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 54 

Figure S1. Chemical structures of the materials used in this study. 55 

 56 

Note S1. Description of the kinetics analysis of the bulk curing reaction.  57 

The kinetics analysis of the bulk curing reaction was conducted based on the following equations 58 

of the autocatalytic reaction model [8,14-16]. 59 

 
d𝛼bulk

d𝑡
= 𝑘𝛼bulk

𝑚 (1 − 𝛼bulk)𝑛 (1) 

 𝑘 = 𝑘0 exp (−
𝐸a

𝑅𝑇
) (2) 

where 𝑚 and  𝑛 are the orders of reaction, 𝐸a is the activation energy, 𝑘0 is a pre-exponential 60 

factor, and 𝑅 is the universal gas constant. The curves of the 𝛼bulk were smoothed by Savitzky-61 

Golay filtering with a polynomial order of three for the calculation of the first derivative of the 62 

degree of cure, d𝛼bulk/d𝑡. Fitting of the profile of d𝛼bulk/d𝑡 against 𝛼bulk (Figure S2(a)) was 63 

conducted in the range of 𝛼bulk ≤ 0.8 because the derivative in the range of higher degree of cure 64 

was fluctuated due to the derivative of small increase at the last stage of curing reaction. After the 65 

fitting shown in Figure S2(a), the three parameters, 𝑚, 𝑛, 𝑘, were determined (listed in Table S1). 66 
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Then, from the Arrhenius plots (linear approximation between ln(𝑘) vs 1/𝑇, shown in Figure 67 

S2(b)), the activation energy and the pre-exponential factor were obtained (Table S2).  68 

 69 

 70 

Figure S2. (a) Fitting and (b) Arrhenius plot of the curing curves measured by the curemeter.  71 

 72 

Table S1. Parameters of the kinetic study of curing curves measured by a curemeter. 73 

Material T [℃] 1/T [1/K] lnk m n m+n 

FKM 150 0.00236 -5.193 0.301 1.89 2.191 

FKM 160 0.00231 -4.294 0.365 1.826 2.191 

FKM 170 0.00226 -3.263 0.522 1.767 2.288 

FKM 180 0.00221 -2.624 0.59 1.464 2.055 

FKM/CNT 150 0.00236 -5.345 0.299 1.627 1.926 

FKM/CNT 160 0.00231 -4.121 0.397 1.665 2.062 

FKM/CNT 170 0.00226 -3.126 0.509 1.638 2.146 

FKM/CNT 180 0.00221 -2.459 0.548 1.217 1.765 

 74 
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Table S2. Kinetic parameters of the bulk curing reaction by the fitting of the Arrhenius plot. 75 

  Ea [kJ/mol] lnk0 R2 

FKM 127.95 31.4 0.994 

FKM/CNT 154.28 38.6 0.988 

 76 

Note S2. Description of the relationship between the increase of the absorbance and the diffusion 77 

coefficients in Fickian diffusion.  78 

The Fickian diffusion was governed by the following equation:  79 

 
𝜕𝐶(𝑡, 𝑧)

𝜕𝑡
= 𝐷

𝜕2𝐶(𝑡, 𝑧)

𝜕𝑧2
 (3) 

Where 𝐷 is the diffusion coefficients [m2 s-1], 𝑡 is the time [s], and 𝑧 is the coordinate of the 80 

thickness direction of the sample [m]. The boundary conditions of the model are described under 81 

the assumption of the uniform concentration of the component (𝐶0 ) in the sample having the 82 

thickness of 𝐿: 83 

 𝐶 = 𝐶0 (𝑥 < 𝐿) at 𝑡 = 0 (4) 

 𝐶 = 0(𝑥 > 𝐿) at 𝑡 = 0 (5) 

From Eqs. (3)-(5), the concentration was determined to  84 

 𝐶(𝑡, 𝑧) =
𝐶0

2
{erf (

𝐿 − 𝑧

2√𝐷𝑡
) + erf (

𝐿 + 𝑧

2√𝐷𝑡
)} (6) 

where erf is the Gauss’s error function defined as 85 

 erf(𝑥) = ∫ exp(−𝜉2) d𝜉
𝑥

0

 (7) 

The total amount of the diffused-out component 𝑀(𝑡) was calculated by 86 
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 𝑀(𝑡) = 𝐶0𝐿 − ∫ 𝐶(𝑡, 𝑧)d𝑧
𝐿

0

 (8) 

In case of this study, ATR-FTIR detects the amount of both diffused-out component and remaining 87 

component within the depth that evanescent wave penetrates. Therefore, the increase of the 88 

absorbance by diffusion during heating can be modelled by the following equation.  89 

 

Δ𝐴(𝑡) ∝ 𝑀(𝑡) + ∫ 𝐶(𝑡, 𝑧)d𝑧
𝐿

𝐿−𝛥𝑧

 

= 𝐶0𝐿 − ∫ 𝐶(𝑡, 𝑧)d𝑧
𝐿−𝛥𝑧

0

 

(9) 

Where 𝛥𝑧 is the depth that the evanescent wave penetrates. In this study, sample thickness 𝐿 is 90 

1 mm (1×10-3 m), and 𝛥𝑧 is represented here by the penetration depth of 0.93 μm (9.3×10-7 m) to 91 

analyze data. Substituting Eq. (6) into Eq. (9) yields 92 

 

Δ𝐴(𝑡) ∝ 𝐶0𝐿 −
𝐶0

2
{∫ erf (

𝐿 − 𝑧

2√𝐷𝑡
) d𝑧

𝐿−𝛥𝑧

0

+ ∫ erf (
𝐿 + 𝑧

2√𝐷𝑡
) d𝑧

𝐿−𝛥𝑧

0

}

= 𝐶0𝐿 −
𝐶0

2
(𝑓1(𝑡) + 𝑓2(𝑡)) 

(10) 

Here, integrals of the Gauss’s error function were tentatively defined as 𝑓1(𝑡) and 𝑓2(𝑡). The 93 

integral of the Gauss’s error function is not easily solved due to its complexity. Here, following 94 

Taylor’s expansion of the Gauss’s error function is introduced:  95 

 erf(𝑥) =
2

√𝜋
∑ (

(−1)𝑛𝑥2𝑛+1

𝑛! (2𝑛 + 1)
)

∞

𝑛=0

 (11) 

The integral of the Gauss’s error function is subsequently described as: 96 
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 ∫ erf(𝑥) 𝑑𝑥 =
2

√𝜋
∑ (

(−1)𝑛𝑥2𝑛+2

2(𝑛 + 1)! (2𝑛 + 1)
) + const.

∞

𝑛=0

 (12) 

Thus, the integrals of the Gauss’s error function in Eq. (10) are expressed by the following 97 

equations: 98 

 

𝑓1(𝑡) = ∫ erf (
𝐿 − 𝑧

2√𝐷𝑡
) d𝑧

𝐿−𝛥𝑧

0

= 2√𝐷𝑡 ∫ erf(𝑧′) d𝑧′  (Notice: 𝑧′ =
𝐿 − 𝑧

2√𝐷𝑡
)

𝐿

2√𝐷𝑡

𝛥𝑧

2√𝐷𝑡

= 2√𝐷𝑡
2

√𝜋
∑ (

(−1)𝑛

2(𝑛 + 1)! (2𝑛 + 1)
{(

𝐿

2√𝐷𝑡
)

2𝑛+2∞

𝑛=0

− (
𝛥𝑧

2√𝐷𝑡
)

2𝑛+2

}) 

(13) 

 99 

 

𝑓2(𝑡) = ∫ erf (
𝐿 + 𝑧

2√𝐷𝑡
) d𝑧

𝐿−𝛥𝑧

0

= 2√𝐷𝑡 ∫ erf(𝑧") d𝑧"  (Notice: 𝑧" =
𝐿 + 𝑧

2√𝐷𝑡
)

2𝐿−𝛥𝑧

2√𝐷𝑡

𝐿

2√𝐷𝑡

= 2√𝐷𝑡
2

√𝜋
∑ (

(−1)𝑛

2(𝑛 + 1)! (2𝑛 + 1)
{(

2𝐿 − 𝛥𝑧

2√𝐷𝑡
)

2𝑛+2∞

𝑛=0

− (
𝐿

2√𝐷𝑡
)

2𝑛+2

}) 

(14) 

Therefore, the increase of the absorbance is described by:  100 
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Δ𝐴 ∝ 𝐶0𝐿 −
𝐶0

2
{∫ erf (

𝐿 − 𝑧

2√𝐷𝑡
) d𝑧

𝐿−𝛥𝑧

0

+ ∫ erf (
𝐿 + 𝑧

2√𝐷𝑡
) d𝑧

𝐿−𝛥𝑧

0

}

= 𝐶0𝐿 −
𝐶0

2
(𝑓1(𝑡) + 𝑓2(𝑡))

= 𝐶0𝐿

−
𝐶0

2
(2√𝐷𝑡

2

√𝜋
∑ (

(−1)𝑛

2(𝑛 + 1)! (2𝑛 + 1)
{(

2𝐿 − 𝛥𝑧

2√𝐷𝑡
)

2𝑛+2∞

𝑛=0

− (
𝛥𝑧

2√𝐷𝑡
)

2𝑛+2

}))

= 𝐶0𝐿 (1

−
1

𝐿√𝜋
∑ (

(−1)𝑛2−(2𝑛+1)

(𝑛 + 1)! (2𝑛 + 1)
{(2𝐿 − 𝛥𝑧)2𝑛+2

∞

𝑛=0

− (𝛥𝑧)2𝑛+2}𝐷−
2𝑛+1

2 𝑡−
2𝑛+1

2 )) 

(15) 

Based on the Lambert-Beer law, the absorbance is proportional to the concentration of the 101 

component. The absorbance at the beginning can be expressed by 102 

 𝐴(0) = 𝜖𝐶0𝛥𝑧 (Notice:  ϵ: const. ) (16) 

Finally, the ratio of the increase of the absorbance to the initial absorbance can be describes as 103 

following equation:   104 
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Δ𝐴

𝐴0
=

𝐴

𝐴0
− 1 

=
1

Δ𝑧/𝐿
(1 −

1

𝐿√𝜋
∑ (

(−1)𝑛2−(2𝑛+1)

(𝑛 + 1)! (2𝑛 + 1)
{(2𝐿 − 𝛥𝑧)2𝑛+2

∞

𝑛=0

− (𝛥𝑧)2𝑛+2}𝐷−
2𝑛+1

2 𝑡−
2𝑛+1

2 )) 

(17) 

By fitting the beginning of the profile of this equation, the relationship between the diffusion 105 

coefficient [m2/s] and the initial slope of the normalized absorbance (i.e., how many times the 106 

absorbance increases per second in Figure S3(a)) was obtained as shown in Figure S3 (b).  107 

 108 

 109 

Figure S3. (a) Calculation of initial slope of the integrated absorbance (identical to Figure 4 (a)). 110 

(b) Relationship between the diffusion coefficient of Fickian diffusion model and the initial slope 111 

of the absorbance in this study.  112 
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 113 

Figure S4. Effects of the presence of CNT in FKM on the rheological properties: the frequency-114 

sweep of (a) the storage modulus and (b) the complex viscosity. Samples were compression-115 

molded at 170°C and 20 min. 116 

 117 

Note S3. Calculation of the temperature distributions in FKM and FKM/CNT during the heating 118 

processes.  119 

Unidirectional thermal conduction of the thickness direction in a sample can be described by 120 

unsteady thermal diffusion equation based on Fourier’s law:  121 

 

𝜕𝑇s(𝑡, 𝑧)

𝜕𝑡
=

𝜕

𝜕𝑧
(

𝑘

𝜌𝐶𝑝

𝜕𝑇s(𝑡, 𝑧)

𝜕𝑧
) 

= 𝛼
𝜕2𝑇s(𝑡, 𝑧)

𝜕𝑧2
 

(18) 

where 𝑇s is the temperature of the sample [°C], 𝑡 is the time [s], 𝑧 is the coordinate of the 122 

thickness direction [m], 𝛼 is the thermal diffusivity [m2 s-1], 𝑘 is the thermal conductivity [W 123 

m-1 K-1], 𝜌  is the density [kg m-3], and 𝐶𝑝  is the specific heat capacity [J kg-1 K-1]. 𝜌 =124 
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1900 kg m−3 and 𝐶𝑝 = 2000 J kg−1 K−1 were used as typical values of FKM. As for thermal 125 

conductivity, approximates of 0.050 W m-1 K-1 (FKM) and 0.020 W m-1 K-1 (FKM/CNT 1.0 phr) 126 

were used based on the literature [46] with an assumption of the sufficiently small effect of the 127 

degree of cure on the thermal conductivity and the exothermal enthalpy generated by the curing 128 

reaction. The boundary conditions are given as: 129 

 𝑇s(𝑡, 𝑧 = 0) = 𝑇s,H(𝑡) (19) 

 𝑇s(𝑡, 𝑧 = 𝐿) = 𝑇s,L(𝑡) (20) 

where 𝐿 is the sample thickness [m], 𝑇s,H and 𝑇s,L are the temperatures of the sample at the 130 

heated and non-heated sides. Initial condition of the temperature in the sample is as follows:  131 

 𝑇s(𝑡 = 0, 0 ≤  𝑧 ≤ 𝐿) = 𝑇RT (21) 

where 𝑇RT is the atmospheric temperature at the initial conditions, i.e. room temperature (30°C). 132 

As for heated side, considering the thermal conductions is sufficiently high (i.e., sufficiently large 133 

heat transfer coefficient due to the sufficient contact between ATR crystal and the sample), the 134 

temperature of the surface of the heated side is equivalent to the programmed temperature of 135 

heating the surface 𝑇H.   136 

 𝑇s,H(𝑡) = 𝑇H(𝑡) (22) 

The programmed temperature of the heating is expressed by the following equations: 137 

 𝑇H (𝑡 <
𝑇iso − 𝑇RT

𝛽
) = 𝑇RT + 𝛽𝑡 (23) 

 𝑇H (𝑡 ≥
𝑇iso − 𝑇RT

𝛽
) = 𝑇iso (24) 
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where 𝛽 is the heating rate (20°C min-1 = 1/3 °C s-1 in this study), and 𝑇iso is the isothermal 138 

temperature of the heating process (150, 160, 170, and 180°C). In the thermal conduction in the 139 

non-heated surface, the heat transfer cooled by the atmosphere (30°C) is expressed as follows: 140 

 𝑞L(𝑡) = ℎL(𝑇s,L(𝑡) − 𝑇RT) (25) 

where 𝑞L is the heat cooled by the atmosphere at the non-heated surface, ℎL is the heat transfer 141 

coefficient [W m-2 K-1]. Heat balance at the non-heated side (𝑧 = 𝐿) is then expressed as follows: 142 

 
𝜕𝑇s(𝑡, 𝑧 = 𝐿)

𝜕𝑡
=

𝜕

𝜕𝑧
(𝛼

𝜕𝑇s(𝑡, 𝑧 = 𝐿)

𝜕𝑧
−

𝑞L(𝑡)

𝜌𝐶𝑝
) (26) 

Calculations of the thermal diffusion equation were conducted in the time intervals of 1.0×10-4 s. 143 

The acquired times-series changes in the temperature distributions are shown in Figure S5. In the 144 

case of the steady state (sufficient time and 𝑇H = 𝑇iso), the temperature at the non-heated surface 145 

can be expressed by the heat balances: 146 

 

𝑇s(𝑧 = 𝐿) =
(ℎ𝐿/𝑘)𝑇RT + 𝑇iso

1 + ℎ𝐿/𝑘
 

=
𝑁𝑢𝑇RT + 𝑇iso

1 + 𝑁𝑢
 

(27) 

where 𝑁𝑢 is the dimensionless value of Nusselt number representing the ratio of convective to 147 

conductive heat transfer at the interface (𝑁𝑢 = ℎ𝐿/𝑘). The temperature distribution at the steady 148 

state can be described as follows: 149 

 
𝑇iso − 𝑇(𝑧)

𝑇iso − 𝑇RT
=

𝑧

𝐿

𝑁𝑢

1 + 𝑁𝑢
 (28) 

In the present analysis, ℎL = 5 W m−2 K−1 for the typical value of the heat transfer coefficient 150 

of free convection of air was supposed and the Nusselt numbers of 0.100 and 0.025 for FKM and 151 
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FKM/CNT were used to calculate the time-series changes in the temperature distributions in the 152 

sample. Calculated temperature distributions at the steady states with different isothermal 153 

temperatures are shown in Figure S6.  154 

 155 

Figure S5. (a) Programmed temperatures of heating the surface to the isothermal temperature 156 

(170°C). (b,c) Temperature distributions of the thickness direction in FKM and FKM/CNT 157 

calculated by unsteady thermal diffusion equation based on Fourier’s law of the boundary 158 

condition of the single-side heating. The ranges of the plots in the thickness direction are (b) all 159 

and (c) near-surface. Dotted line represents the position of the penetration depth of ATR. The chain 160 

lines are the temperature distributions of FKM, and the solid lines represent the temperature 161 

distributions of FKM/CNT.  162 
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 163 

Figure S6. Temperature distributions of FKM and FKM/CNT at the steady states with different 164 

isothermal temperature conditions. Nusselt numbers of FKM and FKM/CNT were determined to 165 

0.100 and 0.025 based on the thermal conductivities of 0.050 and 0.020 W m-1 K-1, respectively. 166 

The heat transfer coefficient of free convection of air here used for calculation was 5 W m-2 K-1.  167 


