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Abstract: While the CuBi2O4-based photocathode has emerged as an ideal candidate for photo-
electrochemical water splitting, it is still far from its theoretical values due to poor charge carrier
transport, poor electron–hole separation, and instability caused by self-photoelectric-corrosion with
electrolytes. Establishing synthesis methods to produce a CuBi2O4 photocathode with sufficient
cocatalyst sites would be highly beneficial for water splitting. Here, the platinum-enriched porous
CuBi2O4 nanofiber (CuBi2O4/Pt) with uniform coverage and high surface area was prepared as a
photocathode through an electrospinning and electrodeposition process for water splitting. The pre-
pared photocathode material was composed of a CuBi2O4 nanofiber array, which has a freestanding
porous structure, and the Pt nanoparticle is firmly embedded on the rough surface. The highly porous
nanofiber structures allow the cocatalyst (Pt) better alignment on the surface of CuBi2O4, which can
effectively suppress the electron–hole recombination at the electrolyte interface. The as-fabricated
CuBi2O4 nanofiber has a tetragonal crystal structure, and its band gap was determined to be 1.8 eV.
The self-supporting porous structure and electrocatalytic activity of Pt can effectively promote the
separation of electron–hole pairs, thus obtaining high photocurrent density (0.21 mA/cm2 at 0.6 V vs.
RHE) and incident photon-to-current conversion efficiency (IPCE, 4% at 380 nm). This work shows a
new view for integrating an amount of Pt nanoparticles with CuBi2O4 nanofibers and demonstrates
the synergistic effect of cocatalysts for future solar water splitting.

Keywords: electrospinning; CuBi2O4 nanofiber; photocathode; water splitting

1. Introduction

It is imperative to find sustainable alternative energy to cope with humankind’s
energy source crisis [1,2]. Photoelectrochemical water splitting for hydrogen under solar
irradiation is seen as the ultimate way to solve the energy crisis [3–6]. A critical challenge
for photoelectrochemical water splitting is the low conversion efficiency suffering from
poor charge carrier transport and poor electron–hole separation. In order to improve the
efficiency of water splitting, it is necessary to explore a new type of photoelectric material
with the best band gap and photocurrent starting potential [7–10]. In this regard, copper-
based oxides-based photocathodes with natural p-type conductivity are a very good choice
for their high photocurrents [10–12]. Nevertheless, the Cu 3d character in the conduction
band of Cu2O will lead to photoelectron-induced self-reduction and poor operational
stability [10,11]. Therefore, it is urgent to develop a new type of copper-based metal oxide
photocathode, so that the Cu2O conduction band is sheared, and the photogenerated
electrons are directed to the redox stable metal orbitals.

Substantial studies have revealed CuBi2O4, a multinary p-type metal oxide semicon-
ductor that alloys Cu2O with Bi oxide, and its ternary alloy structure allows the photo-
generated electrons to be directed toward redox stable metal orbitals [12]. Such CuBi2O4
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possesses a sufficiently narrow direct bandgap and exceptionally positive photocurrent
onset potential (>1.0 V vs. RHE), thus improving solar energy utilization [13–16]. For
example, a powder-type CuBi2O4 photocatalyst can be realized by hypoxic calcination [17],
hydrothermal synthesis [18], and the sol−gel method [19]. Although the photocathode
prepared by powder-type CuBi2O4 has various desirable properties, it has not achieved a
high photoelectric conversion efficiency. Photocathode corrosion often occurs during oxy-
gen reduction due to the poor transport property of the carrier (~1.2 × 10−3 cm2/Vs) [14].
Therefore, substantial improvements in activity and stability are greatly needed.

Recently, the coupling of film-type CuBi2O4 with different noble metal decorative
materials has attracted widespread attention due to its synergistic effect, which can increase
photoelectrochemical activity [20]. Such CuBi2O4 film can be realized by hydrothermal
synthesis, chemical bath deposition [21], and a template-directed method [22]. For example,
Xu et al. demonstrated Au coating film-type CuBi2O4 photocathodes with high photoelec-
trochemical activity through coupling p-type doping with Au and gradient Cu-vacancy
doping [23,24]. Cao et al. fabricated CuBi2O4 film decorated with Pt nanoparticles using
atomic layer deposition and indicated an attractive p-type material in water splitting with-
out concern for the corrosion problem in aqueous electrolytes [16]. Park et al. reported a
CuO|CuBi2O4 film coated with Pt layers for water splitting and showed more than double
the photoactivity compared to the corresponding monolayer photocathode [25]. The pho-
toelectrochemical properties of such polycrystalline thin films can vary significantly, which
mainly depend on their morphological details (such as uniform coverage, surface area, and
the size and number of cocatalysts) [26–29]. Although the thin-film CuBi2O4 photocathode
system has a high application efficiency, its application scope is limited, especially in dense
thin films, which often suffer from the recombination of electron-hole pairs [20]. Therefore,
designing a simple and effective synthesis method to obtain a stable extensible film-type
CuBi2O4 photoelectrode with sufficient active sites will be very conducive to improving
water splitting.

Electrospinning provides a simple and scalable synthesis method to fabricate one-
dimensional nanomaterial [30] and has been proven particularly useful in the field of pho-
tocatalysis [31–33]. While electrospinning has been used to fabricate CuO nanofibers [34]
and BiVO4 nanotubes [35] for solar water splitting, no studies have been reported on fabri-
cating CuBi2O4 nanofibers. Here, the novel platinum-enriched porous CuBi2O4 nanofiber
(CuBi2O4/Pt) with uniform coverage and high surface area was prepared as a photocath-
ode through an electrospinning and electrodeposition process for efficient water splitting.
The prepared photocathode material was composed of a CuBi2O4 nanofiber array, which
has a freestanding porous structure, and the Pt nanoparticle was firmly embedded on the
rough surface. The porous nanofiber structure makes the cocatalyst (Pt) better arranged on
the CuBi2O4 surface, which effectively prevents the electron–hole pair recombination at the
electrolyte interface. The as-fabricated CuBi2O4 nanofiber has a tetragonal crystal structure,
and its band gap was determined to be 1.8 eV. The self-supporting porous structure and
cocatalytic activity of Pt can effectively promote the separation of electron–hole pairs,
resulting in high photocurrent density (0.21 mA/cm2 at 0.6 V vs. RHE) and IPCE (4%
at 380 nm). This study provides a new idea for the integration of Pt nanoparticles and
CuBi2O4 nanofibers and provides a synergistic catalyst for future solar water splitting.

2. Materials and Methods

The CuBi2O4/Pt nanofiber film was synthesized via a three-step process: electrospin-
ning, annealing, and deposition, which is shown in Figure 1.
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Figure 1. Schematic illustration of the CuBi2O4/Pt nanofiber fabrication process.

2.1. Materials

The polyvinylpyrrolidone (PVP, K90, Mw = 1,300,000) and chloroplatinic acid
(H2PtCl6·6H2O) were from Aladdin, Shanghai, China. The bismuth nitrate pentahydrate
(Bi(NO3)3·5H2O), cupric nitrate (Cu(NO3)2·3H2O), N,N-Dimethylformamide (DMF), and
acetic acid (CH3COOH) were obtained from J&K Chemical Ltd., B, Beijing, China. All
materials were of analytical grade without further purification.

2.2. Preparation of Porous CuBi2O4/Pt Nanofiber Film

The synthesis of the precursor solution followed two steps: first of all, the Bi(NO3)3·5H2O
and Cu(NO3)2·3H2O were added to a mixture of acetic acid and DMF and stirred 1 h to
ensure dissolution; then the PVP was added to the above mixture and stirred 10 h to form
the homogeneous precursor (Figure S1a, Supplementary Materials). The electrospinning
was carried out with a self-made apparatus [35], which was composed of a plastic syringe, a
high voltage supply, and a plate collector. The homogeneous precursor was injected into the
syringe with a stainless steel needle (diameter = 0.5 mm). The FTO glass (OPV-FTO-22-07,
2.5 × 3 cm2) was pasted on the counter plate to collect nanofibers. The electrospinning was
performed at a distance of 20 cm between the tip of the steel needle and the plate collector,
at a high voltage of 20 kV, at an injection rate of 0.1 mL/h, and with an air humidity of
40%. After electrospinning for 25 min, the films collected on the FTO glass (Figure S1b,
Supplementary Materials) were dried at 100 ◦C for 5 h. Based on the thermogravimetry
curve (Figure S2, Supplementary Materials), the nanofiber film on FTO was annealed at
520 ◦C for 1 h and naturally cooled down to ambient temperature. Finally, the photocathode
of CuBi2O4 nanofibers (Figure S1c, Supplementary Materials) was successfully obtained.

The Pt nanoparticles were loaded onto the CuBi2O4 nanofibers by electrodeposition,
as the PtCl62+ can be reduced to Pt nanoparticles at low potential. A three-electrode
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system was employed with an as-prepared nanofiber on FTO glass (working electrode),
an Ag/AgCl reference electrode, and a platinum counter electrode. The electrolyte was
0.1 mM H2PtCl6•6H2O in 0.1 M potassium borate buffer (pH = 7.0). The electrodeposition
was carried out using an electrochemical workstation (Zahner Zennium) at −0.20 V versus
Ag/AgCl for 1 min.

2.3. Physical Characterization

In order to investigate the nanofiber, its morphology was measured by a scanning
electron microscope (SEM, Zeiss Merlin), an energy-dispersive X-ray spectroscope (EDS),
and a transmission electron microscope (TEM, JEM-2100). Its chemical element and crys-
tallinity were characterized by X-ray photoelectron spectroscopy (XPS, ESCALAB Xi +)
and X-ray diffraction (XRD, Bruker Smart-1000CCD diffractometer), respectively. The
surface area of the CuBi2O4 nanofiber was measured by the Brunauer–Emmett–Teller (BET,
Micromeritics ASAP2460, Norcross, GA, USA). The UV-visible diffuse reflectance spectrum
was characterized by a UV-vis spectrophotometer (PE lambda 750) with an integrated
sphere attachment.

The photocatalytic H2 was carried out using the CEL-PAEM-D8 photocatalytic ac-
tivity evaluation system, which consisted of a gas chromatograph (AgilentTechnologies
GC-7890B) and a 300 W Xe lamp (MicroSolar 300, Perfect Light). The circulation water of
25 ◦C was applied to maintain the reaction temperature of the solution. The photoelectro-
chemical experiments on the CuBi2O4/Pt nanofiber photocathode were performed on the
Zahner electrochemical workstation in a three-electrode cell (the CuBi2O4/Pt nanofibers
on FTO, Ag/AgCl reference electrode, and a platinum counter electrode, respectively).
For photocurrent measurements, the electrolyte was 0.2 M PBS (pH 7.0). The Xe lamp
(CEL-HXF300-T3, P = 100 mW/cm2, AM1.5) was used as the illumination source. The
light intensity was adjusted by a calibrated photodetector. For incident photon-to-current
efficiency (IPCE) measurements, the CIMPS TLS03 model (Zahner tunable light source
system) was employed for monochromatic light excitation. The chopped photocurrent–
voltammetry measurement was carried out with a scan speed of 10 mV/s and a chopped
light time of 8 s.

3. Results
3.1. Morphology and Structure of Nanofibers

As indicated in Figure S1b (Supplementary Materials), a typical digital photo of the
as-spun film before annealing shows white. After high-temperature annealing, the photo-
cathode shown in Figure S1c (Supplementary Materials) changes to a transparent yellow,
which is similar to the spray CuBi2O4 photocathode. The morphology of the CuBi2O4
nanofibers was evaluated by TEM and SEM measurements. As shown in Figure 2a, the
randomly oriented nanofibers inherited the one-dimensional structure, and the nonwoven
film, which was composed of nanofibers, showed typically interconnected flyover-like
network form. The high-magnification image of Figure 2b shows these nanofibers possess
a porous fiber structure, which has sufficient surface active sites for photocatalytic reaction.
As shown in Figure S3 (Supplementary Materials), the average diameter of the porous
nanofiber was 225 nanometers, and its length was up to several dozen micrometers. Under
low magnification, Figure 2c reveals one-dimensional morphology, and numerous connec-
tive nanoparticles make up the products, similar to the SEM results. The distance between
adjacent lattice planes was measured to be 0.31 nm, which belongs to the crystal plane
(211) of the CuBi2O4 tetragonal phase (JCPDS 01-080-0996). Figure 2e shows the elemental
mapping of the CuBi2O4 nanofiber after depositing Pt. It can be seen that the Bi, Cu, and O
elements were uniformly distributed inside the nanofiber. In addition, the Pt element was
uniformly distributed on the surface of the nanofiber.
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Figure 2. The CuBi2O4 nanofibers’ (a,b) SEM images and (c,d) TEM images; (e) the elemental
mapping after depositing Pt.

As shown in Figure 3a, the diffraction peaks in 20.9◦, 28.1◦, 33.5◦, and 46.7◦ cor-
responded to the crystal planes (200), (211), (310), and (411) of the tetragonal CuBi2O4,
respectively (JCPDS 01-080-0996). The SnO2 phase of FTO glass was also marked on the
same figure with an orange line. No other diffraction peak was found in the XRD pattern,
which confirmed the high crystalline and phase purity of CuBi2O4 after annealing. Detailed
information about the surface element composition as well as the chemical state can be
obtained by XPS. The survey scan spectrum (Figure 3b) revealed that these nanofibers
were composed of Cu, Bi, and O elements. As shown in the high-resolution XPS spectra
(Figure 3c–e), two main asymmetric peaks at 159.0 eV and 164.7 eV were attributed to
Bi4f7/2 and Bi4f5/2, corresponding to the oxidation state of Bi3+. Then, the peaks at 954.0
and 934.4 eV were attributed to Cu 2p1/2 and Cu 2p3/2. Together with a satellite peak
at 942.0 eV, the copper mainly existed in the form of Cu2+. Besides, the asymmetrical
O1s peak (Figure 3e) ranging from 527 eV to 535 eV was fitted into two peaks at 529.4
and 531.0 eV, which were attributed to Cu–O and Sn–O (SnO2 phase of FTO glass) bonds,
respectively. Together, both the XRD and XPS results confirmed that these nanofibers were
highly crystallized.
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As indicated in Figure 4a, the CuBi2O4 nanofibers exhibited strong UV-vis absorbance
in both the ultraviolet and visible light regions, and their absorption cutoff wavelength was
about 650 nm. By employing the linear part of (αhv)2 vs. hv, the band gap was calculated to
be 1.8 eV, which is similar to that reported in other studies (1.74 eV) [17]. From the nitrogen
adsorption and desorption isotherms of CuBi2O4 nanofibers (Figure 4b), the specific surface
area of the CuBi2O4 nanofibers was calculated to be 20.5 m2g−1 using the Brunauer–Emmet–
Teller model, which was larger than the value (14 m2g−1) of nanoparticles reported in other
research [36].

3.2. Photoelectrochemical Performance

To investigate the photoelectrochemical activity of the CuBi2O4 photocathode, the
photocurrent–voltammetry measurement under AM 1.5 was performed. As shown in
Figure 5a, the photocurrent started to appear at the initial potential of 1.0 V vs. RHE,
increased rapidly when the lamp was turned on, and decreased when the lamp was turned
off, indicating that the photocurrent was generated under light irradiation. Interestingly,
the instantaneous photocurrent overshoot could also be observed when the lamp was
switched on/off, which indicates that electrons accumulate in the space charge layer
and reverse recombination occurs between electrons and holes. Moreover, the chopped
photocurrent for the CuBi2O4/Pt nanofibers showed little cathodic transient spikes, which
presumably were caused by surface recombination. Figure 5b indicates the photocurrent–
voltage (J–V) curves under AM 1.5 irradiation. The photocurrent of CuBi2O4 nanofibers
rose slowly when decreasing the potential, and yielded −0.12 mA/cm2 at 0.6 V vs. RHE.
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On the contrary, after depositing the Pt nanoparticles, their photocurrent rose quickly when
decreasing the potential and yielded −0.21 mA/cm2 at 0.6 V vs. RHE. Remarkably, the
photocurrent of CuBi2O4/Pt nanofibers was about 75% higher than that of the pristine
nanofibers. Then, the IPCE measurement by the tunable light source TLS03 model at
0.6 V vs. RHE was performed. As indicated in Figure 5c, with the increase in illuminant
wavelength, the IPCE values gradually decreased to zero at 650 nm (1.8 eV), which was
consistent with its band gap energy. Significantly, compared to those of pristine nanofibers
(1.8% at 380 nm), the as-prepared CuBi2O4/Pt nanofibers showed a higher IPCE reaching
up to 4% at 380 nm. As shown in Table S1, the nanofibers decorated with Pt exhibit
higher photoelectrochemical performance (the value of photocurrent and IPCE) than that
of CuBi2O4 nanofilm (0.15 mA/cm2 at 0.6 V vs. RHE) [21]. Nevertheless, the gradient
self-doping nanofilm (0.50 mA/cm2 at 0.6 V vs. RHE) showed higher photoelectrochemical
performance than that of the as-prepared CuBi2O4/Pt nanofiber due to its internal electric
field promoting charge separation. [19].
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As indicated in Figure 6a, the photocurrent of the CuBi2O4/Pt nanofibers photocath-
ode decreased obviously with the increase in time at 0.6 V versus RHE and decreased by
nearly 40% after 25 min illumination. Nevertheless, the photostability of the CuBi2O4/Pt
nanofibers photocathode was better than that of the pure Cu2O [37] and CuO (52% reduc-
tion of photocurrent after 25 min illumination [38]) photocathode. The photocurrent decay
was mainly caused by photocorrosion, and a similar phenomenon also appeared at the
CuBi2O4 photocathode consisting of open windows and struts [14]. The photocatalytic
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H2 production of the fabricated nanofibers was measured by the gas chromatography-
mass spectrometer (GC-7890B). As shown in Figure 6b, CuBi2O4/Pt nanofibers exhibited
higher photocatalytic performance (380 µmol/(g·h)) compared to the CuBi2O4 nanofibers
(290 µmol/(g·h)). Nonetheless, its photocatalytic performance was much lower than that
of Pt/TiO2 nanosheet with exposed (001) facet (8500 µmol/(g·h), [39]). The main reason
was that although the one-dimensional nanostructure could reduce the recombination of
photogenerated electron–hole pairs, some electron–hole pairs still recombined due to the
poor transport property of the carrier (~1.2 × 10−3 cm2/Vs, [14]). In addition, the photo-
catalytic activity of these nanofibers slightly decreased with time due to photocorrosion.
The instability of CuBi2O4 nanofibers presents a major challenge for solar water splitting,
and protection layers using atomic layer deposition were essential in order to use them as
a practical photocathode.
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Based on the above analysis of experimental data, the transfer process of the electron–
hole pair in the photocathode was shown in Figure 7. Under light illumination, the CuBi2O4
nanofibers could absorb photons and excite the valence electron to the conduction band.
Then the photogenerated electron moved to the interface between the photocathode and
the electrolyte due to the downward band bending and injected into the electrolyte to
take part in the reduction reaction of hydrogen, which was similar to the charge transfer
of BiVO4 anode [35]. As shown in Figure 5a, there are amounts of recombination of
electron–hole pairs during the water splitting reaction. The photoelectrochemical test
demonstrates that the CuBi2O4/Pt nanofibers show better photocatalytic activity. The
main reasons are as follows: Firstly, nanofibers have a large specific surface area and
porous structure, which maintain good contact with electrolytes and enrich the active
sites. Moreover, the nanofibers, possessing a one-dimensional structure, can also shorten
the length of hole diffusing to the FTO substrate and decrease the recombination of the
electron–hole pair. In addition, the Pt cocatalyst can also efficiently extract a photogenerated
electron from the space charge layer. Therefore, more electrons can be transferred into
electrolytes to take part in the reduction reaction of hydrogen, and the electron–hole
recombination is significantly hindered. In summary, the main reasons for the enhanced
photoelectrochemical performance of CuBi2O4/Pt nanofiber photocathode are porous
nanofibers and cocatalysts.
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4. Conclusions

In summary, the platinum-enriched porous CuBi2O4 nanofibers (CuBi2O4/Pt) with
uniform coverage and high surface area were prepared as a photocathode through an
electrospinning and electrodeposition process for improving the photoelectrochemical
water splitting. The CuBi2O4 nanofibers showed an average diameter of 225 nanometers,
and lengths up to several dozens of micrometers. The porous nanofiber structures allow
the cocatalyst (Pt) to have better alignment on the surface of CuBi2O4, which can effectively
hinder the electron–hole recombination at the electrolyte interface. These nanofibers
have a tetragonal crystal structure, and their band gap was determined to be 1.8 eV.
After depositing Pt nanoparticles, their photocurrent density was 0.21 mA/cm2 at 0.6 V
vs. RHE under AM 1.5 illumination, and the IPCE was 4% at 380 nm. The enhanced
photoelectrochemical ability was mainly attributed to the porous nanofibers, large specific
surface area, and the cocatalytic activity of Pt nanoparticles. This work shows a new view
for integrating an amount of Pt nanoparticles with CuBi2O4 nanofibers, indicating the
synergistic effect of cocatalysts for efficient storage of solar energy into hydrogen.
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nanofiber mat before annealing and (c) CuBi2O4 nanofiber mat after annealing; Figure S2: TG-
DSC curve of the crystallization of CuBi2O4 nanofiber; Figure S3: CuBi2O4 nanofiber (a) SEM,
(b) corresponding diameter distribution; Table S1: Comparison of photocurrent data reported in the
literature with the photocurrent value obtained in the present study.
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