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Abstract: Opposing polymer brush systems were synthesized and investigated by molecular model-
ing. Chains were restricted to a face-centered cubic lattice with the excluded volume interactions
only. The system was confined between two parallel impenetrable walls, with the same number
of chains grafted to each surface. The dynamic properties of such systems were studied by Monte
Carlo simulations based on the dynamic lattice liquid model and using a highly efficient parallel
machine ARUZ, which enabled the study of large systems and long timescales. The influence of the
surface density and mean polymer length on the system dynamic was discussed. The self-diffusion
coefficient of the solvent depended strongly on the degree of polymerization and on the polymer
concentration. It was also shown that it is possible to capture changes in solvent mobility that can be
attributed to the regions of different polymer densities.

Keywords: dynamic lattice liquid; lattice models; polymer brushes

1. Introduction

Polymer brushes are a system consisting of grafted macromolecules, i.e., chains termi-
nally attached to a surface. They have been a subject of many experimental and theoretical
works predominantly because of their practical importance (e.g., size-exclusion chromatog-
raphy, polymer adhesion, or lubrication) [1–4]. Polymer brushes formed of chains grafted
on one surface can be treated as the reference state for the confined brushes. Brushes were
a subject of various experimental techniques of synthesizing, as recently reviewed [5–7].
Understanding the factors that govern the properties of a brush is therefore important
for designing useful and intelligent polymeric systems [8]. Properties of brushes were
studied by means of molecular dynamics and dissipative particle dynamics [9–13], Monte
Carlo simulations [10,14–27], scaling theory, and self-consistent-field theoretical considera-
tions [27–35].

Opposing polymer brushes, i.e., systems consisting of two parallel surfaces, both
grafted with chains, were also a subject of considerable interest [36]. Theoretical treat-
ment concerned mainly the compression of such brushes [37–41]. Computer simulations
were found to be a useful tool for studying opposing polymer brushes—structure, in-
teraction, and friction between a pair of brushes (neutral and charged) were recently
investigated [39,42–48]. This study investigated the solvent and polymer dynamics for
an opposing (sandwich-like) polymer brush, consisting of two flat surfaces on which the
chains were grafted by polymerization. The brushes were synthesized using a ‘grafting
from’ procedure; i.e., the polymerization of chains started from the surfaces. The dynamics
of a formed opposing polymer brush was investigated focusing on the case when both
brushed layers are in contact. It must be emphasized that a realistic but extremely small
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(from a computational point of view) probability of polymerization per algorithm time
step (10−6) was used. A long relaxation time, up to 109 time steps (total simulation time),
showed to offer a new exciting opportunity to probe the equilibrium states of the con-
fined dense polymer brushes. Because of the complex architecture, large size, and high
density of polymer chains, these systems are usually studied employing coarse-grained
models. The representation of macromolecules was highly reduced for this paper—chains
consisted of interconnected statistical segments that were embedded to the nodes of a
face-centered cubic lattice representing the simulated volume. Chains were firmly grafted
to an impenetrable planar surface and a pair of them formed a slit. This model system was
studied at good solvent conditions; i.e., all nonbonded interactions were the same in the
whole system under consideration. Dynamic Monte Carlo simulations of the presented
model were carried out using the dynamic lattice liquid (DLL) model dynamics [49,50].
This simulation algorithm provides the proper dynamics and reproduces the molecular
transport in dense systems. DLL has already been successfully used, e.g., to study various
polymerization processes [51–53].

2. Materials and Methods

The DLL model is based on the concept of strictly cooperative motion of objects in a
dense system. The object refers here to the coarse-grained fragment of matter (polymer
segment, solvent molecules, etc.). For simplicity, the positions of objects are limited to the
nodes of a quasicrystalline lattice, in this case, FCC lattice with coordination number q = 12.
It has been assumed that the system has some excess volume, so each object has enough
space to vibrate around its position defined by the lattice node like in a real dense liquid.
The objects, however, cannot easily move over a longer distance, because all neighboring
lattice sites are occupied. Despite this, a long-range motion can occur as a cooperative
rearrangement having a form of a closed loop of coordinated displacements involving
at least three neighboring objects. In contrast to many other lattice models, DLL allows
studying lattice systems at the highest density, i.e., where all lattice sites are occupied by
exactly one object: a solvent molecule or a polymer segment. The DLL model described
above has been implemented as a dynamic Monte Carlo simulation for polymer brushes in
solvent. The single simulation time step t in the athermal case consisted of three steps:

1. The generation of random vector field of motion attempts. A unit vector, pointed
towards one of the nearest neighboring lattice sites, represents the direction along
which the object attempts to move;

2. The identification of groups of vectors forming closed loops, indicating ways of
possible successful cooperative rearrangement. The rest of the objects are immobilized
at the given time step. Additionally, if the movement realized in a given loop would
lead to the break of a bond between segments in the polymer chain, then the loop
is immobilized;

3. The rearrangement of objects along these closed paths by displacing them to the
neighboring sites according to the vector generated in step 1.

A discussion concerning the detailed balance and ergodicity of DLL algorithm was
presented elsewhere [49]. Time was assumed to be a discrete variable for which the
positions of all objects were attempted to be updated simultaneously. As compared to
experiments, one time step in DLL corresponds to 6·10−13 s for low-weight molecular
systems [54] up to 3·10−12 s in the case of a polymer system [22].

In this paper, a coarse-grained model of multichain polymer systems forming oppos-
ing polymer brushes is under consideration. The system contained fully flexible chains
immersed in a good solvent. The solvent was explicitly included in the model. The simula-
tion procedure consisted of two steps. In the first step, polymer chains grafted on a pair of
parallel surfaces were virtually synthesized. Note that polymer brushes in real experiments
can be obtained using two different methods: by tethering the chains that were previously
polymerized and by growing chains from initiators anchored to the surface [55–58]. The
second one enables a highly grafted brush to be obtained, and what is more, in computer
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simulations, it is the only way to obtain properly equilibrated, highly grafted, and dense
polymer systems [6,22]. Therefore, the second method was chosen for the presented studies.
In the second step, the reaction was stopped and the system was fully equilibrated after
the synthesis was completed. In this paper, the authors focus on the dynamic properties of
the system after the synthesis part is finished.

3. Results

The system under consideration had a form of a slit built by a pair of parallel impene-
trable surfaces placed at coordinates z = 1 and 144; i.e., the width of the slit was 2d = 142.
The edge of the Monte Carlo box in each of the two remaining directions of the space had
a length of L = 144; there were 1,492,992 FCC lattice nodes in total. Periodic boundary
conditions were used in x- and y-direction. The large number of nodes was crucial for a
good average necessary for the analysis of diffusion-type changes. The end of each chain
was grafted (tethered) to one of the surfaces. Grafting positions were selected at random.
The synthesized systems were polydisperse and, therefore, must be described by means
of the averaged degree of polymerization (average chain length). The number averaged
degree of polymerization DPn is defined as DPn = ∑2N

i=1 nimi/ ∑2N
i=1 ni, where 2N is the

total number of chains in the system, mi is the length (number of segments) of ith chain,
and ni is a number of chains with length mi.

The number of chains defines the grafting density of both brushes, which was defined
as the number of chains grafted to one surface to the number of lattice nodes forming a
surface. The grafting density was varied: σ = 0.2, 0.25, 0.3, 0.35, and 0.4 (for each surface).
The studies concerning the influence of the grafting density were carried out for systems
where DPn = 110, i.e., when both brushes interact. The overlap grafting density is usually
defined as [11] σ* = π R2

gN/L2, where R2
g is the chain mean squared radius of gyration

and N is the number of chains grafted to one of the surfaces. This parameter is a measure
of the compression of grafted chains: for values σ* > 1, chains are restricted to less area
(in the xy plane) than they would occupy in solution. In this study, σ* varied between 62
and 149, which implies that the chains under consideration were always in the real brush
regime [4]. The grafting density σ = 0.3 was chosen for the investigation of DPn impact,
based on previous studies concerning a model of a single brush [22]. The influence of the
grafting density on the single brush structure has shown that a crossover from low to high
grafting regime is located near this value. This value corresponds to 0.35 chains/nm2 in
a polymer system when one polymer bead represents an MMA monomer unit [22]. For
this grafting density, the mean number averaged degree of polymerization was varied in a
wide range: DPn = 30, 50, 70, 90, 100, 110, 120, 140, and 160.

In the first part of the simulation, the entire simulation box was filled with monomer
and the initiator was randomly placed on both surfaces with a given grafting density. For
the model of polymer synthesis, the controlled living irreversible radical polymerization
was chosen; i.e., the process of attachment of monomers to a growing chain was irre-
versible and a reaction rate p = 10−6 was assumed (this choice was based on our previous
findings—see [22,59] for details). The polymer layer grew until it reached the desired DPn
value, which lasted even up to 5 × 108 time steps. The above criterion of polymerization
termination leads to the generation of polydisperse systems, which makes the theoretical
interpretation difficult but much better reflects the properties of real brush systems [22].
Then the reaction was stopped, and the unreacted monomer was replaced by an inert
solvent of the same size as the monomer. The second step was a production run to collect
uncorrelated data; it lasted 5 × 108 time steps. The ‘grafting from’ procedure where chains
grow very slowly was found to be an efficient tool for the simulation of dense brushes [22].
Faster ‘grafting from’ polymerization process requires very long equilibration [59], while
attaching to the surface previously prepared whole is completely ineffective.

Having the number of objects under consideration significantly exceeding 106, it
is impossible to study such a number of time steps using a typical computer cluster or
supercomputer running the DLL algorithm [60]. Therefore, the usage of the dedicated com-
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puting hardware such as ARUZ (Analyzer of Real Complex Systems—in Polish, Analizator
Rzeczywistych Układów Złożonych) [60–64] is inevitable to study macromolecular systems in
this timescale. ARUZ was designed and constructed using the TAUR technology (Technol-
ogy of Real Systems Analyzers—in Polish, Technologia Analizatorów Układów Rzeczywistych)
developed at Lodz University of Technology [65]. The machine is located in BioNanoPark
Lodz (Poland). The device is composed of almost 26,000 reconfigurable field-programmable
gate arrays (FPGAs) interconnected in a 3D network. ARUZ is a scalable, fully parallel
data processing system equipped with low-latency communication channels, dedicated
to the simulation of dense systems containing a large number of elements interacting
locally. ARUZ can perform DLL simulations for systems with several millions of objects
with, e.g., 109 time steps performed in just a few days (vs. approx. 200 days on HPC
node using multithreading [60]). The usage of ARUZ was indispensable to execute DLL
simulations at this time range in reasonable computing time. This was the first time that
this timescale was reached for the DLL algorithm for a simulation box of the described
size. In summary, it was possible to study very large systems (>106 objects) for the highest
possible density (taking into consideration polymer and explicit solvent molecules) and for
a long timescale (109 steps). MD and DPD simulations of coarse-grained models cannot
handle such calculations.

The dynamics of complex systems like brushes is apparently connected to their internal
structure and density. The polymer density profiles across a slit formed by a pair of grafted
surfaces are presented in Figure 1. One can observe in Figure 1a that quite different polymer
systems were under consideration: from two layers separated by a wide gap (ca. 40 lattice
units) in the case of short chains (DPn = 30) to a system with an almost constant density
of polymer beads across the slit (DPn = 160). This allows distinguishing two regions:
(1) regions without brush interpenetration and (2) regions with interpenetration. The
regions without interpenetration exhibit density profiles that are mostly linear, which
agrees well with the SCFT calculations for polydisperse brushes. One can observe in
Figure 1b that the increase in grafting density leads to higher density, but it does not
change the shape of the density profiles.
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The insight into the system structure can also be achieved by studying the scaling
behavior of chain sizes. Three parameters describing the size of a single chain in a brush
were considered here: the mean squared end-to-end distance R2

ee, the mean squared height
of a single polymer chain (z-component of a distance between the free end of a chain and
the grafted surface) H2, and the mean squared radius of gyration R2

g. The dependence
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of these parameters on DPn, which is a measure of the mean chain length, is presented
as a log–log plot in Figure 2a. One can distinguish two regimes of the behavior of all
size parameters, both characterized by a quite regular scaling behavior of R2

ee, H2, and
R2

g. The first region includes chains with DPn ≤ 100, while the second one is observed
for longer chains. The scaling behavior observed for double brushes consisting of shorter
chains was found to be in the following form: R2

ee ~ DPn
1.81±0.01, H2 ~ DPn

1.92±0.02, and
R2

g ~ DPn
1.75±0.02. The scaling exponents had similar values for all parameters and were

much higher than in the dense polymer melt where 2ν ≈ 1 and than in the universal one
describing the behavior of a single free chain, i.e., 2ν ≈ 1.176 [66]. They were also higher
than predicted for the strongly stretched brush, where the exponent 1.5 was found from
theoretical considerations and confirmed via off-lattice Monte Carlo simulations of living
polymer brushes [27]. One must bear in mind that in the latter work grafting density was
lower and the kinetics of growing chains was different (reversible polymerization). Thus,
the main contribution to the higher values of exponents is the extension of chains along the
normal to the grafting surface. The exponents concerning chains in the double brush are
smaller than those for the fully extended chains (rods) where 2ν ≈ 2 and smaller than the
exponents obtained by the bond fluctuation model where ν = 1.16 was found for grafting
density 0.03 and 2ν = 1.93 was found for grafting density 0.1 [67]. In the second regime,
i.e., for longer chains, the scaling exponents R2

ee ~ DPn
0.67±0.07, H2 ~ DPn

0.70±0.07, and
R2

g ~ DPn
0.70±0.06 are considerably lower than the exponent for dense polymer melt and

even lower than for chains collapsed into globules, where 2ν ≈ 2/3. Moreover, one has to
remember that the local polymer concentration is not very high and even for longer chains
is between 0.3 and 0.7. This unexpected scaling behavior in the second regime can be
explained by the increase in the size of short chains with increasing DPn and compression
of longer ones resulting in flower conformation. The above behavior suggests that the
mutual interaction of both brushes starts for chains DPn > 100, but it does also for shorter
chains, as will be shown later. The conclusions drawn from the above discussion on the
dependency of the chain size parameters vs. their length can be supported by the analysis
of chain orientations. For this purpose, the angle between the end-to-end vector Ree and
the grafting surface (the one to which the chain is grafted) was calculated [42]. Figure 2b
presents the squared sinus of this angle as a function of the chain length. It is clear that
the shortest chains exhibit smaller tilt angles, although these angles increase rather rapidly.
The lowest values of sin2 are considerably above the mean value (1/3) that characterizes
a random distribution of orientations. Therefore, the orientation of short chains can be
treated as almost random regardless of the number averaged degree of polymerization
DPn of the given system. For intermediate chains (length between 75 and 150 going from
DPn = 50 to DPn = 160), tilt angles stabilize near the value 0.9; i.e., the longer chains are
almost perpendicular to the grafting surface. The further increase in chain length leads to a
slight decrease in tilt angles, apparently due to the impact of the second brush. What is
interesting for long chains is that there is no difference in tilt angles for different values of
DPn although both brushes are compressed.

Figure 3a–d shows snapshots of the entire system under consideration for DPn = 50
and 110 and for σ = 0.1, 0.3, and 0.4. Solvent molecules are not shown for clarity. As each
brush is marked with a different color, one can easily notice the border between them.
One can observe that the increase in chain length leads to a very weak interpenetration of
brushes. A similar situation occurred when the grafting density increases above σ = 0.3.

The dynamic properties of the solvent are discussed as a first point of the dynamic
properties of the simulated system. The mobility of solvent was calculated as the probability
of motion pm of a solvent molecule, i.e., the ratio of the number of performed moves in
a given lattice node (when it was occupied by solvent) and the total time units in a
simulation production run. This probability was averaged over the given plane xy. The
probability of motion is connected to the movement waiting time, and a detailed discussion
on these issues was already presented elsewhere [50,68]. In Figure 4 the reduced mobility
is presented, i.e., mobility divided by the mobility calculated for solvent molecules in
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the solution without the presence of polymer chains pm0 = 0.0588 [68]. Figure 4 presents
the changes in the reduced mobility of solvent molecules in the brush across the slit for
different degrees of polymerization DPn. One can observe that the shapes of curves are
almost opposite to those of the polymer density profiles presented in Figure 1. Significant
changes in the probability of motion across the slit prove the heterogeneity of the system
studied. The reduction in the solvent mobility is of an order of magnitude across the whole
slit in the system with the highest degree of polymerization (DPn = 160). For opposing
polymer brushes consisting of shorter chains, the reduction in pm is almost the same but
only in the neighborhood of the grafting surfaces.
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Figure 4b shows the solvent density profiles for the systems presented in Figure 4a.
One can observe that the shapes of these curves are almost exactly the same as those of
solvent reduced mobility and, thus, can be directly correlated.
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The long-time dynamic properties of soft matter systems can be studied by means
of mean squared displacement (MSD) ∆r2. The MSD of solvent molecules is defined as
∆r2(t) = 1

N ∑N
i=1

[
(ri(t)− ri(0))

2
]
, where ri(t) are the coordinates of the ith bead at time t

and N is the number of solvent molecules. In general, the dependency of the mean squared
displacement on time can be written as ∆r2 ~ tα. If the diffusion is normal, i.e., it follows
the Einstein relation with the exponent α = 1, the case α < 1 corresponds to a subdiffusive
(anomalous) motion that is expected in complex macromolecular systems [69]. Figure 5a
presents the MSD as a function of time in a double logarithmic plot. It seems that the
plots for all brushes studied exhibit a common scaling behavior t1 for solvent, but the
closer examination of these curves reveals nonlinearity, at least for intermediate times.
A more detailed discussion of polymer dynamics is presented later. The mean squared
displacement divided by time as a function of time was plotted (Figure 5b) to reveal a
deviation from Einstein law and the appearance of anomalous diffusion for solvent. Here
the MSD function parallel to the time axis corresponds to the case of normal diffusion. Such
regions where a normal diffusion is present are clearly observed for a very short time and
the end of the trajectory. At intermediate times, a subdiffusive motion appears for brushes
with both low and high DPn. Except for brushes with DPn = 30–70, the shape of curves is
more complex, and this effect is discussed below. The density of polymer in the system is
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apparently above the static percolation threshold, at least for brushes with a higher degree
of polymerization. Despite this, the motion of solvent is not limited at a longer time, which
can be explained by the fact that the obstacles, i.e., polymer chains, are also mobile—it was
shown that the percolation threshold is not observed for mobile obstacles [70,71]. Further
insight into anomalous diffusion can be obtained from the analysis of the solvent mobility
in a given layer, i.e., at a given distance from the grafting surface (the closer one). Of course,
during the simulation, solvent molecules can change layers; therefore, these results can
be treated only as a qualitative description of the influence of the local structure of the
system on solvent motion. Figure 5c presents the mean square displacement calculated
for the solvent molecules that were located, at the beginning of the simulation, on the
surface (z = 2) and in the middle of the slit (z = 72). The results presented concern the
degree of polymerization DPn = 110, i.e., the case where opposed brushes interact with
each other. The difference in polymer density is approximately 2-fold for these cases (see
Figure 1a,b). Solvent molecules that start to move in the layers close to the surface are
considerably hindered by the presence of polymer chains, and their mobility is an order
of magnitude lower than in the middle of the slit. Moreover, a well-defined transient
subdiffusive region is observed, and it is the deviation from the normal diffusion that
decreases with the distance from the grafting surface. These results are consistent with the
molecular dynamics simulations of atomistic and coarse-grained model polymers in the
slit [72,73].
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two selected grafting densities (c).

It is difficult to identify regions of anomalous diffusion using only MSD function
because the changes in the exponent α are rather small. Therefore, the exponent α was
calculated as a logarithmic derivative α = d

(
log
(
∆r2(t)

))
/d(log(t)). Figure 6a presents

the dependency of the exponent α on time for σ = 0.3. The deviations from the value α = 1
were found at a time between 101 and 104 (the first minimum) and for considerably longer
times between 104 and 108 (the second minimum). The depth of the first one approaches
the value 0.85 for the highest degree of polymerization and shifts slightly towards longer
times with the increase in DPn. The same behavior was observed for the second minimum,
although the changes in depth were smaller while the shift was considerably larger. To
recognize the reason for the appearance of these two deviations from the normal diffusion,
additional simulations were carried out: for an opposing polymer brush without grafting
surfaces (the ends of chains were pinned and located at a virtual surface) and for a slit
filled with solvent molecules but without polymer chains. The results of these additional
simulations are included in Figure 6a. The exponent α calculated for a slit with solvent
only does not exhibit the first minimum and does exhibit the second one. This behavior
implies that the first minimum relates to the presence of an opposing polymer brush in the
slit, while the second one is apparently caused by the presence of a pair of impenetrable
surfaces. The confirmation of this statement can be found by analysis of the behavior of α
for an analogous polymer system but without surfaces. Here the first minimum is observed
(although the second one is also present but considerably shallowed—grafting sites are still
present and immobile). Minima on the exponent α curves for polymer solutions without
confining surfaces were also found for a time near 103 (these curves, however, were less
complex) [74].

Figure 6b presents the changes in the exponent α with time for various grafting
densities σ. The σ value does not influence the shape of α(t) curves, and the increase in σ
shifts the minima of curves towards longer times. The changes in α depend strongly on the
grafting density: the higher σ is, the deeper the minimum on an α curve is. The depth of
the second minima, i.e., the one caused by the presence of the walls, does not change.
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Long-timescale dynamics of the system is usually characterized by the self-diffusion
coefficient D calculated from the mean squared displacement ∆r2 as D = ∆r2/6t. Values
of the diffusion coefficient were determined in time windows where the diffusion was
Fickian, i.e., where ∆r2 ~ t1. Such regions of MSD were found for all systems under
consideration at the longest times, i.e., at the ends of trajectories. Figure 7 presents the
self-diffusion coefficient D/D0 as a function of the degree of polymerization, normalized by
the value determined for a system containing molecules of solvent only with no polymer
and no surfaces. One can easily identify two regimes of the self-diffusion coefficient
scaling behavior. In both regimes, the ratio D/D0 decreases linearly: for a small degree of
polymerization (DPn ≤ 90), where brushes are mostly separated, D/D0 ~ DPn

−1.40. For
compressed brush systems with a higher degree of polymerization, this dependency was
found considerably stronger: D/D0 ~ DPn

−2.83. One has to remember that the degree
of polymerization is proportional to the polymer concentration according to the formula
Φp = 2n〈DPn〉/

(
2dL2). Therefore, the dependence on the polymer concentration can be

simultaneously studied.
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One could also approximate the changes in the reduced self-diffusion coefficient
by formulas determined from theoretical considerations [75]. Two simple theories have
been chosen. The first was the Mackie–Meares [76]; as one of the obstructive theories
(based on the probability of occupation of neighboring lattice sites), it seems to be the most
appropriate because of the model used in simulations D/D0 = ((1 − Φp)/(1 + Φp))2. The
Yasuda theory [77] was also applied. This theory, based on free volume (an effective free
volume is attributed mainly to solvent molecules), was used because it turned out useful for
polymer systems studied by means of the DLL model [54,74] D/D0 = exp(BΦp/(1 − Φp)),
where B is a constant depending on the free volume. Figure 8 presents the reduced self-
diffusion coefficient D/D0 as a function of polymer concentration Φp and Φp /(1 − Φp)
and the results of the fits to both above-mentioned theories. One can observe that both
fits are quite good (especially for high Φp), but the Yasuda theory gives a slightly better
approximation. It has to be remembered that the opposing polymer brushes studied in
this work, except for the systems characterized by a very high degree of polymerization,
are systems that are not homogeneous with respect to polymer concentration. Therefore,
despite a good fit, the better choice is to describe the changes in the self-diffusion coefficient
by scaling relations as presented above in Figure 7, where differences between the two
types of brushes are clearly visible. The dynamics of solvent in opposing polymer brushes
can also be compared to the diffusion of solvent molecules in other polymer systems
studied within the frame of the DLL model, although one has to remember that those
studies dealt with monodisperse systems [54,74]. In two-dimensional solutions containing
macromolecules with frozen conformations, D/D0 behaves in a different way; i.e., it follows
a modified version of Mackie–Meares and Yasuda theories (the modification was necessary
due to the percolation problem not present here) [57]. In three-dimensional systems, in a
wide range of polymer lengths, the scaling behavior of D/D0 was found, and the scaling
exponent was calculated as 1.34, i.e., slightly lower than that for separated opposing
polymer brushes studied here [74].
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Figure 8. Solvent reduced self-diffusion coefficient D/D0 as a function of the polymer concentration
Φp (top axis) and Φp /(1 − Φp) (bottom axis). The fits to Mackie–Meares and Yasuda theories are
also marked. The case of σ = 0.3.

The influence of the grafting density on the reduced self-diffusion is presented in
Figure 9. The decrease in solvent mobility is strong, and one can describe it as exponential:
D/D0 ~ exp(−σ).
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The dynamics of macromolecules in opposing polymer brush systems is also inter-
esting as the motion of solvent molecules occurs in cooperation with polymer beads. The
motion of the entire macromolecules is restricted due to their grafting, and therefore, the
motion of chain ends, which are the most mobile, was studied. It should be noted that
higher mobility of chain ends (when compared to inner polymer beads) was also found
for free macromolecules in bulk [78,79]. It is shown that the upper part of the grafted
chain relaxes an order of magnitude faster than the part close to the grafting point [42,43].
Figure 10 presents the mean squared displacement of chain ends as a function of time in
a double logarithmic plot. Three different regimes can be distinguished for each degree
of polymerization. In each regime, all chains exhibit the same scaling behavior regardless
the degree of polymerization: the short time regime (below 102), where ∆r2 ~ t0.91; the
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intermediate regime (between 102 and 106), where ∆r2 ~ t0.43; and the long time regime,
where ∆r2 remains constant. The last regime corresponds to a limited motion, which is
obvious as the chains are firmly anchored to the grafting surfaces. Using the same DLL
model for a solution of polymer chains that can freely move (systems with varied chain
lengths and concentrations but monodisperse), a different scaling was found: roughly
∆r2 ~ t1 for short times (<102) and ∆r2 ~ t0.3 (short chains) and t0.4 (long chains) for longer
times (between 102 and 105) [54]. Recent Monte Carlo simulation studies of single brushes
based on the bond fluctuation model and with the grafting density σ = 0.11 showed that
the mean squared displacement scales with time like t0.5 (at longer time) and then flattens
out [80].
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4. Discussion

Dynamics of opposing polymer brushes were studied using a unique simulation
algorithm dynamic lattice liquid (DLL) model based on the cooperative movement concept
and unique hardware Analyzer of Real Complex Systems (ARUZ). DLL is a class of Monte
Carlo simulation algorithm. In this model, cooperative rearrangements of a system have the
form of closed loops of displacements, and this model allows the study of lattice systems
(face-centered cubic lattice in this work) with all lattice sites of the systems occupied by
polymers and solvent molecules. ARUZ is a fully parallel data processing system equipped
with low-latency communication channels, dedicated to the simulation of systems consist-
ing of a large number of elements interacting locally. The polymerization process in which
opposing polymer brush systems were obtained was performed by means of DLL with
realistic reaction parameters. In summary, opposing polymer brushes were simulated with
a variety of enhancements at once, such as large system size, long simulation times, high
grafting density, high polymer concentration, and realistic polymerization using the DLL
algorithm on the state-of-the-art ARUZ hardware.

The main conclusions of this paper are related to the closely connected structural
and dynamic properties of opposing polymer brushes. Main results indicated that the
density profiles of unconstrained and weakly constrained brushes were almost linear
functions of distance (except edges) from the surfaces. This kind of behavior is expected
for polydisperse brushes and therefore justifies the choice of method. The focus was put on
the motion of solvent molecules in such a complex system as studied. The appearance of
anomalous diffusion for all systems studied was shown; what is more, the short- and long-
time diffusion was found to be normal, satisfying Einstein’s law. The mobility of solvent
depended on the distance from the grafting surface and reflected polymer density profiles.
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It was also shown that the long-time self-diffusion coefficient depended strongly on the
degree of polymerization and on the polymer concentration. This dependency was found
more pronounced for brushes consisting of longer chains. The changes in the self-diffusion
coefficient with polymer concentration showed that it can be described by obstructive or
free volume theories and, generally, by simple scaling relations with high scaling exponent.
Based on the mobility of solvent in different layers of the slit, the possibility to capture the
changes in solvent mobility was shown. It can be attributed to the escape of solvent from a
dense polymer system into a more mobile solvent region—this was possible for opposing
polymer brushes with a well-defined gap between them.
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