinforcing fibers were 5 satin glass-fiber fabric (7781) and
carbon-fiber fabric (T300). Fiber volume fractions in the composite were 52.5% and 50%,
respectively. The composite laminates were hot-pressed according to the lay-up sequence
of ((0.90))12. Laminates were then cut into 6 (length) × 6 mm (width) cube specimens
through water cutting, as shown in Figure 1. The thickness of the GF/PPS and CF/PPS
specimen was 3.80 and 3.78 mm, respectively. The porosity of both specimens was less
than 1%. To avoid the size effects in the impact tests, the specimens in all tests had the
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same size. The faces of the specimens were polished with 1000 grit sandpaper to ensure
parallel loading edges.
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Figure 1. Thermoplastic composite specimens and weave construction. (a) Glass-fiber (GF)/ polyphenylene sulfide (PPS)
specimen; (b) carbon-fiber (CF)/PPS specimen; (c) weave construction.

2.2. Experiments

Dynamic-compression tests were performed using the split Hopkinson bar (SHPB)
system as shown in Figure 2, where bar diameter was 12.7 mm. A high-temperature furnace
equipped with a thermocouple was used to heat the specimen during tests. Dynamic-
compression tests were conducted in four temperature points (23, 90, 120, and 150 ◦C).
The SHPB system mainly included a gas chamber, a titanium pulse guide bar, an aluminum
alloy incident bar, an aluminum transmitted bar, and a striker bar. The lengths of the alu-
minum alloy striker, incident, and transmission bars were 200, 1200, and 1200 mm, respec-
tively. The specimen was sandwiched between incident and transmission bar. When the
striker bar was released by nitrogen gas at different pressure levels, the striker bar accel-
erated at different rates and impinged on the incident bar to generate different strains
and strain rates in the specimen. Detailed theory and the technique involved in SHPB
are well-described in the literature [33,34]. The incident, reflected, and transmitted waves
were recorded by oscilloscope in terms of voltages Vi, Vr, and Vt by the working principle
of the strain gauge (with resistance of 999.0 ± 1.0 ohm and gage factor of 1.90 ± 1%).
These values were converted into strain signals, including transmitted strain signal εt and
reflected strain signal εr by using the following equations [35]:

εr =
2Vr

GUA
(1)

εt =
2Vt

GUA
(2)

where G is gage factor, U is input voltage, and A is amplification factor.
On the basis of one-dimensional stress wave theory, stress (σ), strain (ε), and strain

rate (
.
ε) are described by the following equations [36]:

σ(t) =
Ab

2AS
Eb(εi + εr + εt) (3)

.
ε(t) =

Cb
LS

(εi − εr − εt) (4)

.
ε(t) =

Cb
LS

∫ t

0
(εi − εr − εt)dt (5)
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where Ab, AS, and LS are the cross-sectional area of the pressure bar, the original cross-
sectional area, and the initial length of the specimen, respectively. Eb and Cb are the
modulus and the elastic wave speed of the pressure bars, Cb =

√
Eb/ρb.

There were at least three specimens for each loading case with the same impact pres-
sure and environmental conditions. The microscopic characteristics of the thermoplastic
composites after dynamic tests were examined to study dynamic compressive damage and
failure mechanisms.
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(c) High-temperature heating apparatus.

3. Results and Discussion
3.1. Dynamic Compressive Behavior

Figure 3 illustrates the original signals of incident, reflected, and transmitted waves in
an SHPB test on GF/PPS specimens at strain rates of 1434 and 1980/s. The size of incident
and transmitted pulse varied with the increase of impact pressure. The second peak of the
reflected pulse and shortening the shape of the transmitted wave resulted in the presence
of macroscopic damage [11,37,38]. At a strain rate of 1434/s, there was no second peak
in the reflected curve, while it existed for 1980/s. The triangular shaped region of the
reflected pulse indicated that the strain rate was not exactly constant for high speed tests.
The indicated value of strain rate was an average value. Furthermore, the strain-gage signal
from the transmission bar was converted into stress, and the reflected strain pulse from the
incident bar was converted into strain and strain rate using Equations (1)–(5), respectively.
Strain versus time and stress versus time responses were obtained and superimposed to
obtain a dynamic stress–strain response. The effects of strain rate and temperature on
dynamic-compression properties in terms of peak stress, strain at peak stress, and the slope
of the stress–strain response are discussed and analyzed in the following sections.
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3.1.1. Effect of Strain Rate on Out-of-Plane Dynamic Compressive Response

The effect of strain rate on the out-of-plane dynamic-compression response of thermo-
plastic composites was investigated, shown in Figure 4, which provides the stress–strain
curves of GF/PPS and CF/PPS specimens under five strain rates at room temperature
(RT). As shown in Figure 4a, the stress–strain curves have different characteristics with the
increase in strain rate. At lower strain rates (573 and 1434/s), GF/PPS specimens were
undamaged with minimal plastic deformation, which was indicated by a hysteresis loop
at the end of the stress–strain curve. With the increase in strain rate (1980/s), a nearly
vertical drop of the stress–strain curve at failure reflected the macroscopic damage of the
GF/PPS specimen. Therefore, a threshold strain rate of GF/PPS specimens was between
1434 and 1980/s, beyond which catastrophic failure occurred. The failure strain decreased
with the increase in strain rate due to the brittle failure of the glass-fiber bundle within
a short impact time. Similar behavior was also reported by Kara for the high-strain-rate
compression response of the E-glass/polyester composite [12].
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Stress–strain curves in Figure 4b also illustrate that strain rate has an important influ-
ence on the out-of-plane dynamic compressive response of CF/PPS composites. A thresh-
old strain rate of CF/PPS specimens was between 1408 and 1934/s. Below the threshold
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strain rate, the stress–strain curves were approximately linear, corresponding to elastic
behavior. Once the threshold strain rate had been exceeded, the macroscopic failure of the
CF/PPS specimen manifested as a nonlinear curve and abruptly declined at the end of
the curve. The phenomenon can be attributed to thermal softening due to inelastic heat
dissipation and damage [39]. Unlike GF/PPS composites, within the strain-rate range of
717–3414/s, the peak stress and corresponding failure strain of the CF/PPS composites
increased significantly with the increase in strain rate.

In order to investigate the effect of strain rate on the out-of-plane dynamic compressive
properties of thermoplastic composites, the average out-of-plane dynamic compressive
strength, modulus, and failure strain of GF/PPS and CF/PPS composites at RT in Table 1
are discussed and plotted in Figure 5. The strength, modulus, and failure strain of these two
thermoplastic composites increased linearly with the increase in strain rate until a strain
rate threshold had been reached. There was an inflection point in the properties of the
thermoplastic composites with the change in strain rate that corresponded to the threshold
strain rate, especially for GF/PPS composites. From the tangent of the experiment data
in Figure 5a–c, the threshold strain rates of the two thermoplastic composites were both
at around 1730/s. After exceeding the threshold strain rates, the strength of the GF/PPS
composites did not significantly increase with the increase in strain rate, while failure strain
gradually decreased. This may be attributed to the brittle failure of the specimen in a very
short impact time under higher strain rate. In addition, the strength, modulus, and failure
strain of CF/PPS composites increased approximately linearly when strain rate increased
from 717 to 3414/s.
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Table 1. Dynamic compression properties for GF/PPS and GF/PPS composites at RT.

GF/PPS Composite CF/PPS Composite

Strain Rate
(s-1)

Strength
(MPa)

Modulus
(GPa)

Failure
Strain

(%)

Strain Rate
(s-1)

Strength
(MPa)

Modulus
(GPa)

Failure
Strain

(%)

573 414.87 12.94 3.94 717 354.96 11.17 3.52
1434 598.38 13.83 7.04 1408 441.05 11.67 4.48
1980 653.77 14.49 8.19 1934 494.75 11.99 5.34
2476 664.16 14.77 8.11 2433 539.33 12.34 6.21
3520 685.57 15.33 8.03 3414 625.27 12.85 7.94

In order to assess the effect of strain rate on the out-of-plane dynamic compressive
properties of thermoplastic composites, a well-known Backofen formula [40] was applied
to analyze the experiment data:

σ = Kσ ∗
.
ε

m, (6)

where σ denotes stress,
.
ε is strain rate, Kσ is an intrinsic parameter of the composite, and m

is the strain-rate-sensitivity (SRS) index expressed as

m =
In
(
σ/σ0)

In
( .

ε/
.
ε

0
) (7)

The strength, modulus, and failure strain of the GF/PPS and CF/PPS composites are
plotted in Figure 5 as a function of strain rate. Material parameter Ki and SRS index m
were obtained by power law function fitted to the experiment values as listed in Table 2.
As shown in Figure 5, the fitting curve of CF/PPS specimen agreed with the compressive
properties, while the fitting curve of GF/PPS specimen could only accurately predict
the strength and failure strain before the threshold strain rate. All fitting curves of the
compressive properties showed an obvious increasing tendency with strain rate, while the
increasing amplitude was different. Comparing parameters Ki and SRS index m in Table 2
shows that the Ki of GF/PPS composites were all higher than those of CF/PPS composites,
which reflects the better impact resistance of GF/PPS composites. Similar results were
reported by Naik [41]. SRS index m reflects the sensitivity of material properties to strain
rate, and the same m value of GF/PPS and CF/PPS composites indicates that the SRS index
of out-of-plane dynamic compression properties may be dominated by PPS matrix.

Table 2. Parameters of strain rate dependence on dynamic compression properties for GF/PPS and
GF/PPS composites.

Specimen
Strength (σ) Modulus (E) Failure Strain (εu)

Kσ m KE m Kε m

GF/PPS 40.18 0.369 8.31 0.087 0.11 0.567
CF/PPS 30.37 0.367 6.38 0.088 0.075 0.569

3.1.2. Effect of Temperature on Out-of-Plane Dynamic Compressive Response

Figure 6 illustrates the out-of-plane dynamic stress–strain behavior of these two
kinds of thermoplastic composites at a strain rate of 1434/s and four temperature levels
(RT, and 90, 120, and 150 ◦C). The stress–strain curves of thermoplastic composites at dif-
ferent temperatures had similar trends before peak stress, and the curves then showed
different trends corresponding to the different failure modes of the composites. For GF/PPS
specimens, curves ending at RT and 90 ◦C had hysteresis curves, reflecting that the compos-
ites had no macroscopic failure. Moreover, sharp-drop curves at 120 and 150 ◦C indicated
that the strain-rate threshold decreased with increasing temperature. For the CF/PPS



Polymers 2021, 13, 264 8 of 16

specimens, macroscopic failure occurred at 90 ◦C, indicating that the CF/PPS composites
were more sensitive to temperature.

Polymers 2021, 13, x FOR PEER REVIEW 8 of 16 
 

 

that the composites had no macroscopic failure. Moreover, sharp-drop curves at 120 and 
150 °C indicated that the strain-rate threshold decreased with increasing temperature. 
For the CF/PPS specimens, macroscopic failure occurred at 90 °C, indicating that the 
CF/PPS composites were more sensitive to temperature. 

  
(a) (b) 

Figure 6. Stress–strain curves of composites under out-of-plane loading at different temperatures. (a) GF/PPS and (b) 
CF/PPS specimens. 

The above discussion shows that the out-of-plane dynamic-compression behavior of 
thermoplastic composites is sensitive to temperature. The average out-of-plane dynamic 
compressive strength, modulus, and failure strain of the GF/PPS and CF/PPS composites 
are summarized in Table 3 and plotted in Figure 7. Figure 7a shows that the out-of-plane 
dynamic compressive strength of GF/PPS composites did not change with increasing 
temperature. The phenomenon can be attributed to out-of-plane compressive strength 
mainly dominated by fiber breakage, which is not sensitive to temperature (RT, 150 °C). 
However, the strength of CF/PPS composites decreased slightly. This was mainly due to 
the softening of the matrix at elevated temperatures, which significantly reduced the 
load transfer capacity between layers and the stiffness of the CF/PPS composite, as 
shown in Figure 7b, resulting in a reduction in strength. Similarly, the softening of the 
matrix led to the enhancement of toughness and the increase in plastic deformation un-
der dynamic out-of-plane compressive load, as displayed in Figure 7c. 

Table 3. Dynamic compression properties for GF/PPS and GF/PPS composites at different temperatures. 

Temperature 
(°C) 

GF/PPS Composite CF/PPS Composite 
Strength 

(MPa) 
Modulus 

(GPa) 
Failure Strain 

(%) 
Strength 

(MPa) 
Modulus 

(GPa) 
Failure Strain 

(%) 
23 598.38 13.82 7.04 441.05 11.67 4.48 
90 596.51 13.28 7.27 425.11 10.18 5.17 
120 603.43 12.17 7.67 410.18 7.16 5.81 
150 601.09 11.41 8.65 355.72 6.41 6.73 

Figure 6. Stress–strain curves of composites under out-of-plane loading at different temperatures. (a) GF/PPS and
(b) CF/PPS specimens.

The above discussion shows that the out-of-plane dynamic-compression behavior of
thermoplastic composites is sensitive to temperature. The average out-of-plane dynamic
compressive strength, modulus, and failure strain of the GF/PPS and CF/PPS composites
are summarized in Table 3 and plotted in Figure 7. Figure 7a shows that the out-of-plane
dynamic compressive strength of GF/PPS composites did not change with increasing
temperature. The phenomenon can be attributed to out-of-plane compressive strength
mainly dominated by fiber breakage, which is not sensitive to temperature (RT, 150 ◦C).
However, the strength of CF/PPS composites decreased slightly. This was mainly due to
the softening of the matrix at elevated temperatures, which significantly reduced the load
transfer capacity between layers and the stiffness of the CF/PPS composite, as shown in
Figure 7b, resulting in a reduction in strength. Similarly, the softening of the matrix led
to the enhancement of toughness and the increase in plastic deformation under dynamic
out-of-plane compressive load, as displayed in Figure 7c.

Table 3. Dynamic compression properties for GF/PPS and GF/PPS composites at different temperatures.

Temperature
(◦C)

GF/PPS Composite CF/PPS Composite

Strength
(MPa)

Modulus
(GPa)

Failure Strain
(%)

Strength
(MPa)

Modulus
(GPa)

Failure Strain
(%)

23 598.38 13.82 7.04 441.05 11.67 4.48
90 596.51 13.28 7.27 425.11 10.18 5.17

120 603.43 12.17 7.67 410.18 7.16 5.81
150 601.09 11.41 8.65 355.72 6.41 6.73
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A typical thermomechanical model from our former work [23] was applied in this study
to predict the mechanical properties of thermoplastic composites at different temperatures.

P(T) = PT0

E′(T)− E′(Tr)

E′T0 − E′Tr

+ PTr

E′T0 − E′(T)
E′T0 − E′Tr

(8)

where P(T) is the mechanical property of the composite at temperature T, PT0 is the
mechanical property at room temperature, and PTr denotes the mechanical property at
another reference temperature Tr, E′(T) is storage stiffness at temperature T, and E′T0 and
E′Tc are storage stiffness at reference temperatures T0 and Tr.

MAPE =
n

∑
t=1

∣∣∣∣ observedt − predictedt

observedt

∣∣∣∣× 100
n

(9)

In this paper, 120 ◦C was selected as the reference temperature, and forecast curves
are shown in Figure 7. Figure 8 shows that the forecast curves were able to replicate a
variation pattern of the experiment results. Mean absolute percentage errors (MAPE) as
Equation (9) were introduced to evaluate the accuracy of forecasting models as listed in
Table 4. The value in Table 4 reflects that the maximal MAPE did not exceed 2.5%, which
further illustrates the accuracy of the forecast model.
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Table 4. Mean absolute percentage errors (MAPE) of predicted mechanical properties of thermoplas-
tic composites.

Materials Strength (%) Modulus (%) Failure Strain (%)

GF/PPS 1.49 0.78 1.17
CF/PPS 1.95 2.46 1.76

3.2. Fracture Morphologies and Failure Mechanisms of Thermoplastic Composite under
Out-of-Plane Dynamic Compression

Figure 8 schematically illustrates the potential failure mechanisms of woven thermo-
plastic composites under out-of-plane compressive loading. The impact wave propagated
along each layer, and the fiber bundles at the interweave area were subjected to high shear
stress because of the fiber-weaving structure. Simultaneously, the warp-fiber bundles
underwent extension due to the Poisson effect. Hence, fiber bundles at the interweave area
bore the coupling effect of shear and tensile stresses. Once the fiber bundles had undergone
tensile fracture or shear failure, the matrix in and around the fiber bundles also developed
cracks. Furthermore, stress redistribution among intact fiber bundles resulted in higher
stress, which caused more fiber fractures and interfacial crack propagation. A series of
failures took place in the approximate structure of the specimen to form a failure plane.
As the impact wave increased, more damage mechanisms were involved, from microcracks
to macrocracks with multiple paths to the final fracture.

3.2.1. Effect of Strain Rates on Failure Mechanisms

In order to further analyze the failure mechanisms of the thermoplastic composites,
SEM morphologies of the GF/PPS and CF/PPS specimens at RT were observed. As shown
in Figure 9, the failure modes were different according to the different strain rates. At lower
strain rates of 573 and 717/s, there was no visible macroscopic damage on the surface of
the specimens except for a small number of interfacial cracks and stretch break of the fiber
bundle caused by tensile stress at the interweaving. As the strain rate increased to 1434
and 1408/s, there was a thorough crack on the surface of the specimen. Moreover, both the
stretch breakage and shear failure of the warp-fiber bundle are shown in Figure 9b, which
reflects the effect of tensile stress and shear stress. This is consistent with the out-of-plane
dynamic compressive failure mechanisms as described in [41].
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Figure 9. SEM micrographs of GF/PPS and CF/PPS specimens under different strain rates at room temperature: (a) 650/s;
(b) 1450/s; (c) 1950/s; (d) 2450/s; (e) 3500/s.

When the strain rate exceeded the threshold, the specimen mainly had shear failure,
although cracks were still found on the surface of the specimen. According to Figure 9c,
the inclination angles of the failure plane of the GF/PPS and CF/PPS specimens relative to
the loading axis were about 35.54◦ and 71.09◦, respectively, which were greatly dependent
on the architecture of the woven composite. At higher strain rates of 2476 and 2433/s,
the characteristics of the fiber-bundle shear fracture and interlaminar cracks were clarified,
which indicated that at higher strain rates, shear fracture and delamination were the
main failure modes. In addition, when the strain rate increased to 3500/s, some PPS
matrices of CF/PPS specimens melted during fracture. Thus, the heat generated during
high-strain-rate compressive deformation may lead to failure [42].

3.2.2. Effect of Temperature on Failure Mechanisms

In order to study the effect of temperature on the out-of-plane compressive failure
mechanisms of woven thermoplastic composites, SEM micrographs of GF/PPS and CF/PPS
specimens under a strain rate of 1450/s at different temperatures are shown in Figures
10 and 11. Figures 10a and 11a show that the fiber-bundle shear fracture, stretch break,
and an interfacial crack were observed in the fracture of the specimens at room temperature.
As temperature increased, the specimens had excellent fiber/matrix interface bonding,
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as shown in Figure 11c. The phenomenon mainly occurred because the plastic deformation
of the matrix absorbed the energy of the stress wave and inhibited the propagation of
interface cracks. Furthermore, the softening of the matrix led to a decrease in load transfer
capacity. The fiber-bundle shear failure was gradually weakened, and the fiber-bundle
tensile failure was the main failure mode, as shown in Figures 10d and 11d. Consequently,
the out-of-plane dynamic compressive strength of GF/PPS and CF/PPS composites at
elevated temperatures were mainly determined by the tensile strength of the warp-fiber
bundles, which were not sensitive to temperature.
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4. Conclusions

The out-of-plane dynamic mechanical properties and damage mechanisms of ther-
moplastic composites at different temperatures (23–150 ◦C) were investigated through
high-strain-rate (550–3500/s) compressive experiments. With regard to the GF/PPS and
CF/PPS composites, below the threshold strain rate, strength, modulus, and failure strain
increased with the increase in strain rate, and the strain-rate-sensitivity (SRS) indicators of
the two thermoplastic composites were almost the same. Beyond the threshold strain rate,
the mechanical properties of the CF/PPS composite continued to linearly increase, but the
strength of GF/PPS composite slowly increased. The softening of the matrix at elevated
temperatures lead to a decrease in the stiffness of GF/PPS and CF/PPS composites and
an increase in plastic deformation, but had the little effect on out-of-plane compressive
strength. CF/PPS composites exhibited greater temperature dependence.

Under out-of-plane dynamic compressive load, the specimen was subjected to the
combined effect of tensile stress caused by the Poisson effect and shear stress at the yarn
interlacing. As strain rate increased, the shear fracture of the fiber bundle caused by
the shear stress gradually became the main failure mode. As the temperature increased,
the fiber-bundle stretch break caused by the tensile stress became the main failure mode.
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