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Characterization 

FTIR spectra were recorded using a Bruker Tensor 27 FTIR spectrophotometer and the 

conventional KBr disk method; 32 scans were collected at a spectral resolution of 4 cm-1. The films 

used in this study were sufficiently thin to obey the Beer-Lambert law. Wide-Angle X-ray 

diffraction (WAXD) pattern was obscured from the wiggler beamline BL17A1 of the National 

Synchrotron Radiation Research Center (NSRRC), Taiwan. A triangular bent Si (111) single 

crystal was used to obtain a monochromated beam having a wavelength (λ) of 1.33 Å. Cross-

polarization with MAS (CP/MAS) was used to acquire 13C NMR spectral data at 75.5 MHz. The 

CP contact time was 2 ms; 1H decoupling was applied during data acquisition. The decoupling 

frequency corresponded to 32 kHz. The MAS sample spinning rate was 10 kHz. Transmission 

electron microscope (TEM) images were obtained with a JEOL JEM-2010 instrument operated at 

200 kV. Field emission scanning electron microscopy (FE-SEM) was conducted using a JEOL 

JSM7610F scanning electron microscope. Samples were treated via Pt sputtering for 100 s before 

observation. BET surface area and porosimetry measurements of the prepared samples (ca. 40-100 

mg) were performed using a BEL. Nitrogen isotherms were generated through incremental 

exposure to ultrahigh-purity N2 (up to ca. 1 atm) in a liquid nitrogen (77 K) bath. Surface 

parameters were determined using BET adsorption models in the instrument’s software. TGA was 

performed using a TA Q-50 analyzer under a flow of N2 atmosphere. The samples were sealed in 

a Pt cell and heated from 40 to 800 °C at a heating rate of 20 °C min-1 under a flow of N2 

atmosphere at a flow rate of 60 mL min-1.UV–Vis spectra were recorded at 25 °C using a Jasco V-

570 spectrometer, with deionized water as the solvent. 
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Table S1: Performance data of POSS-TPP and POSS-TPE compared with those of other 
previously porous materials.  

Samples   CO2 uptake (mmole/g)  Ref 
298 K 273 K 

PDMTPAS 1.02 1.76 [1] 
PDPTPAS 1.04 1.76 [1] 
An-HPP 0.52 1.29 [2] 
TPT-HPP 0.90 1.99 [2] 
Car-HPP 1.24 2.29 [2] 
TPE-HPP 0.85 1.49 [2] 
HPP-1c 0.86 1.56 [3] 
LHPP-3 0.77 1.44 [4] 
HPP-3 - 1.42 [5] 
THPP - 1.16 [6] 
PHAP-1  2.60 [7] 
PECONF-4  0.14 [8] 
POSS-TPP 1.63 2.88 This work 
POSS-TPE 0.99 1.97 This work 
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Table S2. Iodine uptake properties of POSS-TPP, POSS-TPE and other porous materials. 

Sample Surface area 
(m2/g) 

Iodine uptake  
(mg/g) 

Ref 

Activated carbon - 300 [9] 
CC3 - 364 [10] 

NOP-54 1187 202 [11] 
ZIF-8 1875 1200 [12] 

Ag@Mon-MOF 690 250 [13] 
Ag@Zeolite Mordenities  - 275 [14] 

HCMP-3 82 3160 [15] 
PAF-1 2081 1860 [16] 
TTPT 315.5 1770 [17] 

pha-HCOPs 217.31 1310 [18] 
POSS-TPP 270 363 This work 
POSS-TPE 741 309 This work 
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Figure S1. 1H NMR spectrum of TPP. 
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Figure S2. 13C NMR spectrum of TPP. 
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Figure S3. 1H NMR spectrum of TPE. 
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Figure S4. 13C NMR spectrum of TPE. 
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Figure S5. TEM images of POSS-TPP (A, B, C) and POSS-TPE (D, E, F).  
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Figure S6. Repeated I2 uptake experiments for (A) POSS-TPP and (B) POSS-TPE. 
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