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Abstract: Finding a practical alternative to decrease the use of conventional polymers in the plastic
industry has become an acute concern since industrially-produced plastic waste, mainly conventional
food packaging, has become an environmental crisis worldwide. Biodegradable polymers have
attracted the attention of researchers as a possible alternative for fossil-based plastics. Chitosan-based
packaging materials, in particular, have become a recent focus for the biodegradable food packaging
sector due to their biodegradability, non-toxic nature, and antimicrobial properties. Chitosan, ob-
tained from chitin, is the most abundant biopolymer in nature after cellulose. Chitosan is an ideal
biomaterial for active packaging as it can be fabricated alone or combined with other polymers as
well as metallic antimicrobial particles, either as layers or as coacervates for examination as functional
components of active packaging systems. Chitosan-metal/metal oxide bio-nanocomposites have
seen growing interest as antimicrobial packaging materials, with several different mechanisms of
inhibition speculated to include direct physical interactions or chemical reactions (i.e., the production
of reactive oxygen species as well as the increased dissolution of toxic metal cations). The use
of chitosan and its metal/metal oxide (i.e., titanium dioxide, zinc oxide, and silver nanoparticles)
bio-nanocomposites in packaging applications are the primary focus of discussion in this review.

Keywords: chitosan; antimicrobial; metallic nanomaterials; active packaging

1. Introduction

Plastic waste, especially classic food packaging, has become an environmental crisis
around the world [1,2]. The global demand for biodegradable materials has motivated
innovations in the plastics industry to develop polymers obtained from renewable bio-
based resources [3–5]. Food packaging materials with acceptable mechanical properties [6],
barrier properties [7], physical stability, recyclability, and biodegradability [8], as well as
functional properties such as antimicrobial [9] and antioxidant activities [10], are highly de-
sirable for food safety and for extending the shelf-life of packaged foods [11]. Currently, the
majority of packaging materials produced are still dominated by conventional petroleum-
based synthetic polymers since they are relatively cheap and processible with high reli-
ability and durability [12–14]. While immediate changes to the packaging supply chain
are incapable of replacing fossil fuel-based plastics at this time, significant advances have
been made in the development of environmentally-friendly materials over the past several
decades [15–17]. Carbohydrate-based polymers such as starch [18–20], chitosan [21–24],
pullulan [25–27], and kefiran [28–31] have been the most considered biopolymers. The
protein based polymers (i.e., whey protein [32], soy protein [27], and gelatin [33]) are now
providing promising alternates to conventional non-degradable polymers.

Numerous biopolymer modification methods, including cross-linking by using ion-
izing rays (e.g., high energy UV-irradiation [19,29] and γ-irradiation [34]), magnetic
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fields [20], chemical reactions [35], the development of bio-nanocomposites [36], and
combinations of two biopolymers [37] have also been recently evaluated to improve the
functional properties of biopolymers.

Furthermore, the purpose of food packaging materials has more recently evolved from
that of simple protection to a system that can provide a single or multiple functional roles
in terms of food quality and preservation [38]. These roles could include modifying the
inside of the package environment by either absorbing/adsorbing destructive molecules or
compounds (such as oxygen and ethylene) [39], or releasing functional ingredients (such
as antimicrobials and antioxidants or vitamins) [40]. With the employment of antimicro-
bial agents in food packaging materials, the growth of microbes could be prevented or
delayed, with concurrent improvements in the shelf life of the enclosed foods [41]. In other
words, antimicrobial packaging systems could release active agents continuously onto
food surfaces, and thus provide extended inhibitory effects against targeted organisms [42].
This approach would improve the effectiveness of antimicrobials with respect to cost and
function [21]. Hence, degradable antimicrobial packaging is a novel approach that offers
multiple functionalities in a sustainable fashion, thereby addressing the current and future
needs of the food sector.

Antimicrobial compounds are generally classified into two main categories: (1) organic
and inorganic materials and (2) natural materials. Some examples of organic antimicrobial
agents include quaternary ammonium salts, halogenated compounds, organic acids, and
phenols; natural materials are based on materials such as chitosan and chitin [22]. Inorganic
antimicrobial agents, including metals and metal ions, metal oxide nanoparticles including
TiO2 [43], ZnO [44], silver [45], gold [46], magnesium oxide [47,48] copper [49], copper
oxide [50], iron (III) oxide [51], and CaO [52], have attracted considerable interest in
food packaging researches due to their stability, especially under the different conditions
imposed in food packaging [53,54].

Chitin is the second most abundant biopolymer on earth after cellulose, and it is found
in the exoskeletons of crustaceans (e.g., crabs, shrimps, etc.) and insects [55–57]. Chitosan
is a positively-charged, bio-based linear polysaccharide combined of randomly distributed
β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine units, and may be produced by
the partial deacetylation of chitin. The obtained chitosan is soluble at lower pH solutions
because it has amino groups which are basic and reacts with acidic compounds [58]. There
are many amino groups on chitosan’s polymer chain, causing the molecule’s positive zeta
potential. These amino functional groups have pKa’s around 6.5, and for this reason, at
neural and lower pH systems, they tend to stay protonated [59]. Commercially-available
chitosan is usually reported to have 80% and even up to 100% deacetylation [60] with
molecular weights ranging from 35 to 800 kDa [61].

The mode of antimicrobial action of chitosan has not yet completely been established,
and several “theories” exist. Figure 1 illustrates the chemical structure of the chitosan
molecule and possible ways cationic polymers (such as chitosan and metallic nanoparticles)
could induce membrane-level (and hence antimicrobial) effects on living cells. The most
probable theory for chitosan’s lethal effects (Figure 1b,c) is that positively-charged amine
groups (NH3

+) of glucosamine interact with the negatively-charged outer membranes of
bacteria, causing the formation of pores and resulting in leakage of intracellular compo-
nents which ultimately causes cell death [62]. In addition to this, other possibilities, such as
attachment of chitosan to DNA, could interfere with mRNA replication after chitosan pen-
etrates the cytoplasmic membrane and crosses into the cytoplasm of microorganisms [63].
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Figure 1. (a) Chitosan production by partial deacetylation of chitin, (b,c) schematic of the Gram-
negative and -positive bacteria cell membranes and proposed models for the action of chitosan
on cell membrane nutrient flow blockage and damage. The polycationic nature of chitosan causes
the release of intercellular components, binding to bacterial DNA (inhibition of mRNA), blocking
the nutrient flow and chelation of essential metals (redrawn from Kravanja, Primožič, Knez, and
Leitgeb, 2019) [64], (d) schematic of different shapes of metal nanomaterials (reproduced from
Cheeseman et al., 2020) [53] and (e) a summary of potential passive antimicrobial mechanisms of
metal nanomaterials (not to scale) including physical interactions, release of ions, and production of
ROS (adapted from Cheeseman et al., 2020) [53].
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Regarding possible antimicrobial effects of metallic nanomaterials, several different
mechanisms have been proposed and studied, including direct physical interactions or
chemical reactions, the production of reactive oxygen species (ROS), and the increased
dissolution of toxic metal cations [53,64,65] (Figure 1c–e).

This review will focus on recent major developments in the chitosan-based nanocom-
posites using titanium dioxide, zinc oxide, and silver nanomaterials. Since metallic nanopar-
ticles have been considered as promising alternatives for conventional antimicrobial agents,
their use with chitosan as a cationic bio-based antimicrobial polysaccharide would provide
functional features relevant to the biodegradable packaging field.

2. Comparison of Different Chitosan and Chitosan-Metal Nanocomposites
2.1. Chitosan Titanium Dioxide Nanocomposites

Among the various metal oxide nanomaterials, titanium dioxide (TiO2) nanoparticles
(TNPs), also known as titanium (IV) oxide, is the natural form of oxidized titanium [65]
which are hydrophobic, biocompatible, and have photocatalytic properties, ultraviolet (UV)
light absorbance, and excellent antimicrobial properties [65–67]. TNPs are employed in var-
ious fields such as electronics, cosmetics, wound healing, environmental pollution repair,
and active food packaging [68]. TNPs also have photocatalytic activity, especially under ex-
posure to UV light in the presence of water and oxygen. Under these conditions, ROS can be
produced resulting in the production of hydroxyl and superoxide free radicals [69]. These
free radicals react with inner cellular macromolecules or the cell membrane phospholipids
and thereby produce serious damage of the cell membrane integrity as well as damage
to DNA. However, a detailed description of the reaction mechanism of TNPs has not yet
been discovered [43,70]. Many academics have studied chitosan/TNP bio-nanocomposites
as potential antimicrobial food packaging material. Chitosan/TNP nanocomposites are
in the interest of researchers due to the synergic effect of the antimicrobial properties of
chitosan and TNP together. TNPs play a photocatalytic role by releasing ROS and chitosan
as a cationic polymer leading to the damage of microorganisms’ membrane and delaying
food spoilage.

Lin et al. (2015) developed chitosan-TNP hybrids with silver nanoparticles (AgNPs)
through a photochemical reduction method. They used chitosan as a reducing agent to
fabricate the final combined nanocomposite. The nanocomposite concentration for chitosan,
TNPs, and AgNPs, were 10 mg/mL, 5 mg/mL, and 10 mg/mL, respectively. They then
measured the inhibition zones using the disc diffusion method against a nontoxigenic
Escherichia coli (E. coli) O157:H7 strain (ATCC 700728) as a representative Gram-negative
pathogen surrogate. AgNP-chitosan and TNP-chitosan films were tested as comparator
samples against the test cultures. AgNP-chitosan and TNP-chitosan films showed no
inhibitory effect (zero diameter of inhibition) under the test conditions. However, TNP-
AgNP-chitosan nanocomposites showed a significant inhibitory effect with 12.2 ± 0.7 mm
diameter of inhibition zone, which showed a booster effect of hybrid TNPs and AgNPs
with chitosan biopolymer [71].

The antimicrobial effect of chitosan-TNP nanocomposites have been studied against
other organisms. For example, Zhang et al. (2017) evaluated chitosan-TNP nanocomposites
for their antimicrobial activity under visible light by for food packaging applications. Their
chitosan-TNP films possessed efficient antimicrobial activities against four tested strains
(i.e., E. coli, Staphylococcus aureus (S. aureus), Candida albicans (C. albicans), and Aspergillus
niger (A. niger)), with 100% inhibition seen after 12 h. During their antimicrobial tests,
chitosan-TNP films (20 mm × 20 mm) were prepared and then 0.1 mL of microbial cell
suspension (∼106 CFU/mL) was spread on the test film samples held under controlled
conditions (20 W daylight lamp visible light, 22± 2 ◦C temperature, and 50± 5% humidity).
After 4 h, the microbial cells were washed (5×) from the films using 2 mL sterile 0.85%
saline. Then, the number of viable cells remaining were enumerated using the spread plate
count method [72].
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The concentration of antimicrobial agents also plays an essential role in their inhibitory
efficacy [73]. Different concentrations of TNPs could have different inhibition effects on
microorganisms. Siripatrawan et al. (2018) developed active packaging from a combination
of chitosan and TNPs over a range of concentrations (0, 0.25, 0.5, 1, and 2% w/w) and tested
the produced composites for application as an ethylene scavenging system as well as an
antimicrobial film. Based on tensile strength, water barrier, and ethylene photocatalytic
degradation properties, chitosan film containing 1% TNPs (CT1) was optimal and therefore
was selected for further evaluation for antimicrobial effects. They reported that CT1
exhibited antimicrobial activity against Gram-positive (S. aureus) and Gram-negative (E. coli,
Salmonella Typhimurium, and Pseudomonas aeruginosa) bacteria and fungi (Aspergillus and
Penicillium). Based on their work, chitosan-TNPs nanocomposite films are believed to
have more broad application as an active packaging system for various postharvest food
applications [74]. Detailed information of their results against different microorganisms is
presented in Table 1.

Besides different concentrations of TNPs, mixing them with bio-based antimicrobial
extracts offer “green” options for enhancing the antimicrobial properties of the films.
Zhang et al. (2019) developed multifunctional food packaging films based on chitosan,
TNPs and black plum peel extract (BPPE). They evaluated the antimicrobial activity of
the produced films against four food pathogens, including E. coli, S. aureus, Salmonella,
and Listeria monocytogenes. They reported that the chitosan-TNPs-BPPE composite film
showed the greatest antimicrobial activity compared to the other samples, which probably
was due to the synergistic/combined antimicrobial effect of chitosan, TiO2, and BPPE
in the films. Additionally, the author’s study confirmed higher antimicrobial activity of
their films against Gram-positive than Gram-negative bacteria, which they attributed to
differences in the cell membrane structure [75].

In recent work by Hanafy et al. (2021), the authors produced a series of different
combinations of thin chitosan-TNPs-oleic acid nanocomposite films formed using casting
methods. The antimicrobial effects of the nanocomposite films were investigated by
determining zones of inhibition against B. cereus, S. aureus, C. albicans, A. niger, and E. coli.
The authors reported an increase in antimicrobial activity against B. cereus, S. aureus, and A.
niger as a consequence of increasing the concentration of TiO2 to 15 wt%. A reverse trend
for C. albicans was reported whereby increasing the amount of TNPs, the films showed
less antimicrobial activity against C. albicans compared to pure chitosan [76]. Table 1
summarizes the antimicrobial property of chitosan-TNP on different microorganism.

As mentioned before, TNPs exhibit photocatalytic activity, especially under exposure
to UV light in the presence of water and oxygen. Some researchers assessed TNPs antimi-
crobial performance under different lighting conditions. Qu et al. (2019) reported both
improved mechanical and antimicrobial properties of a chitosan-zein films following the
addition of highly dispersed TNPs. According to their report, the antibacterial effect was
evaluated by measuring the diameter of the inhibition zone in dark and UV light (UV
irradiation for 30 min), respectively. As in some other reports, the antibacterial effect of
composite films against S. aureus (Gram-positive) was found to be greater than against
E. coli or S. enteritidis (Gram-negative). Also, the antibacterial effect of UV light was greater
than when incubated under dark conditions. In other words, the inhibition zone of the
composite membrane against the three bacteria under UV irradiation was greater than
under dark conditions, although no significant difference was found in antibacterial activity
among the composite films with different TiO2 contents under dark condition for 24 h.
This confirms that the TNPs have higher lethal effect under exposure to UV due to the
photocatalytic activity and production of ROS in the medium [77].

Lastly, Lan et al. (2021) developed and studied multifunctional packaging films
based on chitosan, nano-TiO2, and red apple pomace (APE). The diameter of inhibition
zones was estimated for the different combination of the nanocomposite films against
E. coli and S. aureus. Similar to other reports, all of the studied films had more effective
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antimicrobial activities against Gram-positive (S. aureus) compared with Gram-negative
bacteria (E. coli) [78].

Table 1. Chitosan-TNP films antimicrobial activity.

Biopolymer Films Concentration of TNPs Tested Microbe Results Reference

Chitosan-AgNPs-TNPs 5 mg/mL Escherichia coli
O157:H7

TNPs: 7.3 × 109 CFU mL−1

Chitosan: 4.0 × 109 CFU mL−1

Chitosan-TNPs: 5.6 × 109 CFU mL−1

Chitosan-TNPs-AgNPs 3.2 × 103 CFU mL−1

[71]

Chitosan-TNPs N/A

E. coli
100% sterilization in 12 h on all of the tested

microorganisms [72]S. aureus
C. albicans

A. niger

Chitosan-TNPs
Chitosan-TNPs + UV treated

1%

E. coli NUV: 27%, UV: 53%

[74]

S. aureus NUV: 38%, UV: 53%
S. Typhimurium NUV: 11%, UV: 22%

P. aeruginosa NUV: 12%, UV: 15%
Aspergillus NUV: 17%, UV: 21%
Penicillium NUV: 5%, UV: 8%

Chitosan-TNPs

0 wt%

B. cereus 70.14 ± 0.02 (%)

[76]

S. aureus 81.49 ± 0.20 (%)
C. albicans 72.46 ± 0.08 (%)

A. niger 54.25 ± 0.02 (%)
E. coli 55.11 ± 0.03 (%)

2 wt%
based on chitosan solution

B. cereus 75.50 ± 0.15 (%)
S. aureus 82.45 ± 0.04 (%)

C. albicans 76.36 ± 0.31 (%)
A. niger 86.19 ± 0.25 (%)
E. coli 60.00 ± 0.04 (%)

5 wt%
based on chitosan solution

B. cereus 78.87 ± 0.05 (%)
S. aureus 82.99 ± 0.18 (%)

C. albicans 62.55 ± 0.07 (%)
A. niger 88.49 ± 0.27 (%)
E. coli 57.45 ± 0.11 (%)

10 wt%
based on chitosan solution

B. cereus 79.47 ± 0.01 (%)
S. aureus 82.25 ± 0.14 (%)

C. albicans 51.64 ± 0.06 (%)
A. niger 90.99 ± 0.21 (%)
E. coli 72.77 ± 0.15 (%)

15 wt%
based on chitosan solution

B. cereus 85.85 ± 0.21 (%)
S. aureus 84.62 ± 0.18 (%)

C. albicans 44.82 ± 0.09 (%)
A. niger 93.99 ± 0.29 (%)
E. coli 60.00 ± 0.25 (%)

Chitosan-TNPs-oleic acid 15 wt%
based on chitosan solution

B. cereus 50.70 ± 0.24 (%)
S. aureus 82.21 ± 0.22 (%)

C. albicans 71.27 ± 0.17 (%)
A. niger 95.50 ± 0.28 (%)
E. coli 42.55 ± 0.10 (%)

(%): Growth Inhibition Percentage, UV and NUV: UV and non-UV treated.

2.2. Chitosan-Zinc Oxide Nanocomposites

ZnO nanoparticles (ZNPs) are low-cost nanoparticles with unique catalytic, electrical
(i.e., piezo- and pyro-electric) and optical, photostability, biocompatibility, biodegradability
and, most importantly, antimicrobial properties [29]. For example, ZNPs were recently
shown to possess high UV absorption, high photocatalytic efficiency, and higher biocom-
patibility than TNPs [79]. ZNPs in the presence of water and UV light can produce ROS
that include hydrogen peroxide (H2O2) and superoxide. A brief description of the possible
photochemical reactions that may occur with ZNP are shown in a series of equations
(Equations (1)–(4)) and Figure 2. Upon UV irradiation, valence band electrons (e−) are
promoted to the conduction band leaving a hole (h+) behind (Equation (1)). The holes at
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the ZNPs valence band can oxidize adsorbed water or hydroxide ions to produce hydroxyl
radicals (Equation (2)). Electrons in the conduction band on the catalyst surface can reduce
molecular oxygen to superoxide anion (Equation (3)). This radical may form organic
peroxides or hydrogen peroxide in the presence of organic scavengers (Equation (4)). The
hydroxyl radical is a powerful oxidizing agent and attacks organic macromolecules and
compounds [29,80].

ZnO + hν→ e− + h+ (1)

h+ + H2O→ •OH + H+ (2)

e− + O2 → O2•− (3)

O2•− + HO2• + H+ → H2O2 + O2 (4)
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Fabrication of well-dispersed and proper ZnO/chitosan nanocomposites is not straight-
forward due to the fact that chitosan is only soluble in an acidic environment. On the
other hand, ZNPs under acidic condition switch into aqueous Zn2+ ions and result in
production of chitosan-metal ion complexes and not nanocomposites [81]. Generally, to
fabricate chitosan-ZnO nanocomposites, most researchers follow a two-step process. First,
the addition of ZNPs in chitosan low-pH solution is used to produce chitosan-Zn ion
complexes. Following that, the in situ crystallization of ε-Zn(OH)2 is accomplished using
hot alkaline treatment that converts the complexes into chitosan-ZnO nanocomposites [82].

Youssef et al. (2015) prepared ZNP/AgNP-chitosan nanocomposites for food packag-
ing applications. Accordingly, ZNPs were synthesized using the hydrothermal method,
whereas AgNPs were prepared by a direct approach in the presence of chitosan. Further-
more, the authors investigated the effect of acid type (formic or acetic acid) on chitosan
films as a dissolving agent. Chitosan-based nanocomposite films yielded good antimi-
crobial activity using the disc diffusion method against Gram-negative organisms (i.e.,
E. coli, Salmonella Typhimurium as well as Gram-positive (S. aureus, B. cereus, and L. monocy-
togenes) bacteria. Chitosan films dissolved in both acids showed significant inhibition zones
against all tested strains. The addition of ZNPs and AgNPs increased the nanocomposites’
antimicrobial activity. An increase in the concentration of those nanoparticles increased
the inhibition zone, with the largest inhibition zone being for a formic acid-dissolved
chitosan ZNP nanocomposite, with the following diameters against test strains: E. coli
(18 mm), S. Typhimurium (19 mm), S. aureus (15 mm), B. cereus (18 mm), and L. monocy-
togenes (16 mm) [83]. They did not study the hybrid application of ZNPs and AgNPs,
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which could be an interesting study to discover possible synergic antimicrobial effects of
the nanoparticles.

Chitosan-ZNPs (ZNPs with a size of 35–45 nm) as an antimicrobial coating on polyethy-
lene (PE) films has been studied by Al-Naamani et al. (2016). By employing an oxygen
plasma pretreatment of PE films, the adhesion of the chitosan-ZNP nanocomposite coating
layer on the PE surface increased by 2%. The antimicrobial effect of coated (with pure
chitosan and chitosan-ZNPs nanocomposite) and un-coated films was evaluated by sus-
pension culture medium (a suspension of test microorganisms on the film specimens). The
films were tested against two Gram-negative bacteria, E. coli (ATCC 25922), Salmonella
enterica serovar Typhimirium (ATCC 14028), and one Gram-positive bacteria, S. aureus
(ATCC 6538). Their results showed that both chitosan-coated PE and chitosan-ZNP coated
PE significantly inhibited bacterial growth. PE films did not show any antibacterial effect,
as was expected. The chitosan coating had high antimicrobial activity against all tested
bacteria with 1.3, 1.6, and 1.4 log reduction against S. Typhimurium, E. coli, and S. aureus,
respectively. Alternatively, after 24 h of incubation, the complete growth inhibition resulted
from antimicrobial tests using the chitosan-ZNP coatings, which the authors highlighted
as having potential for industrial antimicrobial packaging uses [84]. Based on their study,
PE coated with chitosan-ZNP nanocomposites offer a promising technique to enhance
the antimicrobial properties of the PE films, which is one of the regular petroleum-based
plastics used by the food packaging industry. With the reported method, it was possible to
inactivate about 99.9% of pathogenic bacteria cells to increase the shelf life of food products
and improve safety.

Different concentrations of ZNPs alone (and in combination with essential oils) have
been studied to increase antimicrobial properties of ZNPs film. To increase the physical,
mechanical, and antimicrobial properties of the chitosan-based nanocomposites, Sani et al.
(2019) developed a chitosan-ZNPs film with Melissa essential oil. Their produced films
contained ZNPs (0, 1, and 3% (w/v)) and Melissa essential oil (0, 0.25, and 0.5% (w/v))
as reinforcing agents, based on the initial chitosan solution’s dry matter concentration,
to enhance the functional properties of the films. The disc diffusion method was used
to evaluate the antimicrobial properties of the nanocomposites. The prepared film discs
(diameter = 15 mm) were placed on agar plates containing a lawn of E. coli (ATCC 11775)
bacteria. Based on their report, all of the films showed an inhibitory effect that was
enhanced by the addition of ZNPs and essential oil. The highest inhibition zone was
determined to be the chitosan-ZNP-Melissa essential oil composite preparation, which
boosted the antimicrobial effect by the simultaneous use of ZNPs and essential oils [85].

Combining chitosan-ZnO nanocomposites with other biopolymers has been another
approach used to increase the potential packaging properties of ZNP-chitosan bio- nanocom-
posites. In these studies, chitosan and gelatin nanocomposite hybrid films containing
green-synthesized ZNPs were developed, and their properties studied by Kumar et al.
(2020). The developed films with 2% and 4% ZNPs were again tested for antimicrobial
properties using the disc diffusion method; the authors showed that the nanocomposite
film had significant antimicrobial activity against E. coli. The zones of inhibition of the
developed hybrid films containing 1%, 2%, and 4% ZNPs were 10.5, 10.5, and 10.7 mm in
diameter against E. coli, respectively [86].

Ahmed et al. (2021) compared nanocomposites films containing chitosan nanoparticles
as an organic filler and ZNPs as an inorganic filler to evaluate their different reinforcement
method in gelatin/tapioca starch films. They also studied the antimicrobial effect of the
films using zones of inhibition against Gram-negative bacteria (E. coli) and Gram-positive
bacteria (S. aureus) [87].

In yet another polymer blending approach, Boura-Theodoridou et al. (2020) investi-
gated the performance of chitosan-ZnO nanocomposite film for antimicrobial packaging
applications as a function of NaOH treatment and glycerol/poly (vinyl alcohol) proportions.
They reported the successful formation and growth of ZnO nanoparticles in chitosan-based
films following immersion in hot NaOH solution. Antibacterial activity of the nanocom-
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posites was studied against a panel of organisms that included an E. coli (Gram-negative)
isolate, along with B. lactofermentum and C. glutamicum (Gram-positive) strains. Pure
chitosan films resulted in almost 100% inhibition of the growth of all three bacteria. How-
ever, they reported that the effect of ZNP content was not clear. They reported a general
reduction of antimicrobial efficacy due to the immersion of the films in NaOH solution
which lowers the polycationic character and the solubility of chitosan. In general, the
antimicrobial activity of the produced chitosan-ZNPs nanocomposites was greatest against
B. lactofermentum, moderate against E. coli, and almost absent against C. glutamicum [88].
This suggests the inhibition ability of the pristine chitosan films against C. glutamicum and
E. coli bacteria before and after growth of ZNPs in the nanocomposite structure is different
due to the decrease in polycationic nature of the chitosan caused by the alkaline treatment.

Preparation of multilayer films consisting of chitosan, sodium alginate, and car-
boxymethyl chitosan-ZnO nanoparticles was studied by Wang et al. (2019). Their study
demonstrated distinct antibacterial activities against S. aureus and E. coli, and that a sig-
nificant positive correlation existed between percentage of ZNPs and film antibacterial
efficacy [89]. Qui et al. (2019) developed flexible chitosan-ZNP nanocomposite films by in
situ precipitation of ZNPs in a chitosan matrix with an alkaline treatment. Accordingly,
they reported their chitosan-ZNP films caused 3.4-log and 4.0-log reductions in viable
E. coli and S. aureus cells after 0.5 h exposure, respectively [90]. Akhil Krishnan et al. (2020)
produced chitosan-ZNP nanocomposites which the ZNPs were synthesized using orange
peel oil using a “green” chemical reduction method. Antibacterial activity of the films
investigated by the agar disc diffusion method against E. coli, wherein a distinct inhibition
of the microorganisms for the ZNP-loaded films was observed. According to the report,
the chitosan-ZNP films showed 1.9 ± 0.1 cm zone of inhibition, while pristine chitosan
film represented a zone of inhibition of 0.9 ± 0.1 cm [91]. Yadav et al. (2021) developed
food packaging materials based on chitosan and ZNP-loaded gallic acid with improved
antibacterial properties against both Gram positive (B. subtilis) and Gram negative (E. coli)
bacteria. Reduced antibacterial activity was seen with pure chitosan in comparison to
the films dosed with ZNPs and gallic acid in the matrix. It was revealed that increasing
ZNPs and gallic acid concentrations from 30 to 70 mg in the film matrix caused significant
increases in antibacterial activity [23].

The effect of size of the ZNPs on antimicrobial properties in chitosan matrix were
also studied by Zhang et al. (2021). In their work, chitosan nanocomposite films were
prepared by incorporating different sizes of zinc oxide particles of 5 µm, 50 nm, and
100 nm. Antimicrobial activity of the films against E. coli and S. aureus revealed that films
containing 0.3% of 50 nm zinc oxide particles exhibited the best extent of inhibition. Their
result showed the size-dependent activity of ZNPs, with smaller ZNPs having enhanced
antibacterial activities [92]. A summary of the recent works with more details has been
represented in Table 2.
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Table 2. Chitosan-ZNP films antimicrobial activity.

Biopolymer Films Concentration of ZNPs Tested Microbe Results Reference

Chitosan-ZNPs
(Formic and acetic acid treated) N/A

E. coli F: 18 mm A: 15 mm

[83]

S. Typhimurium F: 19 mm A: 17 mm
S. aureus F: 15 mm A: 13 mm
B. cereus F: 18 mm A: 13 mm

L. monocytogenes F: 16 mm A: 10 mm

Chitosan-AgNPs
(Formic and acetic acid treated) N/A

E. coli F: 12 mm A: 14 mm
S. Typhimurium F: 15 mm A: 13 mm

S. aureus F: 10 mm A: 11 mm
B. cereus F: 12 mm A: 12 mm

L. monocytogenes F: 11 mm A: 10 mm

Chitosan-ZNPs

ZNPs size (nm)
0 wt%

B. lactofermentum ≈100 (%)

[88]

C. glutamicum ≈100 (%)

N/A E. coli ≈100 (%)

6.9 3 wt%
B. lactofermentum ≈60 (%)

C. glutamicum ≈10 (%)
E. coli ≈60 (%)

9.3 5 wt%
B. lactofermentum ≈100 (%)

C. glutamicum ≈7 (%)
E. coli ≈30 (%)

14.6 7 wt%
B. lactofermentum ≈90 (%)

C. glutamicum ≈5 (%)
E. coli ≈40 (%)

Chitosan-Gly-ZNPs

ZNPs size (nm)
0 wt%

B. lactofermentum ≈100 (%)
C. glutamicum ≈100 (%)

N/A E. coli ≈100 (%)

7.5 3 wt%
B. lactofermentum ≈95 (%)

C. glutamicum ≈5 (%)
E. coli ≈30 (%)

10.8 5 wt%
B. lactofermentum ≈100 (%)

C. glutamicum ≈10 (%)
E. coli ≈50 (%)

14.8 7 wt%
B. lactofermentum ≈100 (%)

C. glutamicum ≈12 (%)
E. coli ≈15 (%)

gelatin/tapioca starch-chitosan 12.5%
E. coli 45.29 ± 8.62 mm2

[87]
S. aureus 45.29 ± 8.62 mm2

gelatin/tapioca starch-ZNPs 12.5%
E. coli 85.30 ± 18.90 mm2

S. aureus 67.28 ± 17.28 mm2

(mm): Inhibition zone diameter, F and A: formic and acetic acid included, (%): Inhibition growth percentage, Gly: Glycerol, (mm2): zone on
inhibition (area).

2.3. Chitosan-Silver Nanocomposites

Silver nanoparticles (AgNPs) are defined in the literature as compounds containing a
large percentage of silver oxide due to the high ratio of silver atoms in the bulk surface.
Generally, silver salt and silver-based materials have been well known for their antimi-
crobial properties since ancient times [93]. Several antimicrobial mechanisms for AgNP
activity have been reported, including production and release of Ag + ions, ROS generation
in the outer and inner membrane of microorganisms, cell membrane interference, ribosome
destabilization, and mitochondrial and nucleic acids damage (Figure 1e) [94]. The synthesis
of Ag-NPs can be achieved by physical, chemical, and biological methods. The biological
method for Ag-NPs production could be considered to be an environmentally-friendly
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process, whereas other physical and chemical methods use high amounts of energy and
chemical solvents, which are considered toxic, resulting in restrictions on the synthesized
nanoparticles potential biomedical and food application [95,96].

Qin et al. (2019) developed chitosan-based active and intelligent food packaging films
with incorporated AgNPs (2%) and purple corn extract. The antibacterial performance of
the produced films was studied against E. coli, Salmonella, S. aureus, and L. monocytogenes.
Based on their report, chitosan nanocomposites reinforced with AgNPs showed five times
higher antimicrobial effects against four foodborne pathogens compared to pure chitosan
films [97]. An antioxidant and antibacterial chitosan-tea polyphenols-silver nanoparticle
composite films were developed via a novel one-pot method by Zhang and Jiang (2020).
Accordingly, AgNPs were produced by reducing AgNO3 using 0.1% (w/v) tea polyphenol
solution. The produced nanocomposites were investigated for their antibacterial per-
formance against S. aureus and E. coli. All of the films with AgNPs presented stronger
antibacterial activity against Gram-negative than Gram-positive bacteria [98].

To overcome the drawbacks of pure chitosan films, Cao et al. (2020) developed a
new combination of films containing catechol-modified chitosan, AgNPs, and gelatin. The
prepared bio-nanocomposites showed exceptional antibacterial behaviors against S. aureus
and E. coli with up to 65% and 70% bacterial death percentage, respectively. Their results
also confirmed a higher antibacterial behavior against Gram-negative than Gram-positive
bacteria [99]. In another study, Kadam et al., (2019), the pH-dependent sustained release of
AgNPs synthesized using Nigella sativa extract with a biogenic method from chitosan matrix
was demonstrated. The antibacterial performance of the chitosan-based nanocomposite
films was investigated against the Gram-positive bacteria S. aureus and B. subtilis and
Gram-negative bacteria P. aeruginosa and E. coli using a disc diffusion inhibition method.
According to their results, composite films demonstrated better antibacterial activity against
Gram-negative bacteria compared to the Gram-positive bacteria, which confirms findings
seen in similar studies. Additionally, smaller sized AgNPs (8 nm) showed greater lethal
effects against the studied bacteria [100].

Pandey et al. (2020) developed chitosan-AgNP nanocomposites for food packaging
applications. They fabricated the nanocomposite with AgNPs sizes of 80 ± 11 nm in
chitosan in a polyvinyl alcohol (PVA) blend to form electrospun fibrous composite nano-
layers. The antimicrobial activity of the fibrous layer was then analyzed with the agar disc
diffusion against E. coli and L. monocytogenes bacteria. The PVA nano-layer did not show
any inhibition effect, which was expected. However, the PVA-chitosan and AgNP nano-
layers showed a remarkable inhibitory effect against both tested strains. The maximum
zone of inhibition (20 mm for E. coli, and 21 mm for L. monocytogenes) was observed for
PVA (70%)-chitosan (30%)-AgNP nano-layers, possibly due to the synergistic antimicrobial
activity of chitosan and AgNPs. Also, PVA (70%)-chitosan (30%) nano-layers without
AgNPs showed inhibition zones (16 mm for E. coli, and 15 mm for L. monocytogenes) due to
the electrostatic interaction between the cationic chitosan molecule and negatively charged
bacterial cell membranes [101].

A recent study investigated the in vitro antifungal activity of two different chitosan
(commercial and shrimp) AgNPs (100 to 250 nm diameter) nanocomposites [102]. The
antifungal evaluation of the films against the phytopathogen Botrytis cinerea was studied
since it is considered one of the most important postharvest pathogens in fruit and vegeta-
bles. The droplets of conidial solution were inoculated onto the films in a chamber, with a
concentration of 106 conidia per mL. An inhibition percentage of greater than 97% were
reported by the authors for this study against this fungal organism.

Ghasemzadeh et al. (2021) developed a series of novel full polysaccharide chitosan-
agarose-AgNPs nanocomposites with in situ reduction of silver ions in the polymeric
network. The antimicrobial behavior of the films was evaluated against a panel of bacteria,
including P. aeruginosa, E. coli, and S. aureus. Chitosan-agarose films did not show an-
tibacterial activity using the disc diffusion method. However, the films containing AgNPs
showed significant zones of inhibition against S. aureus, E. coli, and P. aeruginosa [103].
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More recently, the effect of chitosan-essential oils-AgNP nanocomposite films on the
shelf life of strawberries was examined by Shankar et al. (2021), with films showing strong
antimicrobial activity against pathogenic bacteria (E. coli, L. monocytogenes, Salmonella) as
well as a fungal strain (A. niger). The chitosan-AgNP nanocomposites reduced E. coli viable
counts by 3.4-log CFU/g, L. monocytogenes by 3.0-log CFU/g, Salmonella by 1.4-log CFU/g,
and A. niger by 0.5-log CFU/g after 16 h exposure [104].

In an interesting novel food packaging approach, Ramadan et al. (2020) developed
cotton fabrics dipped in chitosan solution, dried, and then loaded with silver nanoparticles
by an in situ technique. Their research introduced a potential new use of chitosan and
metallic nanoparticles for dried food packaging. These antimicrobial fabrics could see use in
various packaging processes including the packaging of seeds and powder materials. The
inhibitory effects of treated fabrics against Gram negative (P. aeruginosa) and Gram positive
(S. aureus) bacteria, fungi (A. niger) and yeast (C. albicans) were investigated. Overall, the
fabrics loaded with chitosan and AgNPs showed good antimicrobial properties using a
disc diffusion method [105].

3. Discussion and Conclusions

Plastic packaging or chemical additives are two primary methods used by the food
industry to protect and prevent their products from spoilage. The side effects of these
methods on human health are well-known, including direct chemical additives to the
food or chemical migration from packaging into the food content [106,107]. Researchers
have extensively studied the possible alternative compounds such as polymers and nano-
materials to address these problems. Chitosan and its derivatives seem to be promising
biodegradable and biocompatible polymers for food packaging; however, they still suffer
from a lack of good packaging properties (e.g., mechanical, thermal, and hydrophobic
properties). Hence, the metallic and metal oxide nanomaterials (e.g., TiO2, ZnO, and Ag)
were employed to reinforce chitosan-based materials and give them functional properties,
including antimicrobial activity. Researchers are still evaluating the respective benefits of
these classes of nanomaterials. Based on the current review of the recent reports on using
these nanomaterials with chitosan as nanocomposites, the following conclusions of their
antimicrobial effects were compiled:

• Chitosan has a great film-forming ability, making this biopolymer a suitable can-
didate for biodegradable food packaging research. Most of the chitosan-based bio-
nanocomposites have been fabricated through the water-based solution casting method.
Due to chitosan’s cationic nature, it is soluble in water under acidic conditions (1–2%
acetic or formic acid solution). Chitosan films obtained through this method have a
lower final pH because of the organic acid in their structure, a feature which could
cause bolster inhibition of some microorganisms such as coliforms.

• TiO2 nanoparticles have photocatalytic activity, especially under exposure to UV light
in the presence of water and oxygen. Under these conditions, ROS can be generated,
resulting in production of hydroxyl and superoxide free radicals. These free radicals
react with inner cellular macromolecules or the cell membrane phospholipids resulting
in severe damage to cell membrane integrity as well as DNA. However, a detailed
description of the reaction mechanism of TNPs has not yet been discovered. Reports
on TiO2 and chitosan nanocomposites showed more significant inhibition as compared
to pure chitosan films due to the additional inhibitory effect of TiO2 nanoparticles.
TiO2 nanoparticles show a more significant inhibitory effect under UV exposure
comparing white light or dark storage. More antimicrobial activities against Gram-
positive compared with Gram-negative bacteria with TiO2 nanocomposites have been
reported. As mentioned above, the lower pH has a booster effect on the inhibition of
chitosan-based nanocomposites on some microorganisms.

• Like TiO2 nanoparticles, ZnO nanoparticles have photocatalytic activity but with
higher biocompatibility and UV light absorption compared with TiO2. The antimi-
crobial activity of ZnO nanoparticles is similar to TiO2 nanoparticles in terms of ROS
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generation. However, the probable generation of hydrogen peroxide (H2O2) during
the ZnO photocatalytic activity under UV-irradiation has been reported. Fabrication
of chitosan with ZnO nanocomposites is different than TiO2/chitosan nanocomposites
because ZnO nanoparticles may release aqueous Zn2+, which changes the morphology
and efficacy of the nanoparticles. Hence, in situ crystallization of ε-Zn (OH)2 using
hot alkaline treatment converts the complexes into chitosan-ZnO nanocomposites is a
common method to fabricate ZnO chitosan nanocomposites. However, hot alkaline
treatment might cause some changes in chitosan polycationic nature, which could be
considered a drawback of this method. There has been no report to date on different
antimicrobial efficacies against Gram-negative and Gram-positive for chitosan-ZnO
nanocomposites. Also, greater inhibitory effects of chitosan-ZnO and Ag hybrid
nanocomposites has also been reported.

• Silver salt and silver-based materials have been well known for their antimicrobial
properties since ancient times. Release of Ag + ions, ROS generation, and cell mem-
brane disruption are the most cited possible antimicrobial mechanisms linked with
AgNPs. Works that studied chitosan-AgNPs films reported more potent antibacterial
activity against Gram-negative than Gram-positive bacteria, which could be an ad-
vantage in combination with other nanoparticles with greater antimicrobial activities
against Gram-positive compared. Also, the effect of particle size on the efficacy of
the studied nanomaterials showed a smaller range of nanoparticle size offers a more
significant inhibition effect against microorganisms. However, the regulations regard-
ing their use in the food industry are still changing and need to be studied more. For
example, on a recent announcement from the European Food and Safety Authority
(EFSA), the use of TiO2 is no longer considered safe [108].

• Due to the biodegradability, sustainability, and effective film forming properties of
chitosan, it has been a promising polysaccharide of interest for researchers in the field
of food packaging. The cationic nature of the chitosan shows antimicrobial properties,
but not sufficient by itself to be used as the sole antimicrobial agent. Among many
metals and metal oxide options, TiO2, ZnO, and Ag are ideal nanomaterials to be
employed in conjunction with chitosan to enhance the antimicrobial performance of
the final films. However, as mentioned above, the cytotoxicity of these materials is
still unknown and thus further studies are needed for application in the food industry.
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