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Abstract: Birch (Betula pendula Roth.) and beech (Fagus sylvatica L.) solid wood and plywood were
overmolded with polyamide 6 (PA 6) and polypropylene (PP) to investigate their mechanical proper-
ties and interfacial adhesion. In the case of PA 6, maximum tensile shear strengths values of more
than 8 to 9 MPa were obtained for birch and beech, respectively. The values are comparable to bond
strengths of commercial joints bonded with formaldehyde-containing amino-plastics. Perpendicular
to the wood elements, bond strength values of 3 MPa was achieved for PA 6. The penetration
of the polymers into the wood structure results in a non-densified interphase and subsequent plas-
tic deformation of the wood structure beyond the interphase. These compressed areas influenced
the interfacial adhesion and mechanical interlocking. SEM and XPS analysis revealed different inter-
penetration behavior of the polymers into the wood structure, with chemical interaction confirmed
only for wood and PA 6 but not PP.

Keywords: interfacial bond strength; wood-polymer composites; wood-polymer interface; XPS

1. Introduction

The mobility sector of the European Union is responsible for 26% of its total CO2
emissions. Around one fourth of these emissions are driven by the weight of the vehicle [1],
increasing the importance of lightweight materials for automotive parts like wood [2].
Manufacturing technologies such as milling, cutting, gluing, molding, etc. for the pro-
duction of wood-based products are well studied and established in the wood industry.
In order to introduce wood and wood-based materials in these new areas of application
such as the automotive industry, it is necessary to consider new production technolo-
gies during the design of wood-based hybrid components. Mair-Bauernfeind et al. [3]
investigated the sustainability of wood and wood-based materials compared to other mate-
rials such as steel, where wood showed environmental, economic and social advantages.
In addition, wood has also been increasingly used in multi-story buildings in the form
of wood-concrete hybrid construction for several years. As claimed by Franzini et al. [4],
the bio-based material wood also offers better indoor air quality, lower carbon dioxide
emissions and competitive costs compared to concrete. Due to its sustainable nature and
comparably low density, in recent years there has been an increasing demand for the uti-
lization of wood and renewable materials in the mobility sector [5–9]. Besides utilizing
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sustainable and renewable products, formaldehyde-free bonding and joining of wood
get more and more importance. The total amount of adhesive in plywood production
can reach levels up to 20% for continuous bond lines that require high loading [10,11].
Kohl et al. [7] presented the environmental impact of urea-formaldehyde bonded beech
plywood. Commonly, manufactured structural components in this field are made from
steel, aluminum, magnesium, polymers or polymer composites by means of pressing, deep
drawing, casting and molding [12]. Due to their low resistance against various media—e.g.,
salts—metals are usually coated using synthetic coating systems [13]. In contrast to metals,
components made of polymers that are stabilized with suitable additives exhibit better
durability and weathering behavior [14]. However, low mechanical properties and poor
creep behavior of polymer-based components without fiber reinforcement (e.g., dashboards,
claddings or wheel cases) negatively affect the applicability for load-bearing components
in automotive parts. In addition to the properties of wood in terms of load-bearing capac-
ity and lower density compared to most polymers, wood also provides good resistance
to accelerated weathering in salty environment [15]. Therefore, back-injection molding
or overmolding is a suitable technique for combining the good properties of wood with
the durability, weather resistance and elasticity of polymers [16] to create wood-polymer
hybrid composites. In addition, functional parts, such as brackets or mounting aids, can be
easily fabricated by injection molding.

Wood as a bio-based reinforcement in polymers, i.e., in wood-polymer composites
(WPCs), is well studied and widely used in applications such as furniture, decking, auto-
motive and building components [17,18]. The mechanical interlocking and the mechanical
adhesion as well as the effect of different wood species on the wood-polymer interaction
of WPCs have already been investigated [19,20]. Gacitua et al. [19] observed that molten
polymer (high density polyethylene, HD-PE) penetrates into the wood micro-structure
resulting in a mechanical interaction between polymer and wood. Furthermore, the vis-
cosity of the polymer melt also influences the penetration behavior [20]. Further research
was carried out by Sretenovic et al. [21] to better understand the micro-mechanical behav-
ior of wood plastic composites (WPC), demonstrating stress transfer from the wood to
an LDPE plastic matrix caused by mechanical interlocking.

The modification of wood fibers for WPC production with various coupling agents
aiming to improve interfacial adhesion, thus increasing strength and impact properties to
a large extent, is well studied. Keener et al. [22] investigated the interaction of different
coupling agents, i.e., maleic anhydride, polyolefins and peroxides in agrofiber polypropy-
lene (PP) and polyethylene (PE) composites. In PE composites those coupling agents triple
the impact bending strength and double the tensile strength, whereas the strength of PP
composites increased by more than 60%. Correa et al. [23] aimed to improve the adhesion
of wood-flour PP composites using maleated coupling agents and observed an increased
interfacial adhesion between the matrix and fibers, which led to an improved load transfer
and thus increased mechanical properties.

Polymers, used as adhesive in plywood fabrication have been investigated by
Fang et al. [24] and Chang et al. [25] using HD-PE to bond poplar veneers by hot-pressing.
The influence of the moisture content (MC) of the veneers, pressing temperature and
pressure as well the quantity of the HDPE films on the mechanical and physical prop-
erties was investigated and compared with conventional urea-formaldehyde adhesive
bonded plywood. They found that the MC of the veneers affected HDPE penetration.
With increasing MC, the penetration depth of the polymer melt into the vessels (pores)
of the wood structure decreased, which resulted in lower mechanical properties. Increased
pressing temperature and pressure increased the bond strength as more polymer melt did
penetrate into the vessels, thereby improving the mechanical properties. Furthermore,
the dimensional stability could be improved when using HDPE of a higher quality. Surface
modification using silane agents to improve the performance of wood-polymer plywood
was also investigated by Fang et al. [26], Liu et al. [27] and Bekhta et al. [28], which results
in a significant increasing tensile shear strength and a reduction of water uptake and lead
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to an improved dimension stability. Regarding particleboard production, there are several
formaldehyde-free synthetic and renewable adhesive systems available, with the main
drawback being availability and higher costs [29]. Overall, the mechanical performance
of pure wood adhesives was also well discussed by Stoeckl et al. [30], where a wide range
in stiffness was found. Briefly, the commonly used adhesives in engineered wood products
and wood composites [29–32], as well as so called wood-plastic composites (i.e., extrusion
and injection molding of wood fibers and particles with different kinds of plastics) [33],
and improvements with various coupling agents is well investigated so far. However,
almost no research was found on wood-polymer hybrid composites produced by means
of injection molding. However, the realization of directly overmolded wood will help to
reduce production time and costs, number of production steps, formaldehyde emission
and carbon footprint.

The present study aims to investigate mechanical properties and in particular the in-
terfacial adhesion of wood-polymer hybrid composites prepared by injection molding.
A frequently used wood-based material for non-structural automotive is plywood. There-
fore, birch (Betula pendula Roth.) and beech (Fagus sylvatica L.) plywood boards were
overmolded with PP at varying injection temperatures to investigate the effect of the in-
jection temperature on the mechanical properties. A novel test setup was established
to evaluate the tensile shear strength, the tensile strength perpendicular to the plane
of the board and the tensile strength perpendicular to the edge. In addition to overmolded
plywood, the tensile shear strength of birch and beech solid wood specimens overmolded
with PP and polyamide 6 (PA 6) was investigated. To investigate the penetration depth
of the polymer-melt into the wood micro-structure and the polymer wood adhesion, X-ray
photoelectron spectroscopy (XPS) was performed. Furthermore, the interphase between
the wood and the polymer was investigated by means of scanning electron microscopy
(SEM). The main research questions of this study were as follows:

Q1. Does the polymer melt penetrate into the wood structure and what determines the ad-
hesion between the polymer and wood, including chemical bonds?

Q2. Is the interfacial adhesion of an overmolded wood-polymer hybrid composites as
strong as bonded wood products with commercial adhesives?

2. Materials and Methods
2.1. Materials

Industrially manufactured birch and beech plywood, with a thickness of 10 mm,
and solid wood were sourced from Frischeis GmbH (Stockerau, Austria). Polypropylene
(Daplen KSR 4525) and polyamide 6 (Grilon BZ 3) were provided by Borealis (Vienna,
Austria) and EMS-Chemie AG (Domat, Switzerland), respectively.

2.2. Plywood Composites

Sixteen boards of each species, birch and beech, respectively, with a dimension
of 297 × 146 mm were prepared using a circular saw and overmolded with PP as shown
in Figure 1a. Injection molding was performed with an injection molding machine
(Engel ES 1350/200 HL-V, Schwertberg, Austria) with a screw diameter of 70 mm. Each
species was overmolded at three different injection temperatures to investigate the effect
of the injection temperature on the interfacial adhesion and the mechanical properties
of the wood-polymer composites. For this, cylinder temperatures were set to an average
value of 220 ◦C, 240 ◦C and 260 ◦C, respectively. The volumetric flow rate was 15 cm3/s
at an injection pressure of 170 bar, injection time of 2 s and the cycle time was 80 s. The way
point of the feed screw was set to 35 mm, which corresponds to a changeover point at
95 cm3 after an injection time of 10 s and a holding pressure of 40 bar.

In order to investigate mechanical properties under three different load conditions,
specimens were cut using a circular saw (Figure 1a–d). For tensile tests perpendicular to
the plane of the board (σP), specimens with a dimension of 50 × 20 mm (Figure 1b), and for
tensile tests perpendicular to the edge (σE) specimens with a dimension of 120 × 20 × 10 mm
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were produced (Figure 1c), with one specimen consisting of 2 individual parts. These
two parts were welded together with a welding mirror. For this purpose the temperature
of the welding mirror was set to 200 ◦C and the welding time was 2 s. Specimens for tensile
shear (σS) tests, performed according to DIN EN 302-1, had a dimension of 120 × 20 × 4 mm,
with the overlap length of the overmolded areas being 10 mm [34] (Figure 1d). In total
121 birch and 118 beech samples were prepared for this study.
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2.3. Solid Wood Composites

Forty board specimens were cut with a dimension of 140 × 140 mm from each solid
wood species, planed to a thickness of 4 mm and overmolded with PP or PA 6, respectively,
to a final thickness of 8 mm (Figure 2a). Injection molding was performed with an injec-
tion molding machine (Wittmann Battendfeld Smart Power 120/750 B 8) having a screw
diameter of 70 mm.
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For PA 6, the cylinder temperature was set to an average value of 260 ◦C. The volu-
metric flow rate was 40 cm3/s at an injection pressure of 360 bar, the injection time was
2 s and the cycle time was 64 s. The changeover point was set to 12 cm3, with a holding
pressure and time of 100 bar and 2 s, respectively.

For PP, the cylinder temperature was set to an average value of 260 ◦C, the volumetric
flow rate to 15 cm3/s, the injection pressure was 170 bar, the cycle time 66 s and injection
time 5 s. The changeover point was set at 12 cm3, with a holding pressure and time
of 100 bar and 1 s, respectively. In total 108 specimens with a dimension of 110 × 20 × 8 mm
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were produced using a circular saw (Figure 2b). In total 50 birch and 58 beech samples
were prepared.

2.4. Mechanical Properties of Wood-Polymer Composites

Mechanical tests were performed using a universal testing machine (Zwick/Roell
Z20, Ulm, Germany). Prior to mechanical tests, all samples were stored under standard
climate conditions (20 ◦C ± 2 ◦C, 65% ± 5% relative humidity) according to standard ISO
554 [35] until constant mass was reached. All tests were stopped after a 30% load reduction
of the maximum force (Fmax) was reached or failure occurred within 90 ± 30 s.

For plywood composites tensile tests perpendicular to the plane of the board (σP) were
performed with clamps originally designed for testing internal bond strength of particle
and fiber boards, [36] which were used to attach the wooden part to the testing machine as
shown in Figure 3a. A pre-force of 10 N was applied before testing at a constant crosshead
speed of 1 mm/min. σP was calculated according to DIN 52 188 [37], by dividing Fmax
through the calculated interface area. σE was determined following DIN 52 188 [37],
depicted in Figure 3b. After a pre-force of 10 N was applied, the specimens were loaded
at a constant speed of 0.3 mm/min. σS was determined following DIN EN 302-1 [34]
(Figure 3c) with an applied pre-force of 20 N at a constant speed of 0.4 mm/min.
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For solid wood composites, the tensile shear strength (σS) of birch and beech wood
composites was assessed according to DIN EN 302-2 [34]. The samples were loaded with
a pre-force of 10 N and tested at a constant crosshead speed of 0.6 mm/min.

2.5. Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS)

To investigate the penetration of the polymer into the wood structure on a microscopic
level, two samples per combination were analyzed by means of SEM (Hitachi TM3030,
Tokyo, Japan). To analyze the interphase of a cross-section of the overmolded samples,
specimens with a dimension of about 3 × 8 mm were cut using a double-bladed circular
saw. To obtain a smooth surface without any disturbing artefacts, the area of interest was
cut with a razor blade.

XPS spectra were recorded to determine the penetration depth of the polymer into
the microstructure of wood as well as chemical interactions between polymer and wood
and to gain a deeper understanding into interfacial adhesion. Six solid wood specimens
of each combination having a cross section of 8 × 4 mm were cut. The analysis was
performed using an XPS system (Nexsa, Thermo-Scientific, Waltham, MA, USA) using
an Al Kα radiation source operating at 72 W and an integrated flood gun. A pass energy
of 200 eV, “Standard Lens Mode”, CAE Analyzer Mode and an energy step size of 1 eV
for the survey spectrum were used. The diameter of the X-ray beam was 100 µm. A line scan
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was performed where four analysis points were placed in the wood-polymer interphase
(Figure 4, −2 to +1). Starting from the first analysis point (Figure 4, 0), two spots were placed
in the wood direction (Figure 4, −1 to −2) and one measuring spot in the polymer direction
(Figure 4, +1) at a distance of 200 µm, respectively. As a reference, additional analysis
points were placed in the wood substrate and in the polymer bulk, respectively. Prior
to analysis the surface was cleaned by sputtering with Ar-clusters (1000 atoms, 6000 eV,
1 mm raster size) for 60 s. High-resolution spectra of C1s, N1s and O1s of 6 specimens
were examined, acquired with 50 passes at a pass energy of 50 eV and an energy step size
of 0.1 eV. These were analyzed using software package Thermo Avantage (v5.9914, Build
06617) with Smart background and Simplex Fitting algorithm by using Gauss-Lorentz
Product. Peak profiles of C1s and O1s were deconvoluted.
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2.6. Statistics

In this study a one-way analysis of variance with an error level of 0.05 was calcu-
lated using Excel 2016 (Microsoft, Redmond, WA, USA) to statistically evaluate the effect
of the injection temperature and the wood species on the mechanical properties.

3. Results and Discussion
3.1. Mechanical Properties of Wood-Polymer Composites
3.1.1. Plywood-Polymer Composites

Figure 5 displays the results of all test configurations at the different injection tempera-
tures for birch and beech plywood, respectively, overmolded with PP. Regarding the influence
of the injection temperature on the mechanical properties of these wood-polymer composites
no statistically significant effect was present, with the exception of σE for the overmolded
birch plywood specimens, for which higher injection temperatures resulted in higher σE.
Chang et al. [25] reported that the hot-pressing temperature and pressure exhibit an inflexion
point, i.e., a certain pressure and temperature, at which penetration of the polymer into
the wood structure with partly damaged cells and cracks and into the vessels is highest, thus
resulting in the highest strength. Furthermore, no significant difference between birch and
beech plywood for all test configurations was observed.

σP was on average (over all three injection temperatures) 3.16 ± 0.91 MPa and
2.89 ± 0.68 MPa for birch and for beech plywood, respectively. The highest σP for
birch and beech plywood specimens was observed at an injection temperature of 240 ◦C
(3.31 ± 1.15 MPa and 3.02 ± 0.49 MPa), similar to results reported by Chang et al. [25].
The tensile strength perpendicular to the edge was on average 5.08 ± 1.44 MPa and
4.78 ± 1.01 MPa for birch and beech plywood, respectively, with the highest values
achieved at 260 ◦C for birch and 240 ◦C for beech plywood specimens (6.04 ± 1.04 MPa
and 5.14 ± 1.24 MPa). Liu et al. [38] investigated the surface bond strength of engineered
plywood in a similar fashion. Poplar veneers (Populus tomentosa Carriére) were bonded
with chlorinated PP films on a wood fiber PP composite core layer (80% wood fiber and
20% PP) using a hot-pressing procedure. They observed surface bonding strength val-
ues of the veneers on the composite core layer, which is comparable with σP, of approx.
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1.75 MPa, which was significantly lower compared to our study. The higher values were
attributed to two reasons. On the one hand, the poplar veneers used have a significantly
lower tensile strength perpendicular to the grain of about 1.7–2.8 MPa compared to birch
(~7.0 MPa) and beech (~7.0–10.7 MPa) wood [39]. On the other hand, they prepared the PP-
bonded plywood using a hot-pressing process, in which the pressure applied was about
5 MPa at a temperature of 110 ◦C, which is much lower compared to those used in our
study. Improved penetration of PP into the wood at 170 bar (17 MPa) and 360 bar (36 MPa)
for PA 6, respectively, the pressures used in this study, could eradicate the damage caused
in the wood structure due to compressive failure of the top layers.
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σS of birch and beech plywood samples were on average 3.81 ± 0.76 MPa and
3.83 ± 0.69 MPa, respectively, with highest values observed at an injection temperature
of 260 ◦C for birch and 220 ◦C for beech of 3.87 ± 0.68 MPa and 3.92 ± 0.94 MPa, re-
spectively. Bekhta et al. [28] reported shear strength values for birch and beech plywood
bonded with PA 6 and polyethylene (PE) higher than 3 MPa and 1.7 MPa, respectively.
However, PP overmolded birch and beech plywood showed higher σS, which is thought to
be mainly influenced by the different process parameters used in this study.
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3.1.2. Solid Wood-Polymer Composites

Figure 6 summarizes the mean values, standard deviation and sample number for
birch and beech solid wood, overmolded with PA 6 and PP, respectively. There was no
statistically significant difference between the birch and beech solid wood composites.
σS for birch-PA 6 were on average 5.71 ± 1.13 MPa, while σS for beech-PA 6 was slightly
higher (6.36 ± 1.47 MPa). For PP-composites a slightly lower tensile shear strength was
observed for birch solid wood compared to beech (2.33 ± 0.44 MPa and 2.54 ± 0.83 MPa,
respectively). The observed maximum values for σS for the PA 6-composites were 8.65 MPa
and 9.74 MPa and for PP-composites 2.98 MPa and 4.19 MPa for birch and beech, respec-
tively. Compared to literature, the measured maximum values were similar, with tensile
shear strengths of 9 MPa and 3.5 MPa reported for beech wood rods overmolded with
PA 6 and PP, respectively [16]. However, a perfectly aligned longitudinal fiber orientation
of the specimens results in fewer cut vessels and fibers and thus fewer open lumens into
which polymer could penetrate, which in turn results in less mechanical interlocking and
thus in a lower average tensile shear strength. For comparison, typical values for bonded
birch and beech wood specimens (melamine-urea-formaldehyde (MUF), polyurethane
(PU) and phenol-resorcinol-formaldehyde (PRF)) with commercially adhesives do exceed
10 to 11 MPa [31,32].
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The differences between PA 6 and PP composites can be explained by the different
polarity of both polymers. It is supposed that the polar PA 6 [40] exhibits a good adhesion
and/or sound bonding with the wood surface, which promotes higher strength values.
In addition, the high temperature during the molding process (260 ◦C) degrades free
hydrophilic groups of wood polymers, mainly the hemicelluloses [41,42]. The effects
of thermally modified wood fibers on the adhesion to thermoplastics were also reported by
Follrich et al. [43]. It can be assumed, that exposure to elevated temperatures leads to a
more hydrophobic character of the wood surface enhancing the interfacial compatibility to
hydrophobic polymers, which results in improved interfacial interactions. Furthermore,
the higher strength for PA 6-composites in contrast to PP-composites can also be explained
by the higher cohesive strength of PA 6.

3.2. Wood-Polymer Interfaces
3.2.1. Morphology of Wood Polymer Composites by SEM

Figure 7 shows cross sections of representative birch and beech solid wood composites.
During the overmolding process, the melted polymers penetrated into the wood structure
through the sliced vessels and fibers. For the specimens overmolded with PA 6, in com-
parison to PP-composites only minor penetration of the melt into the wood substrate was
observed. Due to the high pressure used (360 bar) during the injection process, the melt
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flow was mainly directed in radial direction (Figure 7(1a–2b)). PP composites were fab-
ricated at much lower injection pressure (170 bar), hence, the melt penetrated the wood
cells in both directions, for birch and beech, respectively (Figure 7(3a–4b)). Furthermore,
it was observed that the outer cellular structure (approximately 100 µm up to 200 µm) is
stabilized by the polymer that penetrated the wood by filling the lumens of vessels and
tracheids. Additionally, only a few micro gaps along the interface between the wood and
the polymer were observed, which is interpreted as an indicator of good adhesion between
the materials. In addition, wood rays and also the transition zone from early to late wood
have a structurally reinforcing effect. As Mattheck and Kubler [44] presented, the many
rays oriented perpendicular to the grain behave like beams, that lead to an increasing
compressive strength of the wood structure. These compressed areas generate an increased
interface and thus improved mechanical interlocking between the polymer and the wood
surface. According to Sretenovic et al. [21] the mechanical interlocking influences the stress
transfer from the polymer to the wood structure in wood fiber composites. In addition,
Smith et al. [45] reported that both the porosity of the wood structure and the processing
parameters are influencing mechanical interlocking. Furthermore, Gupta et al. [46] showed
that there are strong correlations between surface roughness and interfacial adhesion.
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(1a–2b) and beech solid wood (3a–4b); b represents always the detailed inset of a. (1a), (1b), (3a) and (3b) show samples
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Beyond the stabilized interface the wood structure exhibits a zone of compressive
failure, caused by plastic deformation of the wood structure during injection molding
(Figure 7(1a–4a)). These compressed zones range approximately 0.4 to 1.1 mm into the wood
structure depending on the species. Müller et al. [47] reported that a pressure of about
12 MPa is required to densify a diffuse-porous wood structure (e.g., birch and beech) perpen-
dicular to the grain. Corresponding to the thickness of the compressed zone, the overmold-
ing procedure causes almost homogeneous densification across the overmolded surface
for both birch and beech. However, the compression zone of birch wood is much larger
than the compression zone of beech wood, which is caused by its lower compression
strength perpendicular to the grain [39,48,49]. A lower ratio of strength perpendicular
to the grain to the injection pressure, leads to higher densification of the wood substrate,
causing the formation of a so-called weak boundary layer, which influences the strength
of wood polymer composites. In birch wood samples, failure occurs mainly in the weak
boundary layer, which corresponds to the results of the mechanical tests, both for solid
wood and plywood overmolded with PA 6 and PP as well as findings, as reported by
Chang et al. [25]. Furthermore, it is clearly shown, that mainly vessels are compressed in
this range. In contrast, tracheids and wood fibers are compressed mainly in the peripheral
areas up to a depth of 200 to 600 µm.
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3.2.2. Elemental Composition and Chemistry of the Interface in Wood-Polymer
Composites

From XP spectra information regarding the penetration of polymer into the wood
structure and their interaction can be derived. The elemental composition (C, N and O)
at various positions within the wood polymer interphase extracted from scans is shown
in Table 1. Additionally, as an initial indicator of the presence of polymer in the wood
structure and vice versa, the atomic ratio O/C and N/C for PA 6 composites and the O/C
ratio for PP composites were calculated. For all composites, the O/C ratio significantly
decreased from the wood substrate through the interphase towards the bulk polymer.
Specifically, the birch-PA 6composites exhibited a constant decrease of the O/C ratio from
the wood towards the polymer, whereas for beech wood samples this ratio significantly
decreases in the interphase (Table 1, −1 to +1), after that the O/C ratio remained constant.
Correspondingly, the N/C ratio significantly increased in the interphase to polymer di-
rection (Table 1, −1 to +1). PP composites exhibited a similar trend regarding the O/C
ratio; it significantly decreased from the wood substrate towards the interphase, both for
birch and beech composites (Table 1, −1 to +1). These results confirm that penetration
of the polymer melt into the wood cell wall structure takes place and not only through
the cut vessels and fibers as determined in the SEM analyses.

Table 1. Elemental composition of C, N and O over the sample cross-section for birch and beech solid
wood overmolded with PA 6 and PP from XPS analysis. The position of the measuring spots placed
on the samples are shown in Figure 4. In addition, the atomic O/C and N/C ratios determined
by XPS analysis are presented.

Composite Elemental Wood
Substrate −2 −1 0 1 Polymer

Birch-PA 6

C at [%] 81.85 86.37 87.65 87.74 91.11 90.00
N at [%] 0.19 0.14 0.15 2.05 4.28 5.02
O at [%] 17.95 13.50 12.21 10.22 4.61 4.98

O/C 0.219 0.156 0.139 0.116 0.051 0.055
N/C 0.002 0.002 0.002 0.023 0.047 0.056

Beech-PA 6

C at [%] 67.77 67.76 67.37 73.07 89.24 87.74
N at [%] 0.38 0.34 0.29 1.52 5.82 5.56
O at [%] 31.85 31.90 32.34 25.41 4.95 6.71

O/C 0.470 0.471 0.480 0.348 0.055 0.076
N/C 0.006 0.005 0.004 0.021 0.065 0.063

Birch-PP

C at [%] 72.61 71.46 70.40 85.30 98.68 98.32
N at [%] 0.45 0.27 0.33 0.35 0.41 0.40
O at [%] 26.95 28.27 29.27 14.35 0.92 1.29

O/C 0.371 0.396 0.416 0.168 0.009 0.013

Beech-PP

C at [%] 66.66 65.70 65.96 83.45 99.29 99.11
N at [%] 0.32 0.28 0.24 0.38 0.30 0.31
O at [%] 33.02 34.03 33.81 16.17 0.42 0.59

O/C 0.495 0.518 0.513 0.194 0.004 0.006

Carbon is the dominant element in both wood and polymer. For this reason, the car-
bon peak from high resolution spectra was deconvoluted into four components. With
regard to wood, the C 1 peak (C-C or C-H) at approx. 284 eV corresponds to carbon-carbon
or carbon-hydrogen bonds and is predominant in lignin or polymers such as PP. The C 2
peak at approx. 286 eV corresponds to carbon-non-carbonyl oxygen bonds (C-O), a major
moiety in cellulose. The C 3 peak at approx. 287 eV is assigned to carbon atoms bound
to two non-carbonyl oxygens (O-C-O) or to one carbonyl oxygen (C=O), while the C 4
peak at approx. 289 eV represents carboxylic groups (O-C=O) [50,51]. For PA 6 the C
peak was deconvoluted into three components according to the literature [52], with the C 1
peak at approx. 284 eV corresponding to the aliphatic carbon atoms CH2 (C-C (C=O)-N-C),



Polymers 2021, 13, 2849 11 of 15

the C 2 at approx. 286 eV representing the carbon atoms linked to the amide nitrogen
(C-C (C=O)-N-C) and the C 3 at approx. 287 eV representing the amide carbonyl group
(C-C (C=O)-N-C). For aliphatic PP the C peaks were deconvoluted into two main com-
ponents: C 1 peak (C-H or C-C) at approximately 284.5 eV and the C 2 peak (C-O) at
approx. 286 eV [53]. To obtain information about the penetration as well the distribution
of the chemical components, C 1 and C 3 peaks for specimens overmolded PA 6 and C 1 and
C 2 peaks for specimens overmolded with PP were selected (Figure 8a–d and Figure A1).
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wood (d) overmolded with PP.

In general, an increase of the measured atomic percentage of the C 1 components
from the interface in polymer direction and at the same time a decrease in wood direction
for all samples was found. For birch-PA 6 composites (Figure 8a), the amount of the C 1
component decreased significantly from the polymer bulk towards the interphase from 61.0
at.% to 51.0 at.% (Figure 8a, PA to 0), while the amount of C 1 remained almost constant
through the interphase but decreased towards the wood substrate. For the C 3 component,
the highest value of 27.5 at.% was observed at the interphase (Figure 8a, 0), significantly
decreasing in both directions. For beech-PA 6 (Figure 8b) almost similar results were
observed. The amount of the C 1 component decreased from the PA 6 bulk to the wood
substrate from 51.0 at.% to 24.4 at.%, with the interphase area having a constant value.
The highest amount of C 3 was again observed in the interphase of 33.9 at.% (Figure 8b, 0),
decreasing toward the wood and polymer direction. The results of C 1 and C 3 indicate
that the polymer melt penetrated the wood structure during injection molding up to about
~400 µm (Figure 8a,b, −2). Additionally, a nonlinear trend of ratios between C 1 and C 3
was observed indicating that chemical reactions, e.g., transamidation occurs influencing
the ratio beyond the trend expected from pure mixing of polymer and wood [54].

Figure 8c,d shows the elemental distribution across the cross section of PP composites.
Similar results were observed for birch and beech wood. Highest values of C 1 were
determined in the polymer bulk, as expected (71.1 at.% and 68.4 at.% for birch and beech
specimens, respectively). These amounts then constantly decreased towards to point



Polymers 2021, 13, 2849 12 of 15

0 within the interphase of 44.9 at.% and 48.2 at.% (Figure 8c,d, 0) for birch and beech,
respectively. Beyond point 0 a significant decrease of the C 1 component was observed
towards wood (Figure 8c,d, −1). Between point −1 and the wood substrate no significant
difference between C 1 for birch-PP and beech-PP can be observed. For C 2, the elemental
composition also does not differ significantly from each other. PP does not interact with
the wood structure beyond van der Waals interactions as PA 6 does, based on polar groups
present in PA 6 and being absent in PP. Furthermore, PP only penetrated the wood structure
up until 200 µm (Figure 8c,d, −1).

Results of the XPS analyses assist in explaining the results of the mechanical tests. Higher
strength and stiffness of wood-PA 6 composites can be explained by PA 6 penetrating the wood
structure on a macro- but also microscopic level, which corresponds to previous findings [16]
where beech wood rods were overmolded with different polymer materials. In addition,
chemical interaction of PA 6 with wood takes place due to the polar nature of the material,
resulting in better interfacial adhesion as compared to PP and thus improved mechanical
properties of wood-PA 6 composites produced by injection molding. However, sound bonding
to the wood occurs, both for PA 6 as well as for the more hydrophobic material PP due to
formation of an interphase by polymer penetration into the wood.

Based on the presented results, the initially proposed research questions can be an-
swered as follows: The used polymers penetrate into the peripheral porous structure
through the sliced vessels and fibers thus forming an interphase which contributes to
adhesion by mechanical interlocking. In case of PA 6 wood composites, additional chemical
interactions do seem to contribute to improved adhesion. Additionally, the mechanical
properties of the produced (unmodified) wood-polymer composites can compete with
commercially bonded wood-wood composites and, therefore, this technology is suitable
to manufacture wood polymer hybrid composites for structural applications for instance
for the automotive sector.

4. Conclusions

Solid wood and plywood were overmolded with PP and PA 6 in order to investigate
the influence of process parameters on interfacial adhesion between wood and polymer
and the mechanical properties of wood-polymer composites. The mechanical properties
of these composites are influenced only to a small extent by the processing temperature
used. Temperature effects on the wood substrate are of minor importance. However,
SEM and XPS analysis showed that substantial amounts of molten polymer penetrated
into the wood substrate. A weak boundary layer of compacted cells formed in the wood
substrate, extending from the wood-polymer interphase to a depth of 1 mm. Due to the high-
pressure during injection molding, a weak boundary layer consisting of heavy densified
cells formed in the wood substrate, extending from the wood-polymer interphase to a
depth of 1 mm. The weak boundary layer, which varied between birch and beech wood,
lowered the mechanical properties of the wood-polymer composites. However, polymer
interpenetrated the wood substrate through vessels, which led to the formation of a stabilized
interphase and improved mechanical properties. Due to its polar character, PA 6 interacts
chemically with the wood substrate, resulting in the highest tensile shear strength observed,
ranging from 8 MPa to 9 MPa for birch and beech, respectively. Nevertheless, sufficient
bonding and mechanical interlocking of PP was also observed for both wood species.
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Figure A1. Representative deconvoluted XPS spectrum with relative areas of the C 1, C 2, C 3 and C
4 binding energy regions of the birch solid wood specimens, overmolded with PA 6, within the cross
section of a sample.
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