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Abstract: For the removal of pollutants, a modified TiO2 photocatalyst is attracting attention. Fe-
doped TiO2 nanofibers were prepared through a combination of electrospinning and calcination.
Morphological characterization of the sample was conducted using field-emission scanning electron
and transmission electron microscopy. The crystal structure of each sample was analyzed using
high-resolution transmission electron microscopy, selected area electron diffraction, and Fast Fourier
Transform imaging. The average diameter of the Fe-doped TiO2 nanofibers was measured to be
161.5 nm and that of the pure TiO2 nanofibers was 181.5 nm. The crystal phase when heat treated at
350 ◦C was anatase for TiO2 nanofibers and rutile for Fe-doped TiO2 nanofibers. The crystal phase of
the TiO2 matrix was easily transitioned to rutile by Fe-doping. The photocatalytic performance of
each sample was compared via the photodegradation of methylene blue and acid orange 7 under
ultraviolet and visible light irradiation. In the Fe-doped TiO2 nanofibers, photodegradation rates of
38.3% and 27.9% were measured under UV irradiation and visible light, respectively. Although other
catalysts were not activated, the photodegradation rate in the Fe-doped TiO2 nanofibers was 9.6%
using acid orange 7 and visible light. For improved photocatalytic activity, it is necessary to study
the concentration control of the Fe dopant.

Keywords: Fe-doping; TiO2 nanofibers; electrospinning; photocatalyst; photodegradation

1. Introduction

Since Honda and Fujishima reported photoelectrolysis photoelectrodes without an
external power source in 1972 [1], TiO2 has been drawing substantial attention, and many
studies have been conducted to apply TiO2 to various industrial fields, such as sensors [2–5],
drug delivery systems [6–8], photocatalysts [9–12], and photoelectrodes [13–15]. TiO2 has
many attractive properties; among them, non-toxicity, strong durability, and excellent
chemical stability are regarded as suitable photocatalyst properties for water purification.
Despite these excellent properties of TiO2, some issues must be addressed to ensure its
applicability in industry: electron–hole pair recombination and electromagnetic wave
absorption bands that are too wide. In order to accomplish the reduction–oxidation cycle
that is targeted for applications as a photocatalyst, electrons in the valence band are excited
by absorbing electromagnetic waves that are incident from the outside, and the excited
electrons and holes must then be transferred to the surface of the semiconductor to react
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with the pollution. However, most of the excited electron-hole pairs are recombined in
the transfer process to the surface, and the electrical energy is converted to heat energy.
In this case, electrons and holes cannot contribute to the photocatalytic reaction. Second,
there is the issue of the electromagnetic wave absorption band. The wide bandgap due to
the unique electronic structure of the TiO2 gives strong oxidizing power to photoelectrons,
but at the same time, it increases the light energy required to generate an excited electron–
hole pair.

For this reason, in the case of anatase TiO2 with a bandgap of 3.2 eV, only a short
wavelength no longer than 387.5 nm can be used for the reaction, which means that 95% of
the sunlight incident on the earth cannot be used. Because these factors directly reduce
the efficiency of the photocatalyst, various methods have been proposed to solve these
issues, including elemental doping [16–23], dye sensitization [24–26], and microstructure
control [27–29]. In the case of elemental doping, the dopant acts as a trap for excited
electrons or holes, which delays the recombination of electron–hole pairs. Trap states due
to the dopant energy level effectively separate the electron–hole pairs and their redox
sites. However, at excessively high dopant concentrations, it should be noted that the
photoelectric conversion efficiency may be reduced because of competition with the carrier
transfer process at the surface. At the same time, if an appropriate element is doped,
the band of the wavelength of the required electromagnetic wave can be controlled by
improving the electronic structure. The dopant energy level in the TiO2 band gap expands
the range of usable light energy [30–32]. Since elemental doping is an effective solution
that can address both of the issues mentioned above, it is important to determine the
appropriate element and optimized concentration. Commonly considered appropriate
doping elements are metals [33–36] such as Cu, Fe, Mo, Ni; noble metals [37–39] such as
Au, Ag, Pd; and anions [40–44] such as N, C, B, P, and S.

In addition, studies to optimize photoelectric conversion and transfer efficiency
through morphology and specific surface area control have been conducted extensively,
and various structures and synthesis methods have been suggested. To fabricate vari-
ous TiO2 nanostructures such as nanoparticles, nanorods, nanotubes, nanograins, and
nanowires, some synthesis methods have been considered, such as hydrothermal methods,
sol–gel methods, chemical vapor deposition (CVD), anodization, microwave synthesis, and
electrospinning [45–49]. Furthermore, efficiency can be improved by optimizing the shape
anisotropy and the electrical properties of each microstructure.

Among them, electrospinning is a process using the jet spraying and the stretching of a
polymer solution generated by an electrostatic force and is an effective process to fabricate
one dimensional nanofibers. Although the basic ideas of electrohydrodynamics (EHD) have
been explored since around the 16th century, earnest studies to apply them to microfiber
fabrication have been discussed by researchers such as Williams and Taylor, starting with
the patent of A. Formhals in 1934. Recently, various structures such as homogeneous [50],
core-shell [51], Janus [52], tri-layer core–shell [53], and other complicated [54] nanofibers
can be fabricated based on a basic understanding and process modeling. To use these
various structures effectively, many studies have been conducted such as a biocompatible
drug delivery system with antibacterial activity [55–59]. Additionally, various types of
structures using nanofibers can be fabricated through after-treatment methods such as
calcination [60] and cross-linking [61–63].

In this study, we used an electrospinning process to effectively fabricate TiO2 semicon-
ductor nanofibers. Iron nitrate was added to a typical precursor solution for fabricating
TiO2 nanofibers to dope the Fe element to the nanofibers. We anticipated that the fibrous
nanofibers fabricated using the electrospinning process to improve mobility by limiting the
pathway of the charge carriers to be one-dimensional and by suppressing recombination.
At the same time, we reduced the required cost and time through an integrated fabrication
process and nanostructure doping. The crystal structure and morphology of the calcined
nanofibers were observed using a field emission scanning electron microscope (FE-SEM), a
transmission electron microscope (TEM), and energy dispersive X-ray spectroscopy (EDS).
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A photo-degradation test was conducted using various photocatalysts, methylene blue
aqueous solution, and an ultraviolet light source.

2. Materials and Methods
2.1. Chemicals

The reagents used to prepare the precursor solutions were as follows: titanium tetraiso-
propoxide (TTIP, ≥98.0%, GR, Junsei, Tokyo, Japan), acetyl acetone (ACAC, ≥99.0%, GR,
Junsei, Japan), ethyl alcohol (EtOH, ≥99.5% EP, Daejung, Siheung, Korea), polyvinyl
pyrrolidone (PVP, M.W. 1,300,000, Alfa Aesar, Haverhill, MA, USA), Fe(NO3)2·9H2O (GR,
≥99.0%, Kanto Chemical, Japan), titanium(IV) oxide (P25, ≥ 95.0%, Sigma-Aldrich, St.
Louis, MO, USA), methylene blue ( ≥82.0%, Sigma-Aldrich, St. Louis, MO, USA), and
acid-orange 7(AO7, ≥85.0%, Acros organics, Suwanee, GA, USA).

2.2. Electrospinning Process

First, 10.0 g of PVP was added to 60.0 g of EtOH and was stirred for 24 h using a
magnetic stirrer to prepare a polymer solution. In another beaker, an aqueous solution
of 7.5 g of TTIP, 10.0 g of ACAC, 2.5 g of Fe(NO3)2·9H2O, and 10.0 g of deionized water
was stirred for 4 h. The polymer solution and the aqueous solution were then mixed and
stirred for 2 h to prepare a reddish-brown precursor solution. In order to compare the
photocatalytic activity caused by the Fe-doping, a precursor solution for the pure TiO2
nanofibers was prepared by only removing the Fe(NO3)2·9H2O from the same composition.

The two prepared precursor solutions were loaded into a polypropylene syringe with
a diameter of 15.56 mm and a volume of 12 mL and were then mounted on a syringe
pump. The syringes were connected to a stainless steel adapter and a 23-gauge needle
using polypropylene tubing. We subsequently applied high voltage to the nozzle adapter
using a power supplier and a constant flow rate at the same time to induce jet spinning
from the droplets of the solution to the grounded aluminum foil collector. The applied
electrospinning conditions were as follows: distance between electrodes of 20 cm, an
applied voltage of 20 kV, a flow rate of 1.0 mL/h, room temperature, and humidity less than
40%. The composite nanofibers collected on the aluminum foil during the electrospinning
process were collected every 1 h and were dried at 60 ◦C in a dry oven. The calcination
process was then conducted at 350 ◦C using a box furnace. The temperature ramping speed
was 5 ◦C/min.

2.3. Characterization

The crystal structure and morphology of the calcined nanofibers were analyzed by
a field emission scanning electron microscope (FE-SEM, Inspect F, FEI Korea Co., Ltd.,
Gyeonggi, Korea), a transmission electron microscope (TEM, JEM-2200FS, Jeol Co., Ltd.,
Tokyo, Japan), and energy dispersive X-ray spectroscopy (EDS). In addition, a photodegra-
dation test was conducted using a photocatalyst/methylene blue aqueous solution and
an ultraviolet light source, and the degradation rate was compared using an ultraviolet–
visible spectrophotometer (UV–Vis, G1103A, Agilent Co., Ltd., Santa Clara, CA, USA). To
determine the calcination temperature, Thermogravimetric analysis (TGA) was conducted
using a thermogravimetric analyzer (TGA, Q500, TA instruments, New Castle, DE, USA).

2.4. Photocatalytic Degradation Test

All steps of the photocatalytic degradation tests were conducted in a condition where
the natural sunlight was blocked. Methylene blue, AO7, and distilled water were used
to simulate contaminated water. Since it was necessary to apply the same contamination
concentration of all test samples, 5 mg/L and 20 mg/L of methylene blue and AO7
aqueous solutions, respectively, were prepared in large-capacity bottles. As catalysts
for photodegradation, P25, TiO2 nanofibers, and Fe-doped TiO2 nanofibers were used.
To fabricate the mixture samples, 0.2 g of each catalyst and 20 mL of deionized water
were added to a Pyrex beaker and were stirred for 30 min. Subsequently, 200 mL of
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methylene blue and AO7 aqueous solution were added. The beaker was then wrapped
with aluminum foil to completely block the incident light, and the mixture was stirred for
2 h. A photocatalytic degradation test of each mixture was conducted in a darkroom using
UV (6W, 365 nm) and Vis (500 W, Xenon lamp) light sources for 3 h. During degradation,
the catalyst filtered solution was sampled by using a syringe and a polyvinylidene fluoride
syringe filter (PVDF filter, 0.2 µm, Whatman, Marlborough, MA, USA) every 30 min and
was stored in a cuvette wrapped in aluminum foil. The irradiation distance between the
light source and the sample was fixed at 10 cm, and the rotation speed of the stirrer was
240 rpm.

3. Results and Discussion

To determine the calcination temperature, TGA was conducted. Figure 1 shows the
TGA curves of the TiO2 nanofibers and the Fe-doped TiO2 nanofibers. N2 was used as a
purge gas for analysis, and the ramping speed was 5 ◦C/min. Both samples showed similar
thermal decomposition behavior. Until the temperature in the chamber reached 120 ◦C, the
moisture and the solvents adsorbed on the samples evaporated, and the weight decreased.
Crystallization started at 210 ◦C, and the carbonization and the thermal decomposition of
the PVP started near 350 ◦C, causing rapid weight loss. Since N2 was used as the purge
gas, it showed thermal decomposition behavior and not combustion. The final weights
of the TiO2 and the Fe-doped TiO2 nanofibers were 20.3 wt % and 22.3 wt %, respectively.
The difference was due to the non-volatile components that increased with the addition of
Fe nitrate in the same precursor solution.
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Figure 1. TGA curves of Fe-doped TiO2 nanofibers and TiO2 nanofibers.

Figure 2 shows FE-SEM images obtained from the TiO2 and Fe-doped TiO2 samples.
Figure 2a,b are low and high magnification images of the TiO2 nanofibers, and c and d are
images of the Fe-doped TiO2 nanofibers, respectively. It was confirmed that uniform fibrous
structures were obtained, thus reflecting that the electrospinning process and calcination
were conducted using appropriate conditions in which defects such as cracks or beads did
not form.
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Figure 2. Field-emission scanning electron microscope images of nanofibers: (a) low-magnification
images of the TiO2 nanofiber, (b) high-magnification images of the TiO2 nanofiber, (c) low-
magnification images of the Fe-doped TiO2 nanofiber, and (d) high-magnification images of the
Fe-doped TiO2 nanofiber.

The average diameters of the nanofibers were measured in the obtained FE-SEM
images. Figure 3 presents the diameter histogram of the nanofibers. The average diameters
of the TiO2 and Fe-doped TiO2 nanofibers were measured to be 181.5 nm and 162.5 nm,
respectively. The content of non-volatile components remaining after the calcination was
higher in the Fe-doped TiO2 nanofibers, but the average diameter was lower than that of
the TiO2 nanofibers. We considered that the stretching process was more vigorous because
the dielectric constant of the solution was increased due to the added Fe(NO3)2·9H2O.
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Images of the morphology of a single nanofiber were obtained using TEM. Figure 4a,b
show bright-field images (BF) and high-angle annular dark-field images (HADDF) of the
TiO2 nanofibers, respectively. Figure 4c,d are TEM images of Fe-doped TiO2 nanofibers.
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It can be seen that the inside and surface of the TiO2 nanofiber have a uniform single
phase, but there are many particles of another phase on the Fe-doped TiO2 nanofibers. The
diameters of the particles formed on the Fe-doped TiO2 nanofibers are distributed in the
range of 23–29 nm. The reason for this morphological difference was confirmed in other
analysis results using TEM accessories.
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Figure 5 shows the EDS mapping results of a single nanofiber sample. In both samples,
titanium and oxygen are uniformly distributed throughout the whole nanofiber, but it
can be seen that Fe was mainly located in another phase site that was discontinuously
distributed on the Fe-doped TiO2 nanofiber. This means that the Fe dopant did not diffuse
into the TiO2 lattice as an interstitial or substitutional atom during crystal growth and did
not form a secondary phase. In order to quantify the ratio of each element, an additional
EDS spectrum analysis using FE-SEM was conducted for the Fe-doped TiO2 nanofibers. The
atomic ratios of Ti, O, and Fe were 29.18 at%, 63.45 at%, and 7.37 at%, respectively, which
means that the TiO2 and gamma-ferrite phases were well separated and heterogeneous, as
confirmed in the TEM image.
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Selected area electron diffraction results for each fiber are shown in Figure 6a,b. Both
Figure 6a,b show a ring-type diffraction pattern rather than a circle. This means that both
samples were well crystallized. In the case of the amorphous phase, the pattern is diffused
and shows a circular pattern. Figure 6a shows the diffraction pattern of the TiO2 nanofiber,
and the (101) plane, which has a significant peak of the anatase phase, was identified. On
the other hand, Figure 6b shows the diffraction pattern of the Fe-doped TiO2 nanofiber,
and it was indexed to the rutile phase. In general, when the heat treatment temperature
increased, the anatase phase transitions to rutile and a high-temperature stable phase, but
the calcination temperature of the two samples was the same at 350 ◦C. This result is the
same as in a previous study where Fe doping reduced the high-temperature stability of
TiO2 and prompted the transition to the rutile phase [64].
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Figure 7 shows the high-resolution transmission electron microscopy (HRTEM) images
and the FFT pattern of the secondary phase particles on the Fe-doped TiO2 nanofibers. The
analysis results reveal that the phase of the doped particles is γ-ferrite (austenite) and that
it has a face-centered cubic structure.
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A photodegradation test was conducted to compare the photocatalytic activity of
the TiO2 nanofibers and the Fe-doped TiO2 nanofibers. Figures 8–11 show the UV–Vis
absorbance of various aqueous solutions sampled every 30 min. Figure 7a plots the
absorption spectra of the UV exposed pure methylene blue solution without a photocatalyst,
and b, c, and d plot the spectra of the mixture containing P25, TiO2 nanofibers, and Fe-
doped TiO2 nanofibers, respectively. Figure 9 shows that AO7 is used as a dye instead of
methylene blue, and Figures 10 and 11 show the samples where a Xenon lamp was used as
a light source instead of UV. As shown in the graphs, dye degradation was not observed in
the blank solution, but it was confirmed that the absorbances of the solutions that dispersed
each nanofiber and P25 significantly decreased over time. However, when comparing
the degradation tendency at the wavelengths of 663 nm and 483 nm, corresponding
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with the significant absorption edge of methylene blue and AO7, it can be seen that the
photocatalytic performance of the TiO2 nanofibers in the anatase phase is slightly superior
to that of Fe-doped TiO2 nanofibers with the rutile phase. The photocatalytic degradation
performance was affected by the crystal phase and metal ion doping, and the effect of the
anatase phase was more dominant than the effect of metal ion doping. The photocatalytic
degradation performance of P25 was also observed to be superior to that of the nanofibers
since P25 has a larger surface area than the TiO2 and the Fe-doped TiO2 nanofibers.Polymers 2021, 11, x FOR PEER REVIEW 8 of 13 
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Figure 12 shows the photodegradation rate obtained by the absorbance changes of
various catalysts every 30 min at the absorption edge. As shown in Figures 8–11, there was
no change in the blank sample. In the Fe-doped TiO2 nanofibers, photodegradation rates
of 38.3% and 27.9% were measured under UV irradiation and visible light, respectively. In
both the acid AO7 and the methylene blue, the Fe-doped TiO2 showed lower photodegra-
dation performance than the pure TiO2 photocatalysts, but the difference was decreased
under visible light irradiation. Although other catalysts were not activated, the photodegra-
dation rate in Fe-doped TiO2 nanofibers was 9.6% when using AO7 and visible light. We
considered two reasons for this tendency. The first is the difference in photocatalytic activity
due to the TiO2 crystal structure. As confirmed by the TEM analysis, the phase of the TiO2
matrix in the Fe-doped TiO2 is rutile, and previous studies proved that the rutile phase
has lower photocatalytic performance compared to the anatase phase [65–67]. The second
reason is an excessive dopant concentration. If the concentration of the dopant is too high,
the photocatalytic efficiency can be suppressed because electron trapping competes with
the surface transfer reaction and reduces the sites on the TiO2 surface where the holes
can react with pollution. As seen in Figure 12d, for the case using visible light and acid
orange 7, although other catalysts were not activated, the photodegradation rate in the
Fe-doped TiO2 nanofibers was 9.6%. The band gap narrowed by Fe-doping increased
the photocatalytic performance under visible light. Further research is needed to confirm
the special benefits of the narrow band electron structure of Fe-doped TiO2 nanofibers in
low-energy incident light and azo dyes.
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4. Conclusions

TiO2 is an important material that is being discussed for the removal of organic
pollutants. To solve the low photoelectric conversion efficiency issue, we considered Fe-
doping among various elements. TiO2 and Fe-doped TiO2 nanofibers were fabricated
by an electrospinning process. Fe-doped TiO2 nanofibers were obtained in a single step
by adding a dopant element to a solution in a precursor. The average diameter of the
nanofibers electrospun with the proposed precursor solution composition was measured
to be 181.5 nm for TiO2 and 162.5 nm for Fe-doped TiO2. When heat treated at 350 ◦C,
the crystal phase was anatase for the TiO2 nanofibers and rutile for the Fe-doped TiO2
nanofibers. The Fe-doped TiO2 nanofibers showed lower photocatalytic performance
compared to the TiO2 nanofibers because of the rutile crystal phase and excessive Fe
concentration. The photocatalytic degradation performance was mainly influenced by
the crystal phase and the metal ion doping, and the effect of the anatase phase was more
dominant than the effect of the metal ion doping. The photodegradation rate of 9.6% in
Fe-doped TiO2 nanofibers using visible light suggests a research direction for photocatalytic
materials for environmental applications.
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