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Abstract: The process parameters significantly influence the preparation and final properties of
outdoor wood mats-based engineering composite (OWMEC). During outdoor use, wood composites
are susceptible to destruction by rot fungi. Herein, the role of process parameters such as density and
resin content on OWMEC resistance to fungal decay was investigated. The poplar OWMEC samples
were exposed to white-rot fungus Trametes versicolor and brown-rot fungus Gloeophyllum trabeum
for a period of 12 weeks. The chemical composition, crystallinity, and morphology were evaluated
to investigate the effect of process parameters on the chemical composition and microstructure
of the decayed OWMEC. With an increase in the density and resin content, the mass loss of the
decayed OWMEC decreased. The highest antifungal effect against T. versicolor (12.34% mass loss)
and G. trabeum (19.43% mass loss) were observed at a density of 1.15 g/m3 and resin content of 13%.
As results of the chemical composition and microstructure measurements, the resistance of OWMEC
against T. versicolor and G. trabeum fungi was improved remarkably by increasing the density and
resin content. The results of this study will provide a technical basis to improve the decay resistance
of OWMEC in outdoor environments.

Keywords: outdoor wood mats-based engineering composite; wood-degrading fungi; decay
resistance; durability

1. Introduction

Wood, as a renewable material, is in high demand for construction and building
applications. It can be converted into engineered wood composites with standardized
dimensions, such as wood oriented strand board, glue laminated wood, and reconstituted
wood lumber. Scrimber, a promising type of engineered wood composite, is marketed
as being moisture resistant and suitable for outdoor structural use [1]. Wood mats-based
engineering composite (WMEC), as a novel engineered scrimber composite, consists of
mechanically defibered wood fiber mats soaked with a phenolic resin and compacted to
up to three times the original density of the wood using hot or cold pressing [2]. The
development of WMECs refers to the defibration technology, bonding technology, and
forming process [3,4].

During outdoor use, wood and its composites are susceptible to discoloration by mold
fungi, destruction by rot fungi, and attack by insects. Biological attack limits the utilization
of wood materials because of physical, chemical, and biological changes occurring on the
surface and inside the material. Discoloration by mold fungi can cause high-value loss
of wood composites when exposed to humid or moist conditions [5]. Biodeterioration
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by white and brown rot fungi can alter the chemical composition of wood [6]. Witom-
ski et al. [7] reported that the bending strength and compressive strength of Scots pine
wood can decrease by up to 20% with only 7% mass loss. The outdoor service life of wood
composites is closely related to their deterioration under ambient conditions.

The degradation rate of wood composites is related to internal parameters such as
the moisture, density, and resin content. Kataoka et al. [8] reported that the spreading
rate and extent of fungal degradation were dependent on the density of the composite.
Furthermore, accelerated weathering is more likely to occur in low-density composites [9].
Previous studies have indicated that the dimensional stability and photostabilization of
wood composites can be improved by increasing the concentration of phenol formaldehyde
(PF) resin [10,11]. To improve the durability of wood composites, the common industrial
practice is to adjust the resin content to over 13% and density up to 1.10 g/cm3. The
mass loss of bamboo scrimber after 12 weeks of fungal erosion was less than 5% [12,13].
However, the decay resistance of WMECs has not been adequately investigated, especially
for different densities and resin contents.

In order to expand the applicability and extend service lifetime of outdoor WEMC
(OWMEC), more attention should be paid to its decay resistance. Impregnation of PF resin
and compression of wood have been shown to improve the durability and dimensional
stability of wood [14,15]. Hence, the objective of this study was to investigate the resistance
of OWMECs with different densities and resin contents exposed to Trametes versicolor and
Gloeophyllum trabeum fungi for a period of 12 weeks. The wet chemical method, Fourier
transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron
microscopy (SEM) were used to analyze the changes in the chemical and physical properties
of the OWMECs before and after fungal erosion. These analyses provide technical support
for the outdoor application of OWMECs.

2. Materials and Methods
2.1. Materials

Poplar wood (Populus canadensis Moench) with a diameter of approximately 400 mm
and a basic density of 0.39 g/cm3 was purchased from Langfang Senyuan Wood Co., Ltd.,
Hebei, China. PF resin was purchased from Dynea Chemical Industry Co., Guangdong,
China. The pH, solid content, and viscosity of the PF resin were 10.5 ± 0.2, 46.8% ± 1.0%,
and 41.2% ± 2.0%, respectively.

2.2. Preparation of Outdoor Wood Mats-Based Engineering Composites (OWMECs)

The wood was manufactured into OWMEC according to a previously published
method [2]. Briefly, the wood logs were peeled and split into fiber mats with a thickness
of 6 mm. After air-drying, the mats were impregnated with PF resin to achieve a target
resin content based on the weight of dried mats. Thereafter, the resin-impregnated wood
fiber mats were air dried again to obtain a moisture content of 12 wt.%. Finally, the fiber
mats were laminated along the grain in a mold and hot-pressed at 140 ◦C for 30 min to
obtain the OWMEC (400 × 150 × 18 mm3). OWMEC samples with different resin contents
(8, 13, and 18 wt.%) were obtained with a density of 0.95 g/cm3. By changing the mat
weight, OWMEC samples with different densities (0.85, 1.00, and 1.15 g/cm3) were also
obtained with a resin content of 13 wt.%. All the OWMECs were conditioned in a room at
65% relative humidity (RH) and 20 ◦C for 2 weeks prior to testing.

2.3. Decay Resistance

The resistance of the OWMEC specimens and control specimens (poplar wood) against
decay by white rot T. versicolor fungi and brown rot G. trabeum fungi was assessed in
accordance with the Chinese Standard GB/T 13942.1-2009 [16]. The dimensions of each
specimen were 20 × 20 × 10 mm3. Six samples were tested in parallel for each group.
White-rot T. versicolor fungi or brown-rot G. trabeum fungi were inoculated on malt agar
medium and pre-incubated for 10 days. Once the mycelium had covered the entire surface
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of the malt-agar medium, the test specimens were introduced on the sterile glass sticks for
12 weeks at 28 ◦C and 80% RH. After incubation, the decayed samples were gently cleaned
to remove the mycelium adhered to the surface of the samples and oven-dried at 103 ◦C
to constant weight. The percentage mass loss (ML) of the samples was calculated after
12 weeks.

ML =
W1 − W2

W1
× 100% (1)

where W1 is the weight of samples before decay and W2 is the weight of the samples after
12 weeks of incubation.

2.4. Chemical Analysis

Changes in the chemical composition of the healthy and decayed OWMEC samples
were evaluated following the Chinese standards. The specimens were oven dried, milled,
and sieved through a mesh with holes of 0.4 mm. Then, the contents of acid-insoluble
lignin (GB/T 2677.8-1994) [17], holocellulose (GB/T 2677.10-1995) [18], and α-cellulose
(GB/T 744-1989) [19] were determined.

2.5. Fourier Transform Infrared (FTIR) Analysis

FTIR spectra of the OWMECs before and after 12 weeks of fungal exposure were
obtained using an FTIR spectrometer (Vertex 70, Bruker, Japan). KBr disks containing 1%
of the finely ground samples were employed. Each spectrum was recorded in absorbance
units from 1800 to 800 cm−1 as an average of 16 scans at a spectral resolution of 4 cm−1.

2.6. X-ray Diffraction (XRD) Analysis

The crystalline structures of the samples were identified using a Bruker D8 Advance
X-ray diffractometer equipped with a Cu Kα X-ray source (λ = 1.5404 Å) operated at 40 kV
and 40 mA. The X-ray patterns were plotted within the range of 10–80◦ at a rate of 2◦ min−1.
The degree of crystallinity (Cr) was determined using the following equation:

Cr =
Acrystalline

Atotal
× 100% (2)

where Acrystalline is the sum of all areas of crystallographic reflections and Atotal is the total
area of both the crystalline and amorphous contributions.

2.7. Scanning Electron Microscopy (SEM) Analysis

Small blocks (3 × 5 × 5 mm3) were cut from OWMECs before and after fungal
exposure. Sections of 20 µm were sliced off from the cross-section of each block using a
sliding microtome until a smooth, clear surface was obtained. Then, all block surfaces
were gold-coated and examined using a scanning electron microscope (Hitachi-S4800) at
an accelerating voltage of 10 kV.

2.8. Statistical Analysis

One-way analysis of variance (ANOVA) was conducted to study the effect of process
parameters on decay resistance of the OWEMCs at the 0.05 significance level. Duncan’s
tests were employed to multiply compare the properties of OWEMCs with different resin
contents and densities.

3. Results and Discussion
3.1. Mass Loss Analysis

The appearance of the specimens exposed to T. versicolor and G. trabeum fungi is shown
in Figures 1 and 2. The original shape of the poplar wood was severely altered, leaving only
a small piece of wood. In contrast, OWMEC specimens retained their shape. White decay
marks were occasionally observed on the surface of the OWMEC specimens. Furthermore,
there were many cracks and holes on the surface of the OWMEC samples with low resin
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content and density. This indicates that an increase in the resin content and density can
improve the decay resistance of OWMEC.
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Mass loss analysis can predict the potential performance loss of materials. The mass
losses of the specimens after 12 weeks of incubation with T. versicolor and G. trabeum fungi
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are shown in Figures 3 and 4. For the reference poplar wood samples, mass losses of ap-
proximately 92.62% and 93.41% were observed for white- and brown-rot fungi, respectively.
This demonstrates that poplar wood is easily destroyed by these fungi. In comparison, the
mass loss of the OWMEC samples was significantly reduced, indicating that the fungal
resistance is greatly improved when poplar is made into poplar OWMEC. The mass loss
of the OWMEC samples was dependent on the resin content and density. As the density
and resin content increased, the mass loss decreased. The OWMEC with a resin content
of 18% and density of 0.95 g/m3 exhibited mass losses as low as 23.24% and 27.88% after
fungal attack by T. versicolor and G. trabeum, respectively. These values increased to 29.05%
and 31.27%, respectively, when the resin content and density were 13% and 0.95 g/m3,
respectively. These results confirm the results of a previous study, which reported that PF
resin and densification had a certain inhibitory effect on fungal decay [20]. The OWMEC
with a density and resin content of 1.15 g/m3 and 13%, respectively, exhibited mass losses
of just 12.34% and 19.43% after 12 weeks of incubation with T. versicolor and G. trabeum
fungi, respectively. Therefore, poplar OWMEC with a high resin content and density shows
excellent corrosion resistance, making it suitable for use outdoors.
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3.2. Chemical Analysis

Tables 1 and 2 show the holocellulose, α-cellulose, and acid-insoluble lignin content
of the OWMEC samples before and after fungal decay. The percentage of holocellulose in
the decayed OWMEC samples was lower than that in the healthy samples, whereas the
percentage of acid-insoluble lignin was increased.

Table 1. Chemical compositions of OWMEC samples with different resin contents before and after
12 weeks of incubation with T. versicolor and G. trabeum fungi.

Resin Content (%) Fungus Holocellulose (%) α-Cellulose (%) Acid Insoluble
Lignin (%)

8 - 68.47 (0.10) c 40.58 (0.17) b 25.09 (0.11) a

13 - 64.19 (0.21) b 38.61 (0.54) a 28.12 (0.16) b

18 - 62.64 (0.20) a 37.11 (0.13) a 31.26 (0.16) c

8
T. versicolor

63.13 (0.11) c 37.32 (0.08) b 28.86 (0.10) a

13 61.53 (0.16) b 37.31 (0.14) b 33.41 (0.11) b

18 60.46 (0.07) a 36.82 (0.10) a 34.44 (0.44) c

8
G. trabeum

60.25 (0.13) a 34.98 (0.20) a 31.16 (0.24) a

13 60.39 (0.11) a 36.89 (0.23) b 33.75 (0.08) b

18 60.11 (0.06) a 36.68 (0.10) b 35.48 (0.18) c

Values in parenthesis are standard deviations. For each parameter, average values with different letters (a, b, c)
in each column indicate a significant difference at the 0.05 level (analysis of variance (ANOVA), followed by
Duncan’s multiple range test).

Table 2. Chemical compositions of OWMEC samples with different densities before and after
12 weeks of incubation with T. versicolor and G. trabeum fungi.

Density (g/cm3) Fungus Holocellulose (%) α-Cellulose (%) Acid Insoluble
Lignin (%)

0.85 - 63.78 (0.18) a 38.31 (0.13) a 29.63 (0.13) c

1.00 - 64.19 (0.21) a 38.61 (0.17) a 28.12 (0.16) b

1.15 - 65.32 (0.11) b 39.37 (0.08) b 27.31 (0.21) a

0.85
T. versicolor

60.29 (0.14) a 35.92 (0.18) b 32.48 (0.18) a

1.00 63.55 (0.08) c 38.99 (0.16) c 32.01 (0.34) a

1.15 62.18 (0.16) b 35.04 (0.11) a 32.64 (0.17) a

0.85
G. trabeum

59.32 (0.11) a 35.56 (0.13) a 32.52 (0.16) a

1.00 61.24 (0.10) c 37.77 (0.13) b 32.47 (0.13) a

1.15 60.90 (0.92) b 37.45 (0.06) b 33.18 (0.08) b

Values in parenthesis are standard deviations. For each parameter, average values with different letters (a, b, c)
in each column indicate a significant difference at the 0.05 level (analysis of variance (ANOVA), followed by
Duncan’s multiple range test).

As shown in Table 1, the holocellulose and α-cellulose contents of the OWMEC
samples decreased with increasing resin content, whereas the acid-insoluble lignin content
increased. This is because the increase in resin content per unit volume and decrease in
fiber content led to a decrease in the cellulose content. Regardless of the type of fungi,
the holocellulose and α-cellulose contents of the decayed OWMEC decreased as the resin
content increased, whereas the acid insoluble lignin increased. With an increase in the resin
content, the holocellulose and α-cellulose contents in the T. versicolor-exposed OWMEC
decreased, whereas the acid-insoluble lignin content increased. The holocellulose and
α-cellulose contents in the G. trabeum-exposed OWMEC first increased and then decreased,
whereas the acid-insoluble lignin gradually increased.

Table 2 shows that the holocellulose and α-cellulose contents of the OWMEC samples
increased with increasing density, whereas the acid-insoluble lignin decreased. Regardless
of the type of fungi, the holocellulose content of the decayed OWMEC decreased as the
density increased, whereas the acid-insoluble lignin content increased.
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Microorganisms change the chemical composition of wood during decay. Regardless
of the type of fungi, the holocellulose content of the decayed OWMEC decreased as the resin
content or density increased, whereas the acid insoluble lignin content increased. Both fungi
can simultaneously decompose the major chemical components of wood cell walls [21–23].
However, the degradation rate of lignin was not as rapid as that of holocellulose, so
the relative content of lignin showed an increasing trend. The amount of holocellulose
decomposed by G. trabeum fungi was greater than that by T. versicolor fungi, indicating
that G. trabeum has a higher ability to decompose holocellulose than T. versicolor. These
observations are consistent with previous findings that brown-rot fungi primarily degrade
holocellulose [24,25].

3.3. FTIR Analysis

Figures 5 and 6 show FTIR spectra of the OWMECs with different resin contents and
densities before and after 12 weeks of fungal attack. The region from 1800 to 800 cm−1 is
associated with various functional group characteristic of wood components (cellulose,
hemicellulose, and lignin). The FTIR spectra of the healthy OWMEC specimen exhibited
carbohydrate-associated bands at 1740, 1373, 1159, and 898 cm−1 and lignin-associated
bands at 1600, 1510, 1462, 1425, 1333, and 1244 cm−1 [26,27]. Relative increases and
decreases in the intensities of these characteristic absorption peaks indicate chemical
changes in the OWMEC. After 12 weeks of decay, the intensity of each peak for each
OWMEC sample decreased to some extent. However, the absorption intensity decreased
slowly as the resin content or density increased. These results demonstrate that, not
only were hemicellulose and lignin decomposed by fungi, but cellulose was degraded to
different degrees. The results are similar to those in earlier studies, which showed that both
white- and brown-rot fungi degrade carbohydrates and lignin in wood cell walls [28].
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In the FTIR spectra of the decayed OWMECs, the intensity of the peak near 1740 cm−1,
which corresponds to the C=O stretching vibration of the acetyl and carboxyl groups, was
reduced. This indicates that the hemicellulose was degraded by both white- and brown-rot
fungi. The intensities of the peaks located at 1600 and 1510 cm−1, which represent the
aromatic skeleton of lignin, decreased significantly, indicating that lignin was decomposed
during the fungal decay tests. The intensities of the bands at 1373, 1159, and 898 cm−1,
which correspond mainly to polysaccharides (hemicellulose and cellulose), decreased after
decay treatment. Moreover, the intensities of the peaks at 1333, 1244, and 1103 cm−1, which
are associated with lignin–carbohydrate complexes, also decreased. The change in the
relative intensities of these peaks shows that the consumption of hemicellulose and lignin
reached a new balance. The fungal decay-induced chemical changes to the lignin were
greater in the OWMEC with a density of 0.85 g/cm3 or resin content of 8% than in that
with a density of 1.00 g/cm3 or resin content of 13%. When the resin content was 18.0%
or the density was 1.15 g/cm3, the intensity of the aromatic ring structure of lignin in the
T. versicolor or G. trabeum-decayed OWMEC did not change significantly.

3.4. XRD Analysis

The XRD patterns of the OWMECs presented in Figures 7 and 8 show sharp and strong
diffraction peaks, indicating the crystalline nature of the OWMEC composites. The peaks
at 16.3◦ and 22.5◦ were assigned to the (110) and (200) planes, respectively, revealing that
the decayed OWMECs with different resin contents and densities possessed a typical wood
phase. An increase in the signal of both the (110) and (200) peaks in decayed OWMECs can
be observed in Figures 7 and 8. When the XRD intensity is normalized with the (200) peak,
the valley at 2θ = 18◦ appears to be slightly lower for the decayed samples than that for the
healthy (control) sample. The (200) diffraction peak of decayed OWMECs was narrower
than that of the control OWMEC, indicating that the lattice structure of the cellulose crystal
zone was destroyed during the decay process.

The Cr of the OWMECs increased with increasing resin content and density, regardless
of the T. versicolor or G. trabeum decay treatment (see Tables 3 and 4). The Cr of the healthy
(control) OWMEC was 16.34%. The Cr increased to 21.81% for the T. versicolor-decayed
OWMEC with 18% resin content and 21.45% for the G. trabeum-decayed OWMEC with 18%
resin content, indicating respective increases of 33.48% and 31.27% when compared to the
control OWMEC. The Cr increased to 23.27% for the T. versicolor-decayed OWMEC with a
density of 1.15 g/cm3 and 23.79% for the G. trabeum-decayed OWMEC with a density of
1.15 g/cm3, indicating respective increases of 42.41% and 45.59% when compared to the
control OWMEC.
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Table 3. Crystallinity (Cr) of healthy (control) and decayed OWMECs with different resin contents.

Resin Content (%) Fungus Cr (%)

Control - 16.34

8.0
T. versicolor

16.64
13.0 21.10
18.0 21.81

8.0
G. trabeum

18.65
13.0 18.89
18.0 21.45

Table 4. Crystallinity (Cr) of healthy (control) and decayed OWMECs with different densities.

Density (g/cm3) Fungus Cr (%)

Control - 16.34

0.85
T. versicolor

19.72
1.00 22.81
1.15 23.27

0.85
G. trabeum

19.21
1.00 21.78
1.15 23.79

The XRD results showed that the Cr of the decayed OWMECs increased with increas-
ing resin content and density. The greater Cr may be because the fungal degradation rate
of hemicellulose is higher than that of cellulose. In contrast to hemicellulose, the decompo-
sition of hydrogen bond-ordered cellulose is a complex procedure. Fackler et al. [29] found
that amorphous polysaccharides are more susceptible than crystalline cellulose structures
to fungal decay, which results in an increase in overall crystallinity. Furthermore, the higher
the density, the higher the fiber content per unit volume.

3.5. SEM Analysis

Figure 9 shows the effect of the resin content on the microstructure of T. versicolor-
decayed OWMEC. Exposure to T. versicolor fungi causes ruptures in the walls of all cell ele-
ments, such as vessels, fibers, and rays. The cell walls of the vessel of decayed OWMEC with
8% resin content formed rupture gaps and extended to the walls of other cells (Figure 9a).
The wood ray was disintegrated, leaving only a small number of residual fragments
(Figure 9b). The T. versicolor fungi attacked the fiber cells by thinning the cell walls and
creating bore holes on the walls (Figure 9c). In contrast, the cell walls of the vessels of the
decayed OWMEC with 18% resin content were not seriously damaged, and hyphae were
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occasionally found in the cells (Figure 9d). The fiber cells away from the vessel walls were
found with intact walls, as shown in Figure 9d. A few cracks were observed in the ray
cells (Figure 9e), and holes were observed between the fiber cells (Figure 9f). These results
demonstrate that the vessels and rays were more vulnerable than the fibers, which were
relatively resistant to fungal action. These relative differences are related to deviations in
the cell wall thickness, in that the vessel and ray cell walls in poplar are much thinner than
the fiber walls.
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Figure 10 shows the effect of density on the microstructure of T. versicolor-decayed
OWMEC. Colonization of fungal hyphae within the vessel lumina and opening of the
vessel walls were observed in the OWMEC with a density of 0.85 g/cm3 (Figure 10a).
The vessel cell walls contained several discontinuous gaps, indicating degradation by pit
erosion. The rays and fibers were also deeply eroded by the T. versicolor fungi (Figure 10b,c).
Erosion channels with a U-shaped incision appeared on the fiber cell walls, whereby two
or more pores had fused together to form large pores on the fiber cell wall (Figure 10b).
This illustrates the degradation of the cell walls. Figure 10c reveals that the thickness of
the fiber wall decreased from the lumen side to the middle lamellae. Furthermore, erosion
troughs formed in the fiber walls. Many large bore holes and loose fiber walls can also
be observed in Figure 10c. Notably, in the OWMEC with a density of 1.15 g/cm3, all of
the cell types retained the compressed cell size and morphology of healthy OWMEC. The
morphological changes to the OWMEC with a density of 1.15 g/cm3 were not prominent,
demonstrating that the extent of damage was greatly reduced.

The SEM images of the decayed OWMEC samples confirmed that the resin content and
density were related to the decay resistance. In particular, a high resin content and density
enhanced the decay resistance of the OWMEC. Phenolic resins containing various active
groups react with the active groups of the cell walls of OWMEC to form stable cross-linking,
which effectively improves the corrosion resistance [14,20,30]. The space between the cells
was reduced in the higher-density OWMEC, indicating that the diffusion or penetration of
hyphae and degrading enzymes was hindered. Moreover, the high density also increased
the content of the fiber and phenolic resin, which effectively inhibited fungal corrosion.
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4. Conclusions

The effects of resin content and density on the resistance of OWMECs to fungal decay
were investigated by fungal decay tests. Biological attack resulted in a loss of mass of
OWMECs. Depending on the mass loss analysis, a decrease in mass from 32.20% to 12.34%
for T. versicolor and 30.83% to 19.43% for G. trabeum was observed in the OWMECs (density
from 0.85 g/cm3 to 1.15 g/cm3). A decrease in mass from 40.61% to 23.24% for T. versicolor
and 48.19% to 27.88% for G. trabeum was also observed in the OWMECs (resin content from
8% to 18%). The decay resistance of the OWMEC could be enhanced by increasing the resin
content or density. The chemical analysis and FTIR measurements showed that brown-rot
fungus G. trabeum predominantly disintegrated the cellulose and hemicellulose, whereas
white-rot fungus T. versicolor decayed both holocellulose and lignin; however, the chemical
composition was less affected by fungal decal at a higher resin content and density. The
Cr of the scrimbers increased with increasing resin content and density, regardless of the
T. versicolor or G. trabeum decay treatment. The SEM results confirmed that the resin content
and density were related to the decay resistance of OWMEC. In particular, a high resin
content and density enhanced the decay resistance of the OWMEC. An appropriate process
factor should be performed to improve the outdoor durability of the OWMEC.
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