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Abstract: The wide availability and diversity of dangerous microbes poses a considerable problem
for health professionals and in the development of new healthcare products. Numerous studies
have been conducted to develop membrane filters that have antibacterial properties to solve this
problem. Without proper protective filter equipment, healthcare providers, essential workers, and the
general public are exposed to the risk of infection. A combination of nanotechnology and biosorption
is expected to offer a new and greener approach to improve the usefulness of polysaccharides as
an advanced membrane filtration material. Nanocellulose is among the emerging materials of this
century and several studies have proven its use in filtering microbes. Its high specific surface area
enables the adsorption of various microbial species, and its innate porosity can separate various
molecules and retain microbial objects. Besides this, the presence of an abundant OH groups in
nanocellulose grants its unique surface modification, which can increase its filtration efficiency
through the formation of affinity interactions toward microbes. In this review, an update of the most
relevant uses of nanocellulose as a new class of membrane filters against microbes is outlined. Key
advancements in surface modifications of nanocellulose to enhance its rejection mechanism are also
critically discussed. To the best of our knowledge, this is the first review focusing on the development
of nanocellulose as a membrane filter against microbes.

Keywords: nanocellulose; membrane filter; microbes; surface functionalization

1. Introduction

Throughout the evolutionary process, among the significant issues faced by society
today are the protection of natural resources and the implementation of eco-friendly ap-
proaches to sustaining a high quality of life. Environmental pollution is a worldwide
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concern and the majority of pollutants have long-term negative impacts on humans. Focus-
ing on microbial pollution, the most common bulk transportation media for particulate
contaminants are air and water. Microbes are microscopic living organisms that can be
found everywhere, including in water, soil and air, but they are too small to be seen with
the naked eye. These microbes are commonly viruses, bacteria, and fungi and may in-
volve microscopic parasites. Certain microbes are harmful to our health, while others are
beneficial. Table 1 shows several types of infectious diseases caused by microbes.

Table 1. Several infectious diseases caused by microbes.

Infectious Disease Microbe That Causes the Disease Type of Microbe Reference

Coronavirus
(COVID-19)

Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) Virus [1]

Cold Rhinovirus Virus [2]
Chickenpox Varicella zoster Virus [3]

German measles Rubella Virus [4]
Whooping cough Bordatella pertussis Bacteria [5]
Bubonic plague Yersinia pestis Bacteria [6]

TB (Tuberculosis) Mycobacterium tuberculosis Bacteria [7]
Malaria Plasmodium falciparum Protozoa [8]

Tinea barbae (dermatophyte infection) Trichophyton rubrum Fungus [9]
Athletes’ foot Trichophyton mentagrophytes Fungus [10]

Microbial contamination in water can be dangerous to health, causing serious water-
borne disease outbreaks, such as gastroenteritis, cholera, giardiasis and cryptosporidiosis.
The most common bacteria involved in these outbreaks are Shigella dysenteriae, Vibrio
cholera, Legionella sp., Escherichia coli, and Campylobacter jejuni [11]. Whereas giardiasis
and cryptosporidiosis are gastrointestinal diseases caused by microscopic parasites (proto-
zoa), namely Giardia duodenalis and Cryptosporidium sp., respectively. When invading the
gastrointestinal tract, these microbes can cause local reactions to their presence and may
even cause systemic effects from toxins they secrete (only certain microbes secrete toxins).
Some microbes may invade the bloodstream, where they can cause sepsis [12]. Annually,
it is estimated that approximately 485,000 people die from diarrheal disease as a result of
drinking contaminated water [13]. Hence, microbially contaminated wastewater must be
treated before it is discharged into water bodies or water courses.

As mentioned previously, microbes can also be transmitted through the air. According
to the World Health Organization (WHO), airborne transmission differs from droplet
transmission as it refers to the presence of microbes within droplet nuclei that are typically
less than 5 µm in diameter and can circulate in the air for significant periods and be
transmitted to others over distances more than 1 m [14]. Whereas droplet transmission
occurs when a person is in close contact (within 1 m) with a symptomatic patient with
respiratory symptoms such as coughing or sneezing and is thus at risk of exposure to
potentially infective respiratory droplets (typically >5–10 µm in diameter). Nowadays, the
threat of the newly discovered infectious coronavirus disease (COVID-19) is worrying, as
this pandemic outbreak has already killed millions of people worldwide. The outbreak is
exacerbated by the occurrence of frequent mutations, which makes it difficult to rapidly
produce omnipotent vaccines [1]. Therefore, an effective, robust, and inexpensive air-borne
virus removal membrane filter is an urgent need to provide a means to prevent virus
spread in hospitals, transportation hubs, schools, and other venues with high social traffic
turn-over in order to minimize the risks arising from the COVID-19 pandemic.

Microbe removal can be done through a variety of methods, such as, filtration (either
depth filtration or surface screening), partitioning and fractionation (centrifugation), and
chromatography (ion-exchange, affinity, gel permeation) [15]. Of these different techniques,
filtration is a desirable choice, as it is non-destructive and non-interfering, implying that it
will not threaten the quality of biological samples or induce immune reactions. Membrane
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filters have been made from a variety of synthetic and semi-synthetic polymers, designed
to achieve a desired filtration pore size. The membrane filter is also an effective and widely
used method for detecting microbiological pollution in collection samples. It requires less
planning than certain other conventional methods and is one of the few methods that
allows for microorganism separation and subsequent determination. Microbes cannot
be retained by the normal membrane filter because the membrane pores are too large.
Therefore, it is critical to have a more effective material for microbe filtration, and there
are studies that have led to the discovery of new filtering media made from cellulose with
efficient filtration capability. The ultimate objective would be to be able to effectively and
securely filter microbes from the environment at an affordable cost.

Current filter materials which are typically non-biodegradable and non-renewable
have also received much attention among scientists. These membrane filters are primarily
made from polymers which include proprietary non-ionic polymers, polytetrafluoroethy-
lene (PTFE), polypropylene (PP), polysulphone (PS), polyvinylidene fluoride (PVDF) and
polyethylene (PE) [16,17]. These non-biodegradable polymers when being disposed of
after use are known to be harmful to the environment [18]. Figure 1 shows an example of
used surgical masks incorporating PP that have been discarded and not properly disposed
of thereby causing problems of littering both on land and at sea as well as in waterways.
Therefore, scientists urgently need to find better solutions to this problem. It is important
to have a more efficient renewable and biodegradable material, of which nanocellulose is a
prime candidate.
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Cellulose is a versatile industrial product because of its abundance, renewability,
biodegradability and ability to be readily chemically modified [19–21]. With the devel-
opment of nanocellulosic materials, since 1977 there has been extensive research into
their use in many fields, such as in biocomposites, bioadsorbents, textiles, biomedicals,
military, automotives, sensors, energy, packaging, as well as membrane filtration [22–31].
Generally, nanocellulose can be classified into three types, which are cellulose nanofiber
(CNF), cellulose nanocrystals (CNC), and bacterial nanocellulose (BNC) [1,32,33]. The
production of nanocellulose can be accomplished in two ways, including up-down or
down-up techniques [34]. Up-down techniques can be used to synthesize CNF and CNC.
The most popular way to make CNC is to use inorganic acids to acid hydrolyse pure
cellulose. To reduce energy consumption, CNF is made via mechanical disintegration with
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high shear forces, maybe in combination with chemical or enzymatic pre-treatment [35].
On the other hand, bacterial nanocellulose (BNC) is made using a down-up technique, in
which cellulose-producing bacteria such as Acetobacter xylinum is used [36].

According to Hassan et al. (2020) [37], two approaches that utilize nanocellulose for
filtration have been explored; namely, the first approach which incorporated them into other
polymer matrices to enhance the effectiveness of prepared membranes. This was done by
dissolving the polymer in suitable solvents and ensuring that the nanocellulose materials
were well dispersed within the polymer solution before being film cast. Meanwhile,
the second approach was one first introduced by Ma et al. (2011) [38], in which the
authors developed membranes from a nanocellulose layer with adequate porosity laid
over polymeric supports without having to dissolve the cellulose matrix and using the film
casting method to produce porosity. The latter approach was found to be more desirable
and intriguing.

Nanocellulose-based membrane filters have been found to be effective at removing
microbes in previous research [39–41]. When compared to synthetic polymers or plastic
membranes, a significant benefit of the nanocellulose-based membrane filters is that they
are entirely made from natural resources, making their disposal much easier, as they were
made up of predominantly biodegradable materials [42].

This review is intended to provide a comprehensive overview of the recent advances
in the development of membrane filters for microbial removal, which are made up either
entirely from nanocellulose or utilizing a modified approach, incorporating nanocellulose.
This review will include (1) a description of the types of membrane filters and the rejection
mechanism they use; (2) details of the nanocellulose used in the production of membrane fil-
ters; (3) a suite of antimicrobial technologies used for nanocellulose functionalization. This
manuscript provides knowledge and direction for scientists to stimulate future research in
this area.

2. Types and Rejection Mechanisms of Membrane Filters

The role of membranes alone in the removal of pathogens is discussed here. Membrane
filters can be categorized by the size of the pollutant they are able to reject (see Figure 2),
namely: reverse osmosis (0.1–1 nm), nanofiltration (NF) (1–2 nm), ultrafiltration (UF)
(2–100 nm) and microfiltration (MF) (100 nm–10 µm). The two most important features of
a membrane are its permeability and selectivity. To enhance the productivity of membrane
separation processes, it is always necessary to develop membranes with high permeability
and high selectivity [43].

Referring to Figure 3, it can be seen that there are various pore sizes of nanocellulose-
based membrane filters that are available, depending on their origin. The different pore
sizes of nanocellulose membrane filters fulfil various filtration modes. Thus, nanocellulose
membrane filters obtained from electrospun CNF usually have a pore size of more than
100 nm (Figure 3a). Thus, making this membrane filter more suitable as an MF. Meanwhile,
CNF (Figure 3b) and CNC (Figure 3c,d), which are obtained through other methods
usually have a smaller pore size, which ranges from 5 nm to 100 nm. Thus, this makes
them suitable for use in NF and UF. The pore size of nanocellulose depends on several
factors, such as the cellulose origin, the isolation process concentration and processing
conditions as well as pretreatments administered to the cellulose. Moreover, CNF has more
advantages to be used as a membrane filter. This is because CNF led to a higher strength
and modulus compared to CNC, due to CNF’s larger aspect ratio and fibre entanglement,
but lower strain-at-failure because of their relatively large fibre agglomerates [44]. Table 2
summarized the properties of CNF films from different sources.
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Table 2. Representative studies on the properties of CNF films from different raw materials.

Source of CNF Modulus (GPa) Tensile
Strength (MPa)

Strain to Failure
(%) Reference

Pulp 10.4–13.7 129–214 3.3–10.1 [45]
Kraft pulp 17 250 2–6 [46]

Wood 6.2–6.9 222–233 7.0–7.6 [47]
Wood 13 223 - [48]
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Figure 2 illustrates the membrane filtration spectrum, which operates by utilizing the
size exclusion method in rejecting or inhibiting the pathogenic microorganisms. Wu et al.
(2019) [53] described it as an established, reliable, and robust method, considering its ability
to physically remove various types of infective microorganisms, including virus. Of note,
the other method that utilized the affinity principle could also be used for filtration.

There are two types of membrane filters with different pore sizes, commonly used in
the retention of microorganisms. The first one is the MF membrane, which has a pore size
of 0.1–10 µm, while the other is the UF membrane, which has a smaller pore size, ranging
from 5 to 100 nm. Both types of membrane filters are applicable to the removal of protozoa
and algae (i.e., size range between 3 to 14 µm) [54]. In addition, Francy et al. (2012) [55]
outlined that tertiary disinfection is not necessary, as the pore size of both MF and UF
membranes are too nominal when compared to the size of coliform bacteria, suggesting the
total removal of bacteria by size exclusion of the membranes. However, a particular concern
was raised regarding the removal of virus via direct membrane filtration considering its
smaller size compared to bacteria.

Size exclusion is a widely used technique in the chromatography method, which
separates molecules, depending on their sizes or “hydrodynamic volume” in solution.
Filtration takes place through a gel composed of spherical beads with a particular size
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distribution of pores. When molecules of various sizes are incorporated or omitted from
the pores inside the matrix, separation occurs. Small molecules diffuse into the pores,
slowing their flow through the column, whereas large molecules (or having the greatest
hydrodynamic volume) do not penetrate the pores and are eluted in the column’s void
volume [56]. As a result, molecules segregate according to their size as they move down
the column and are eluted in decreasing order of molecular weight (MW).

There are a few criteria that influence the effectiveness of the size exclusion technique,
particularly the pH and ionic strength of the load buffers, which have a major impact on the
retention of diverse specimens. In neutral membranes, the sieving behaviour of charged
pollutants is different from that of neutral pollutants. Due to electrostatic interactions with
ions in solution, charged pollutants have a double layer of electrical charge on their surface.
A solution entering a pore will compress this electrical double layer if the pollutants and
pore sizes are of the same magnitude. This is not energetically advantageous, resulting
in a reduction in the sieving of the charged pollutants. Interestingly, when an ionic
solution encounters a charged membrane, the Donnan model gives a well-known classical
description of the electrochemical equilibrium that occurs. It ignores ion size effects while
accounting for electrostatic interactions, since the theory regards ions as point charges [57].
When neutral pollutants are applied to a charged membrane, similar effects occur. The
presence of neutral pollutants causes a compression of the electrical double layer, associated
with the pore wall. With similarly charged pores and pollutants, this impact is amplified
much further. Due to charge repulsion, membranes with charged ligands (with identical
charge) have poorer sieving of specimens [58].

On the other hand, membrane filters utilize the affinity principle, known to use adsorp-
tion to remove pollutants based on the electrostatic interaction between functional groups
of the membranes with the pollutant. This type of membrane filter includes composite or
hybrid filter structures that consist of a porous substrate with either nanocellulose moieties
attached to their surface or impregnated within. It is interesting to note that size exclusion
and affinity regime approaches have been explored in many studies on membrane filters
utilizing the nanocellulose.

Adsorption is an exothermic surface-based process in which molecules of a substance
in a certain state aggregate on an adsorbent surface. The adsorbate is the substance that
is adsorbed on the adsorbent. Desorption, on the other hand, is the release of adsorbed
molecules from the adsorbent’s surface, which is the reverse of adsorption. Adsorption
of molecules to the adsorbent surface can take place in two ways: “physical adsorption,”
also known as “physisorption,” and “chemical sorption,” also known as “chemisorption.”
This is determined by the interactions of the molecules with the surface. Weak forces, such
as electrostatic interactions and Van der Waals forces, are involved in physical adsorption.
Chemical adsorption results in the formation of strong chemical bonds, such as covalent
bonds, between the surface and the adsorbed molecules. A monomolecular layer (mono-
layer) is developed on the adsorbent surface during chemical adsorption, whereas a thick
multilayer is created during physical adsorption on the adsorbent surface [59].

2.1. Fabrication of Nanocellulose Membrane

Numerous nanocellulose membrane production processes have been devised, tak-
ing into account the unique features of nanocellulose fibres and the membrane casting
suspension, as shown in Figure 4 and summarized as follows.
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2.1.1. Vacuum Filtration

Vacuum filtration, followed by optional hot-pressing, is a rapid, easy, and accessible
procedure for producing layered structures of nanocellulose membrane filters. The amount
and concentration of nanocellulose suspensions could be used to alter the thickness and
pore size of the resulting membranes [61].

2.1.2. Casting Evaporation and Coating Self-Standing

Normally, self-standing membranes are made by evaporating a dilute nanocellulose
suspension in a petri dish. In general, to avoid agglomeration, the nanocellulose dispersion
should be diluted to a low concentration (depending on surface chemistry and fibril
diameter, but usually less than 1 wt%) [62,63].

2.1.3. Electrospinning

Electrospun membranes have a smaller base weight, a greater effective surface area,
and a higher effective porosity, with pores that are continually interconnected. Nanocellu-
lose could change the membrane surface charge density, increase total effective surface area,
and improve functional group density by incorporating it into electrospinning membranes.
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Furthermore, the nanocellulose content of this multi-layered nanofibrous system could alter
the mean pore size and pore size distribution, and hence the separation performance [60].

3. Attributes of Nanocellulose Membrane Filtration of Microbes

In filtration systems, diameter, length, cross-section shape, internal structure (cellular
or solid), and strength properties, which include tensile strength, stretch or elongation, and
stiffness, are the most important physical characteristics of fibres for use in filter media.
Fibre qualities that optimize the bulk, air permeability, and pore size of the filter media are
ideal. The purpose of the filter design is to optimize bulk and air permeability to allow for
breathing while reducing pore size to improve filtration efficiency [64].

Generally, polypropylene (PP) is used to produce the mask accords with the technical
standards. The pore diameter of polypropylene is 25 mm. They were treated with dimethyl-
dioctadecylammonium bromide to impart a positive electrical charge capable of attracting
bacteria. Bacterial or viral filtration efficiency was almost 100% for the PP mask [65].

Normal membrane filters usually have pores that are too large to retain microbes. The
advances in nanotechnology have made nanocellulose the more suitable material for the
filtration of microbes. Nanocellulose with pore dimensions measuring between 1 and 100
nm offers certain unique characteristics, which include high strength, chemical inertness,
hydrophilic surface chemistry and high surface area, thereby making it a promising material
for use as a high-performance membrane filter that can effectively remove microbes from
either air or liquids [22,49,66–72]. Moreover, membrane filter constructed entirely of CNF
has recently been discovered to be capable of filtering even the tiniest viruses with up to
99.9980–99.9995% effectiveness.

The comparison between the PP membrane and nanocellulose membrane is tabulated
in Table 3. On the other hand, Table 4 summarizes the importance of several special
properties of nanocellulose which are related to the application as a membrane filtration
material against microbes.

Table 3. Comparison of PP and nanocellulose membrane.

Characteristic PP Nanocellulose

Fibre length (nm) - 400
Diameter (nm) 25,000 1–100

Efficiency against pathogens ~100% 99.9980–99.9995%
Tensile modulus (GPa) 1.5 145
Tensile strength (GPa) 0.02 7.5

Poison’s ratio 0.4 0.3

As described earlier, nanocellulose can be classified into three types (CNF, CNC, and
BNC) according to their manner of origin. These three types are as shown in Table 5,
below. Essentially cellulose is a molecule that consists of β-1, 4-glucose, and three active
hydroxyls at the C2, C3, and C6 sites of the glucopyranose ring, and its configuration
provides sufficient sites for several surface functionalization’s. These sites may undergo
oxidation, esterification, and etherification to enable these variable functional groups that
may include aldehyde groups and quaternary ammonium. The details of these surface
functions will be explained in the following section.



Polymers 2021, 13, 3249 10 of 28

Table 4. Certain interesting properties of nanocellulose related to membrane filtration materials.

Property Advantages Reference

Nanoporosity Good virus filtration using size-exclusion method. Typically, the pore size of
nanocellulose is below 100 nm. [15]

Surface functionalization Functionalization nanocellulose with several compounds to make it cationic
charged causes an increase in its binding affinity towards viruses. [73]

High specific surface area Provides a large surface area for functionalization. Thereby increasing
interaction efficiency. [74]

Renewable Nanocellulose can be easily sourced from plant bio-waste. Its use can eliminate the
use of other non-renewable polymers as mentioned in the Introduction section. [49,66]

Biodegradability
An important aspect to save the environment. It is biodegradable in landfills.

Hence, current environment issues from used and discarded surgical masks can be
reduced or even eliminated.

[75]

High mechanical strength High strength membrane filters can be fabricated using it. [76]

Stability in water It can reduce biofouling of membrane filters. This is important for application in
membrane filters for wastewater. [77]

Each type of nanocellulose has different dimensions and properties, mainly due to
their different methods of preparation/fabrication [78]. There are various methods used to
extract cellulose nanoparticles which then result in these particles having different crys-
tallinities, surface chemistries and mechanical properties [79]. These production methods
range from top-down enzymatic/chemical/physical methods aimed at isolating them from
wood and forest or agricultural residues to bottom-up production of cellulose nanofibrils
from glucose by bacterial action [80].

Table 5. Types of nanocellulose according to their sources, treatments and dimensions [60,81–83].

Nanocellulose Abbreviation Sources Main Treatments Dimensions

Cellulose nanofiber
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4. Modifications on Nanocellulose to Improve Filter Efficiency

The surface functionalization of nanocellulose is a key step to promoting an increase
in the efficiency of a membrane filter. This is an important step when the membrane filter
operates using the affinity regime. This can be done using different strategies of surface
functionalization that will involve the chemistry of hydroxyl function [84]. Referring to
Figure 5, a search using keywords ‘functionalization of nanocellulose’ was performed by
lens.org, (https://www.lens.org/; accessed on 15 February 2021), a problem-solving non-
profit social enterprise website utilizing linked open knowledge artefacts and metadata. It
was found that manuscripts focusing on the functionalization of nanocellulose have been
increasing from 2011 until now. This showed that the area of research interest has grown
among scientists in this decade.
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Figure 5. A chart of published manuscripts focusing on the functionalization of nanocellulose from Lens.org.

The surface functionalization is also important to increase the performance and life-
times of the nanocellulose-based membrane filter. Nanocellulose is a fibrous water-loving
polymer, due to the presence of an abundant number of OH groups. Thus, it can cause
the membrane filter to swell and weaken in the presence of water. However, surface
functionalization can overcome this problem by enhancing the hydrophobicity of nanocel-
lulose [71,72] Besides that, surface functionalization also can improve the mechanical
strength of nanocellulose-based membrane filters [85].

Surface functionalization on nanocellulose can be made through several processes,
such as oxidation, esterification, and etherification, which eventually results in the intro-
duction of new functional groups on the material. Other than this, previous studies have
showed that nanocellulose can also be subjected to modification by adding compounds
such as aldehyde, quaternary compounds (both cationic and anionic forms), activated
carbon, citric acid, antibiotics, and nanomaterials. For instance, the aldehyde groups are
grafted onto nanocellulose through the oxidation process, using oxidants such as periodate
sodium and 2,2,6,6-teramethylpiperidinyloxy (TEMPO), which results in the TEMPO posi-
tioning on the surface of the nanocellulose under aqueous conditions, while the hydroxyl
group located at the C6 position of the nanocellulose can be converted to carboxyl and
aldehyde functional groups.

https://www.lens.org/
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Besides this, low toxicity and environmentally friendly quaternary compounds, such
as poly(N,N-dimethylaminoethyl methacrylate), amines, anionic polyelectrolytes, and
polyglutamic acid could be used to quaternize nanocellulose to improve its efficiency as
a membrane filter, as these quaternary compounds have the ability to form electrostatic
affinity towards microbes. This quaternization process can be performed using grinding
and high-pressure homogenization processes. Table 6 illustrates several examples of func-
tionalized nanocellulose using quaternary compounds for virus removal applications. Most
viruses and certain microbial species have polar charges on their surface; thus, modification
on the surface charge of the nanocellulose improves the electrostatic interaction properties
of the material, which consequently results in high efficiency filtration.

The main challenge with chemical functionalization to nanocellulose is to select an
appropriate time for the functionalization to occur. Surface functionalization can be carried
out during the preparation step or post-production of nanocellulose [86]. This process can
be greatly affecting the final properties of functionalized nanocellulose such as crystallinity,
yield, dimensions and morphology, surface chemistry, physicochemical, and thermal
properties. If the wrong selection of functionalization approach, the 3D crystal network can
be interrupted during modification, thus the mechanical properties of nanocellulose could
deteriorate, which could consequently limit the applications of modified nanocellulose. In
some approaches, nanocellulose is modified during the production step [87], while in other
strategies the nanocellulose was produced, first followed by the modifications [88–90].

For example, Henschen (2019) [91] functionalized the nanocellulose with polyelec-
trolytes. It was found that the suspended nanocellulose is too small to be easily recovered if
added to different solutions and it has a tendency to aggregate in polyelectrolyte solutions.
Therefore, to adsorb polyelectrolytes onto nanocellulose, the functionalization is preferably
done after the production of nanocellulose.

In the following section, several interesting findings concerning quaternized nanocel-
lulose for microbial removal will be discussed.

Table 6. Functionalized nanocellulose with quaternary compounds for virus removal applications.

Functional Group Chemical Structure

a. Functional group: aminoethyl methacrylate or
poly(N-(2-aminoethylmethacrylamide)
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Table 6. Cont.
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In this section, several developments concerning nanocellulose-based membrane
filters capable of removing microbes will be reviewed. An important aspect of the modifi-
cation of nanocellulose materials is to increase the binding affinity of the materials towards
microbes. There are a number of studies that focused on the filtration removal of viruses
and bacteria; however, very limited studies have been conducted, which concern other
types of microbes, such as fungi, algae and protozoa.

5.1. Viruses

The ensnarement of viruses is one of the most crucial steps in biopharmaceutical and
clinical processes and applications [92]. Of the various types of microbes, virus is among
the smallest and most difficult to deal with, as compared to other microbes.

Exploration of nanocellulose as a filtration material against several types of viruses
has received much research attention. As mentioned earlier, several viruses, including
COVID-19, are airborne viruses that can be dispersed and spread through human nasal or
saliva secretions from an infected person. Therefore, in order to minimize infection risks
from viruses, an efficient, robust and affordable air-borne virus removal filter is an urgent



Polymers 2021, 13, 3249 14 of 28

requirement. Multiple research articles were recently published with regard to this type of
air filter.

Several factors, such as filter thickness, pore size, number of layers, size of the virus, the
charge on the filter surface, its ionic strength and surface chemistry are usually influenced
by the efficiency of the air filtration process [15]. Generally, the use of size-exclusion
type filtration has several benefits, such as flexibility and ease of use since it provides
virus removal predictability through its physical properties, allows for the filtration of
viral markers, enabling easy validation of the filtration process, and does not use toxic or
mutagenic chemicals for viral inactivation [15,93,94].

Gustafsson et al. (2018) [95] evaluated membrane filter made from nanocellulose in
a mille-feuille arrangement of varying thicknesses using a simulated wastewater matrix
to explore its ability to remove viruses for drinking water purification applications. The
filtrations of various samples of simulated wastewater with its total suspended solid content
being 30 nm latex particles as surrogate waste material and 28 nm ΦX174 bacteriophages
as the viral contamination. The authors examined the performance of these membrane
filters at a pressure of 1 and 3 bar with varying thicknesses of 9 and 29 µm. The data
they obtained demonstrate that a membrane filter made from 100% nanocellulose has the
capacity to efficiently remove even the smallest of viruses, with up to 99.9980–99.9995%.

Manukyan et al. (2019) [96] fabricated nanocellulose-based mille-feuille type mem-
brane filter for use in upstream applications for serum-free growth media filtration and
it was designed to remove ΦX174 bacteriophages. The filter performance was evaluated
based on its ability to filter small–medium-sized viruses using varying thicknesses of the
fabricated membrane filter (i.e., 11 and 33 µm), as well as by varying the operating pres-
sures (i.e., 1 and 3 bar). Based on their results, the 33 µm thick filter showed more stability
and had better virus removal as compared to the 11 µm thick filter, although their flux was
nominally lower. The findings of this study suggest that the nanocellulose membrane filter
would be a viable alternative for the filtration of large volumes of cell culture media in
upstream bioprocessing.

Asper et al. (2015) [97], in their study, used a membrane filter composed of 100%
CNF to remove xenotropic murine leukaemia virus (xMuLV). It was found that the par-
ticle retention properties of the nanocellulose membrane filter were verified following
the filtration of 100 nm latex beads, as shown in Figure 6. The results of this filtration
of xMuLV suggested that the nanocellulose membrane filter was useful for removal of
endogenous rodent retroviruses and retrovirus-like particles during the production of
recombinant proteins.

Metreveli et al. (2014) [15] reported that one of the most challenging tasks for designing
the virus removal membrane filter is tailoring the membrane upper pore size cut-off so
that the filter retains viruses with a particle size of between 12 and 300 nm, while allowing
for the unhindered passage of proteins which typically range between 4 and 12 nm in
size. Therefore, high porosity of the nanocellulose-based filters is required to circumvent
the problem of low permeance. In their study, the developed nanocellulose membrane
filter, sized at 70 µm with a total porosity of 35%, was able to remove Swine Influenza
A Virus (SIV), which had a particle size of 80–120 nm. The latex beads and SIV particles
are observed as stacked structures on the surface of the porous membrane filter. They
also found that the proteins pass unhindered through the membrane filter. Therefore, the
pore size distribution presented in their work is promising for virus filtration applications,
especially for large viruses ≥50 nm.
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Besides this, Mautner et al. (2021) [98] also produced BNC membrane filters with
high porosity for optimized permeance and rejection of nm-pollutants. The BNC was
treated with organic liquids (alcohol, ketone, ether) before being further processed into
the membrane filter. The treated BNC membrane filter has a porosity of 67%, which is
higher than the untreated BNC membrane filter (33%). It also exhibits 40 times higher
permeance, caused by a lower membrane density. Despite their higher porosity, the
developed membrane filter also still has pore sizes of 15–20 nm, which is similar to the
untreated BNC membrane filter. Thus, the developed membrane filter enables the removal
of viruses by a size-exclusion mechanism at high permeance.

The strength of the nanocellulose is also important in designing a good membrane filter
to remove viruses via a size exclusion mechanism. A study by Quellmalz and Mihranyan,
(2015) [85] found that the citric acid cross-linked nanocellulose-based membrane filter has
better mechanical performance than the untreated nanocellulose. It was observed that the
untreated nanocellulose membrane filter was readily cracked at pressure gradients above
15 kPa, which could be limiting for its industrial application. The improved strength of
the cross-linked nanocellulose membrane filter enables increasing the pressure gradient
applied for filtration without compromising the integrity of the filter. It is concluded
that citric acid cross-linking of nanocellulose is beneficial to be used in several industrial
applications for removing viruses.

Previous studies on the surface modification of nanocellulose have led to the improve-
ment of filtration efficiency against viruses. Electrostatic interaction between nanocellulose
and viruses is improved dramatically with the incorporation of quaternary compounds as
discussed in Section 4, above. For instance, viruses such as coronavirus have a negatively
charged surface and would interact with the cationic or anionic charge of nanocellulose-
quaternary compounds [99]. Figure 7 shows a schematic diagram of the coronavirus
structure with proteins embedded in its bilayer membrane and negatively charged lipid
head groups protruding to the outer side of the membrane.
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The entrapment of the virus onto nanocellulose matrix is due to the presence of
electrostatic force attraction between the negatively charged virus particle and the positively
charged nanocellulose membrane. Several studies have demonstrates successful results
in filtering negatively charged viruses using cationic nanocellulose. For example, Mi et al.
(2020) [101] developed a filtration setup using modified CNC with a positively charged
guanidine group to adsorb porcine parvovirus and Sindbis virus and to completely filter
out those viruses from water. It is interesting to point out that this filtration system has
exceeded the Environment Protection Agency (EPA) virus removal standard requirement
for portable water. In addition to the electrostatic interaction between the virus and
guanidine group, Meingast and Heldt (2020) [102] outlined that the complete virus removal
from water was also due to the protonated guanidine groups on the cationic CNC forming
ionic and hydrogen bonds with the proteins and lipids on the virus surface.

Other than that, Rosilo et al. (2014) [103] in their study observed a very high affin-
ity binding between the cationic CNC (known as CNC-g-P(QDMAEMA)s) mixture and
cowpea chlorotic mottle virus (CCMV) and norovirus-like particles in water dispersions.
Of note, this cationic CNC mixture was prepared by surface-initiated atom-transfer rad-
ical polymerization of poly(N,N-dimethylamino ethyl methacrylate) and its subsequent
quaternization of the polymer pendant amino groups.

In addition, the anionic CCMVs could also be removed using functionalized lignin
with a quaternary amine. In their study, they found that the CCMVs would form agglom-
erated complexes with cationic lignin [104]. Therefore, suggesting its potential use as
material in the development of membrane filter for the removal of CCMVs.

Besides that, Sun et al. (2020) [105] reported that covalent modification on CNF (i.e.,
functionalization of nanocellulose) using polyglutamic acid (PGS) and mesoporous silica
nanoparticles (MSNs) resulted in the successful filtration of EV71 virus and Sindbis virus.
This is particularly due to the interaction between two exposed positively charged amino
acids (His10 and Lys14) and the negatively charged MSNs on the modified CNF [105].

Table 7 summarizes the development of nanocellulose-based membrane filtration
material for virus removal that have been discovered/explored so far. In addition to
the guanidine groups, lignin, nanoparticles, and citric acid, nanocellulose could also be
functionalized with several other compounds, such as small organic molecules, porphyrin
dendrimers and others polymers in order to make it positively or negatively charged [73].
However, it is important to note that not all of these examples have been tested as a filter
to remove viruses. It can be summarized that several present studies have shown the
capability of nanocellulose as a filtration material for virus removal. Separation by size
exclusion and adsorption mechanism are the most common approaches. Factors such
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as pore size distribution, porosity, thickness, strength and surface functionalization of
nanocellulose can greatly influence the filtration efficiency.

Table 7. Nanocellulose developed filtration material for virus removal.

Microbes Type of Nanocellulose Functionalization Findings Reference

A/swine/Sweden/9706/2010
(H1N2)—Swine influenza BNC Not applicable

• The newly developed
non-woven, µm thick
membrane filter consisting of
crystalline BNC able to remove
virus particles solely based on
the size-exclusion principle,
with a log 10 reduction value
≥6.3, thereby matching the
performance of industrial
synthetic polymer virus
removal filters currently in use.

[15]

Xenotropic murine BNC Not applicable

• The developed BNC
membrane filter could remove
the endogenous rodent
retroviruses and
retrovirus-like particles.

[97]

MS2 viruses BNC Not applicable

• This study highlights the
efficiency of the
nanocellulose-based membrane
filter in removing/filtering out
the ΦX174 bacteriophage with
value of 5−6 log virus
clearance (28 nm; pI 6.6).

[53]

ColiphagesΦX174 BNC Not applicable

• The nanocellulose-based
membrane filter exhibited 5−6
log virus clearance of MS2
viruses (27 nm; pI 3.9). This
study also showed the
possibility of producing
cost-efficient viral removal
filters (i.e.,
manufacturing process).

[53]

Parvoviruses BNC Not applicable

• The developed filter was the
first non-woven, wet-laid
membrane filter composed of
100% native cellulose. This
study showed that the
non-enveloped parvoviruses
could be eliminated using
this filter.

[106]
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Table 7. Cont.

Microbes Type of Nanocellulose Functionalization Findings Reference

EV71 CNF

Polyglutamic acid
and mesoporous

silica
nanoparticles

• This study showed that the
modified microfibers could
strongly adsorb the epitope of
the EV71 capsid which is
useful for virus removal.

[105]

Sindbis virus CNC Guanidine

• Functionalization of guanidine
on CNC resulted in over 4 log
removal value against the
Sindbis virus.

[101]

Porcine parvo virus CNC Guanidine

• Authors also revealed that
functionalization of guanidine
on CNC managed to remove
the Porcine parvo virus with
over 4 log removal value.

[101]

5.2. Bacteria

The development of nanocellulose as a filtration material against bacteria also been
widely discovered. Generally, the diameter of most waterborne bacteria is larger than
0.2 µm [38]. Thereby, it would be easy for nanocellulose-based membrane filters to entrap
most bacteria species using the size-exclusion mechanism. Moreover, as discussed in
Section 4 earlier, the modification of nanocellulose by surface functionalization can also
be performed to increase the removal efficiency of bacteria. In this review, we highlight
several findings concerning bacterial removal using nanocellulose based membrane filters.

Wang et al. (2013) [107] demonstrated that a multi-layered nanofibrous microfiltration
system with high flux, low-pressure drops and high retention capability against bacteria
(Brevundimonas diminuta and Escherichia coli) was possible by impregnating ultrafine CNF
into an electrospun polyacrylonitrile (PAN) nanofibrous scaffold supported by a poly
(ethylene terephthalate) (PET) non-woven substrate. The CNF was functionalized prior
to impregnation with carboxylate and aldehyde groups using TEMPO oxidation. It was
observed that this CNF-based microfiltration membrane exhibited full retention capability
against those bacteria.

Otoni et al. (2019) [108] developed a cationic CNF compound using Girard’s reagent
T (GRT) and shaped it into foam using several protocols, such as cryo-templating to
remove the ubiquitous human pathogen Escherichia coli. The porosity of this foam, which
is associated directly with its surface area and pore size plays a significant role in the
removal of Escherichia coli. The cryogel foams produced by this method had porosities of
circa 98% and were established to be able to achieve an approximately 85% higher anti
Escherichia coli activity when compared to sample foams made up of unmodified CNF. The
cationic CNF using GRT demonstrated good potential for both air and liquid filtration,
with excellent absorbency through functional coating. Access to safe drinking water in
high- and low-income countries has become one of the biggest challenges in the world as
natural resources become scarcer.

Gouda et al. (2014) [109] invented a modified electrospun CNF containing silver
nanoparticles (AgNPs) as a water disinfecting system for water purification systems. The
AgNP content, physical characterization, surface morphology and antimicrobial efficacy of
the developed membrane filter were then studied. AgNP, which belongs to the group of
biocidal nanoparticles, has antimicrobial properties and is commonly used due to its size
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quantization effect. This can cause a shift in the reactivity of metals in the nanoscale. The
developed membrane filter had an excellent ability to remove bacteria, including Escherichia
coli, Salmonella typhi, and Staphylococcus aureus with a percentage filtration of more than
91% in contaminated water samples.

Ottenhall et al. (2018) [110] developed a CNF-based membrane filter, modified with
polyelectrolyte multilayers to produce multilayer cationic polyvinyl amine (PVAm) and
anionic polyacrylic acid (PAA). The authors successfully modified the CNF with cationic
polyelectrolyte PVAm, together with the anionic polyelectrolyte PAA in either single layers
or multilayers (3 or 5 layers) using a water-based process at room temperature. Based on
filtration analysis, the functionalized CNF-based membrane filters with several layers were
physically able to remove more than 99.9% of Escherichia coli from water. The three-layer
membrane filter could remove more than 97% of cultivatable bacteria from natural water
samples, which was a remarkable performance, as compared with the simple processing
technique using plain nanocellulose filters.

Table 8 summarizes the effectiveness of nanocellulose-based membrane filters that
have been functionalized with bioactive compounds for the removal of bacteria. It can be
concluded that bacterial separation by size exclusion mechanism is easier as compared
to the virus. This is because the size of bacteria is usually larger as compared to a virus.
The surface functionalization on nanocellulose is capable of introducing anti-bacterial
properties to the developed filtration material. However, limited studies were reported for
the removal of other bacteria species using nanocellulose-based filtration material.

Table 8. Nanocellulose developed filtration material for bacterial removal.

Microbes Type of
Nanocellulose Functionalization Findings Reference

Escherichia coli CNC Silver nanoparticles

• It possesses high adsorption capacity
and is reusable. Beneficial in total
removal of Escherichia coli.

[40]

Bacillus subtilis and
Escherichia coli CNF ZnO and CeO2

• It has high anti-bacterial activity,
MIC50 against Bacillus subtilis (10.6 µg
mL−1) and Escherichia coli
(10.3 µg mL−1).

[111]

Escherichia coli BNC Not applicable

• The significance of Brownian motion
caused by microorganisms captured
with BNC-based membrane filter
through theoretical modelling and
filtration experiments was
investigated by the authors.

• It was found that the BNC-based filter
was capable of filtering the bacteria.

[112]

Escherichia coli,
Staphylococcus aureus CNF Activated carbon

• The two-layer AC/OCNF/CNF
membrane able to remove Escherichia
coli bacteria up to ~96–99% and
inhibits the growth of Escherichia coli
and Staphylococcus aureus on the upper
CNF surface

[41]
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Table 8. Cont.

Microbes Type of
Nanocellulose Functionalization Findings Reference

Escherichia coli BNC Silver nanoparticle

• Higher amount of silver nanoparticles
loaded onto the BNC membrane
surface could increase the inhibition
zone hence highlighting its good
antimicrobial property against
Escherichia coli.

[113]

Escherichia coli,
Staphylococcus aureus,

Pseudomonas aeruginosa
BNC Silver nanoparticle

• BNC-silver nanoparticle membrane
showed strong antimicrobial activity
against Gram positive (Staphylococcus
aureus) and Gram-negative (Escherichia
coli and
Pseudomonas aeruginosa) bacteria.

[114]

Escherichia coli,
Staphylococcus aureus BNC Silver nanoparticle

• The developed Ag/BNC membrane
exhibited good property as
antimicrobial agent against Escherichia
coli and Staphylococcus aureus as the
antibacterial ratio against Escherichia
coli and Staphylococcus aureus reached
99.4% and 98.4%, respectively.

[115]

Escherichia coli CNF Polyethersulfone
(PES) membranes

• TEMPO oxidized-CNF coating is
effective against Escherichia coli. The
effectiveness was attributed to the pH
reduction effect induced by
carboxyl groups

[116]

5.3. Other Types of Microbes

Nanocellulose would also be able to act as a removal agent for other types of microbes
which are larger in size than bacteria, such as fungi, algae and protozoa. However, it is
noteworthy that there is still a lack of studies regarding this matter. To the best of our
knowledge, there are no available reports on the development of a nanocellulose-based
membrane filter for the removal of fungi.

Algae is also a major contributor to microbial contamination in water resources and
their presence could change the taste or odour of water. For example, blue–green algae and
coloured flagellates (especially the Chrysophyta and Euglenophyta genera of algae) are the
best-known algae that cause contamination in water resources. Furthermore, green algae
may also be a significant contamination factor as well [117]. Hence, the potential of nanocel-
lulose should be explored by scientists to define their role as a membrane filtration material
suitable for removing algae and protozoa from the contaminated water efficiently. Algae
and protozoa are known to have a larger size than viruses and bacteria, thus the removal
of these microbes could be effectively carried out using the size-exclusion mechanism.

However, similar to viruses and bacteria, the nanocellulose needs to be modified
with other compounds such as metal nanoparticles, enzymes and proteins in order to
increase its filtration efficiency [118]. Studies have shown that different charges between
the cellular membrane of algae and protozoa do play a dominant role in the adsorp-
tion/retention of these microbes on a filtration membrane’s surface (i.e., through the
electrostatic interaction principle) [110,119].
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A previous study carried out by Ge et al. (2016) [120] discovered the sustainability and
the most efficient approach in harvesting algae using a modified CNC. The modification
was made by introducing a 1-(3-aminopropyl)-imidazole (APIm) structure as a reversible
coagulant. As shown in Figure 8, the coagulation process occurs when the positively
charged CNC–APIm interacts with the negatively charged Chlorella vulgaris in the presence
of carbon dioxide (carbonated water). Their findings are in agreement with the works of
Qiu et al. (2019) [121], in which it was found that harvesting efficiency could reach up to
85% with only 0.2 g CNC–APIm mass ratio, 5 s of CO2 sparging time, and a 50 mL/min
flow rate. This signifies that the CNC–APIm complex could be an alternative to current
conventional coagulants for harvesting algae in industrial applications.
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Algae harvesting is important for biodiesel industry and many studies have been
carried out to increase its sustainability on a global scale. For example, the capability of
CNF and CNC in harvesting algae was investigated by Yu et al. (2016) [122]. In their study,
they discovered that the CNF did not require any surface modification to harvest the algae,
as it played a role as an algae flocculant via its network geometry, something that the CNC
(even cationic modified CNC) could not do. By referring to Figure 9, flocculation of algae
did not happen when CNC was used, as the freely moving algae cannot be entrapped
by the nanoparticle structure formation of CNC. However, this study only focuses on
the flocculation capability of CNF and CNC, which could lead to a further study on the
filtration efficiency of both materials for algae harvesting. This finding could indirectly
point to the development of a nanocellulose-based membrane filter for algae removal in
the future.

Overall, nanocellulose has shown its capability to filter algae. The functionalization is
also important to improve filtration efficiency. However, the development of nanocellulose
as a filtration material of fungus and protozoa is still limited. It is important to further
investigate the capability of nanocellulose to filter these microbes. Moreover, several other
factors which could influence the filtration efficiency, as discussed before, can also be
considered for future studies.
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6. Challenges and Future Recommendations

This review has shown several undoubtedly interesting features of nanocellulose
which is useful in filtering viruses, bacteria, fungi, algae, and protozoa through the mech-
anism of membrane filtration. The properties and characteristics of nanocellulose as a
filtration material is very promising and is an exciting area for current and future research.
Several recent developments in the application of nanocellulose as a membrane filtration
material were discussed here. It is interesting to note that the functionalization of nanocel-
lulose with a variety of functional groups is among the important key factors of success to
enhance the removal of microbes from air and water.

Even though different works on the nanocellulose as a membrane filter material
has shown several effective findings, improvements in this area are still needed. There
are several other types of microbial species which have not been explored. The use of
nanocellulose-based membrane filters as a means of eradicating the COVID-19 virus has
also not been explored. Moreover, research on the use of nanocellulose-based membrane
filter materials to remove fungus, protozoa and algae is still very limited. Therefore, more
works concerning those microbes remains an urgent need.

The functionalization of nanocellulose is a very important step to obtaining the im-
proved performance of membrane filtration material. In this review, several compounds
have been shown to be capable of being incorporated with nanocellulose. However, their
side effects towards the environment as a result of this functionalization of nanocellulose
is also an important consideration. For example, the functionalization of nanocellulose
with TEMPO can be harmful to the environment. This is because the synthesis of TEMPO
can generate chemical by-products which are toxic to aquatic life when released as waste
effluent into the environment [123]. In the future, research should also be focused on this
concern to determine the actual feasibility and sustainability of these developed functional-
ized nanocellulose products towards the environment.

In addition, further research on generating hybrid nanostructures on the surface of
nanocellulose to enable interaction with multiple species of microbes is urgently needed,
which will pave the way towards the development of new materials capable of eliminating
various kind of microbes at once.

This review has identified several difficulties concerning the use of nanocellulose as
a membrane filter material. One of them is particularly related to the high production
cost especially in large industrial scale. Furthermore, high energy consumption during
the production of nanocellulose is still a concern and cries for a more reliable and repro-
ducible production technique to pave way to using nanocellulose as a commercially viable
membrane filter material. To the best of our knowledge, there is much progress in research
studies focusing on reducing the energy consumption and production cost of nanocellulose
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and have been attempted in numerous pilot-scale productions worldwide. Other than that,
issue regarding the biodegradability of nanocellulose as adsorbent need to be evaluated by
considering several factors such as the types of water and presence of certain microbes that
may cause cellulose degradation.

All in all, nanocellulose is a good alternative for a membrane filter material and is
expected to be fully utilized in numerous industries in the near future, considering the
solutions for the outlined challenges and difficulties that have been met.
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