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Abstract: Polymer based textile composites have gained much attention in recent years and gradually
transformed the growth of industries especially automobiles, construction, aerospace and composites.
The inclusion of natural polymeric fibres as reinforcement in carbon fibre reinforced composites
manufacturing delineates an economic way, enhances their surface, structural and mechanical
properties by providing better bonding conditions. Almost all textile-based products are associated
with quality, price and consumer’s satisfaction. Therefore, classification of textiles products and
fibre reinforced polymer composites is a challenging task. This paper focuses on the classification of
various problems in textile processes and fibre reinforced polymer composites by artificial neural
networks, genetic algorithm and fuzzy logic. Moreover, their limitations associated with state-of-the-
art processes and some relatively new and sequential classification methods are also proposed and
discussed in detail in this paper.

Keywords: classification; fiber reinforced polymer composites; artificial neural network; fuzzy logic;
Sequential Monte Carlo methods

1. Introduction

Classification of textiles and polymer based nanocomposites by computer added
programs is relatively a new approach that develops the simulations of human brain in
the form of algorithms to solve complex problems. Machine learning is a subcategory of
artificial intelligence that provides the solution of various issues i.e., grading, classification,
defects detection, quality control, prediction and process optimization, through advanced
tools such as image processing, soft computing and computer vision algorithms. The adap-
tation of machine learning in textiles has aroused in recent years [1]. Durable, sustainable
and quality products are produced with the help of machine learning algorithms with min-
imal effort. These algorithms are essential parts of modern artificial intelligence systems
and researchers have been significantly used these systems for the betterment of textiles.
Therefore, machine learning based automatic fabric defects detection system are integrated
in modern textile machines to evaluate fiber grading, yarn quality and fabric performance.

Due to their economic benefits, textiles and polymers based composites have received
tremendous attention and researchers used them in various fields due to their excellent
mechanical, electrical and interfacial properties [2–6]. In terms of current research, the in-
terfacial performance of fibre/resin for composites was observed to be sensitive to the
actual service environment. The potential fibre/resin debonding may occur. In addition,
the fatigue resistance is a key advantage of textile-based composites compared to the steel
materials, that expands the application circle of composites in automobiles, aerospace,
oil extraction industry, civil and building industry [7]. A group of researchers worked
with the interfacial, mechanical and thermal properties of fibre reinforced composites and
reported interesting results [8,9]. Li et al. worked with interfacial shear strength of pul-
truded rod made of carbon/glass. They investigated the effect of hydraulic pressure and
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water immersion on interfacial properties. The results revealed that the hydraulic pressure
had positive impact on the interfacial performance of the carbon/glass composite and
conversely, water immersion reduced the interfacial strength of carbon/glass rod [10]. In a
recent study, Li et al. expanded their work on carbon/glass pultruded rod and investigated
the interfacial, thermal and mechanical properties at elevated temperature. They reported
that at elevated temperature, interfacial shear strength decreased with time for hybrid fibre
reinforced composites. Longer exposure led to more degradation and plasticizing as well as
hydrolysis observed due to the diffusion of water molecules [11]. In another study, Li et al.
worked with the mechanical properties and life service evolution of unidirectional hybrid
carbon/glass pultruded rod under harsh and elevated conditions. The results showed that
fibre/resin debonding occurred under longer exposure and overall mechanical, thermal
and interfacial properties decreased [12].

The use of machine learning in textiles, especially for classification, has shown its
potential exponentially in the current era [13,14]. Zimmerling et al. reported the application
of Gaussian regression algorithm to improve the geometrical shapes of fiber reinforced
textile composites. This method significantly improved the assessment criterion for fibre
reinforced plastics components. Based on the efficiency, they suggested machine learning
as an economical tool than finite element method, for the evaluation of textile processes [15].
In another work, Seçkin et al. reported a production fault in gloves industry. They used
time-series data for the simulation and forecasting of this problem and classified it with
different machine learning algorithms [16]. Ribeiro et al. proposed an automatic method to
predict different properties of woven fabrics based on design and finishing features [17].
Due to the complexities of their micro-structures and boundary conditions, the classification
of overall characteristics of textiles and polymer composites is still a challenging task even
for machine learning. Therefore, a highly efficient and accurate approach is required that
can predict the microscopic structural performance under different geometries. Apart
from the above discussion, hardware utilization and technical issues are two other major
constrains during the application of machine learning in textiles. However, to address
these problems, various machine learning and computer vision-based applications are
reported in the literature as deterministic and non-deterministic models. Mathematical
models, empirical models and computer aided models i.e., finite element method (FEM),
are deterministic models. However, genetic algorithm (GA), artificial neural network
(ANN), chaos theory (CT) and fuzzy logic (FL) are non-deterministic approaches. Figure 1
shows the difference between machine learning approaches and traditional deterministic
engineering models.

In recent years, considerable research efforts have been made to the development
of machine learning tools for classification, prediction and defects detection. Although,
the prediction and defects detection for textiles and polymer composites have been re-
viewed, the comprehensive review on the classification of fiber reinforced polymer com-
posites is still missing. Therefore, our motivation is to provide a detail description about
the used algorithms for fiber reinforced composites. This may help our readers to find
out best possible algorithm for their future research endeavours. We categorized the ap-
plications of machine learning and computer vision algorithms into four classes based
on standard textile manufacturing processes i.e., spinning, weaving, finishing and fiber
reinforced polymer composites. In each of these four classes, we elucidated the recently
reported work for defects detection, identification, classification and prediction by image
segmentation-based approaches, color-based approaches, texture-based defect detection
and by deep learning. In addition, we reviewed the limitations of existing state of the art
methods and proposed a possible future research direction in textile composites using the
sequential Monte Carlo methods.

After the introduction, this paper is organized in a following sequence: Section 2
focuses the utilization of machine learning in spinning, weaving, non-woven and textile
finishing applications. The following Section 3 provides the limitations of widely used
approaches. Section 4 explains the possibilities of future challenges for sequential Monte
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Carlo methods in textiles and polymer-based composites and the final Section 5 summarizes
the paper with few suggestions to overcome the future challenges. Figure 2 explains the
scheme that elucidates the methodology of the proposed paper. The authors believe that
the approach delineates here opens up a new gateway for researchers to choose the best
suitable machine learning tool in order to work with textile substrates and composites.
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Figure 1. Comparison of machine learning approaches with traditional deterministic models.
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2. Classification Based on Textile Processes

The necessity to process raw data and explore valuable information from it has become
essential in every field of science, engineering, business and medicine. In textiles, even
when a simple product e.g., a t-shirt is considered, bulk amount of data is generated from
raw materials, quality parameters and machine settings. The data could be nonlinear and
multivariable depend on the relationship between fiber properties and yarn properties or
between fabric performance and machine settings. Moreover, improvements and innova-
tions in textiles with the introduction of technical textiles have occurred with exceptional
performance expectations at extreme conditions e.g., against sun, cold, impact, knife, bullet
and microorganisms [18,19]. Therefore, the demand for data processing and discovery of
valuable information from this data is continuous in textile industry. Many traditional mod-
els e.g., statistical and mathematical, have been reported in numerous studies to process
textile data. However, these classical models remain incapable of discovering the complex
relationship between the variables. To solve this challenge, machine learning models are
implemented in almost all areas of textile engineering. In textile processes, the trend of
reported literature elucidates that the researchers tried to establish a critical relationships
among essential parameters of fibers, yarns and fabrics. Machine learning algorithms are
robust and powerful tools for modeling and solving complex and nonlinear applications.
In this context, Majumdar published a book on soft computing in textile engineering [20].
This book compiled various research studies based on ANN and FL approaches during
yarn modelling, fabric manufacturing, garments modelling by FL, composites modelling
for quasi-static mechanical properties, viscoelastic behaviour and fatigue behaviour using
ANN, textile quality evaluation using image processing, ANN and FL approaches.

ANN has been widely studied for textile data since last decade and helped the re-
searcher to get better efficiency for fiber classification, defect detection, prediction and
modeling of yarn, fabric, color matching, color separation and their coordinates conver-
sion [21]. Vassiliadis et al. introduced a comprehensive overview of ANN applications
in fabric manufacturing [22]. ANN had been successfully utilised for fibrous properties
(classification of fibers, color grading, selection of cotton bales, identification of control
parameter), yarns parameters (detection of faults, prediction of tensile properties and
shrinkage) and for fabrics properties (defects detection, prediction of thermophysiological,
sensorial and comfort properties, bursting of woven and knitted fabrics).

The literature discussed above provides an overview of machine learning till 2011.
Therefore, we will present a review of recent advanced works in this field. In this section,
we categorized the textile applications using machine learning algorithms into four classes
based on standard textile-based processes i.e., spinning, weaving, finishing and fiber
reinforced polymer composites.

2.1. Classification Based on Yarn’s Production

Yarn is generally considered as a primary element for the manufacturing of high
quality textiles and in recent years, numerous studies were conducted on the classification,
modeling and prediction of essential yarn parameters as given below:

2.1.1. Fibre Maturity

Fibre maturity is an important and significantly crucial parameter especially when the
researchers deal with yarns properties and desire excellent final product. In general, fibre
maturity is considered as a functional and primary building block of any good textile prod-
uct. Therefore, many researcher worked with the prediction of fibre maturity. Farook et al.
proposed that ANN algorithms are excellent prediction tools in order to predict cotton
fibre maturity [23]. They selected various fibre characteristics as an input variables and
analysed fibre maturity as an output variable. The simulation results showed that ANN
predicted cotton fibre maturity was higher when compared with the experimental values.
However, there was no optimal result in this application.
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2.1.2. Yarn Crimp

Malek et al. evaluated the performance of ANN for the prediction of yarn crimp
in woven barrier fabrics [24]. They performed two experiments to predict yarn crimp.
The purpose of both experiments was to predict the crimp in warp yarn and weft yarn
respectively. The input variables were weave style, density of warp and weft yarns, fibre
and filament fineness, shed time and loom speed. However, the only exception in the
second experiment was the replacement of yarn fineness with filament fineness. ANN
results showed good results for the prediction of yarn crimp with the exception of two small
deviations between actual and predicted output. In a different work, Majumdar et al. intro-
duced mathematical, statistical and ANNs models to predict breaking force at elongation of
ring-spun cotton yarns [25]. The inputs for these three models were yarn count and cotton
fiber properties. ANN model provided a better prediction performance compared to the
statistical and mathematical models. Later, they reported the implementation of a hybrid
neuro-fuzzy system for the prediction of yarn strength [26]. The results were compared
with standard ANN and regression models for prediction accuracy. ANN showed better
prediction results than others.

2.1.3. Yarn Types

Before the production of yarn, the prediction of quality parameters is important to
overcome production faults. In an experimental study, Almetwally et al. used ANN and
linear regression for the prediction of core spun yarn strength, elongation and rupture [27].
The results showed that ANN models provided significantly accurate prediction for yarn
strength. Recently, Doran et al. reported the utilization of ANN and support vector
machine (SVM) methods to avoid faulty fabric production [28]. In addition, they used
statistical tools i.e., analysis of variance (ANOVA) and principal component analysis (PCA)
to overcome input dimensions. The test results showed that both ANN and SVM methods
provided effective predictions for yarn quality characteristics. However, SVM showed
slightly better results than ANN for mean absolute percentage error (MAPE) and coefficient
of correlation (R).

2.1.4. Yarn Tenacity

Dashti et al. worked with yarn tenacity through ANN and produced a decision
support system by applying GA [29]. Experimental results showed that ANN offered
an accurate prediction for yarn tenacity with less than 3.5% error. In addition, GA was
applied to obtain optimal input parameters for yarn production. The obtained tenacity was
greater than the desired tenacity, therefore, a reduction in production cost was observed.
The implementation of this strategy was useful to find good input conditions in order to
achieve desired tenacity.

2.1.5. Yarn Strength Utilization

Mishra used ANN models during the production of cotton fabric for the predic-
tion of yarn strength utilization [30]. The selected input parameters were yarn counts,
initial crimps, total number of yarns and yarn strengths in longitudinal and transverse
directions along with the weave float length. The experimental results showed that yarn
strength utilization percentage increased with an increase in yarn number in both directions.
However, a decrease in crimp percentage and float length was observed. Mozafary et al.
proposed a combined approach, where they used K-means algorithm for data clustering
and ANNs for defects detection i.e., yarn unevenness [31]. The feedforward ANN and
Levenberg–Marquardt training function of back propagation were applied in this method
and the effectiveness was demonstrated by a comparative analysis with standard ANN
results. In an experimental study, Malik et al. applied a back propagation ANN to analyse
the prediction efficiency of used model for tensile properties of even and uneven yarns
extracted from polyester-cotton blend [32]. The selected parameters were twist multiplier,
cot hardness and Break draft ratio. The reported results of linear regression and ANN
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for tensile properties were compared with standard methods. El-Geiheini et al. worked
with different types of yarns and used ANN and image processing tools for modeling
and simulation of yarn tenacity and elongation [33]. They reported that the proposed
techniques were suitable for the estimation of various yarn properties with minimum error.
In another study, Erbil et al. used ANN and regression tools for tensile strength prediction
of ternary blended open-end rotor yarns [34]. They applied multiple linear regression
(MLR) and trained ANN algorithm with Levenberg–Marquardt backpropagation function.
Furthermore, they compared both models for prediction efficiency. The results demon-
strated that ANN models gave better prediction output than MLR for both parameters
i.e., breaking strength and elongation at break.

2.1.6. Yarn Twist

Yarn twist i.e., S twist, Z twist etc., is another important and noteworthy parameter in
order to estimate end product’s performance. Therefore, different researcher worked with
this variable and reported interesting results. Azimi et al. used ANN in order to predict
twist type for textured yarns [35]. They investigated the effects of heater temperature,
texturing speed and the effects of twist type on yarns crimp stability for hybrid yarns.
The testing results demonstrated that ANN models were excellent for the prediction of
yarn properties under selected variables.

2.2. Classification Based on Fabric Manufacturing

In this part, we classified the use of machine learning tools into three categories based
on fabric manufacturing methods i.e., weaving, knitted and non-woven.

2.2.1. Weaving

The process of weaving is based on interlacing of yarns in warp and weft directions.
However, with time, textile woven structures have become more and more complex by the
addition of diagonal yarns in interlacing. Therefore, prediction of woven textiles is now a
complex task that requires accumulated empirical knowledge about various parameters
of woven textiles. Some of those variables are listed below where researchers performed
machine learning algorithms to gain better performance and utilization of woven textiles.

Fabric Type

Woven structures are the mostly used structures not only in textile production but
also in composites [36–41]. Ribeiro et al. proposed an automated machine learning method
to predict the physical properties of woven fabrics based on finishing features and textile
design. They investigated nine different properties including pilling, abrasion and elasticity
and reported improved prediction results for all properties with low prediction error. They
applied Cross-Industry Standard Process for Data Mining (CRISP-DM) iterations, where
every iteration was based on the verification of standard input parameters. At CRISP-DM
stage, an automated machine learning (AutoML) algorithm was performed to choose
optimal regression model among six different machine learning algorithms. The results
demonstrated that significantly better output was achieved by the selected codes for
fixed sequence of yarns and fabric finishing treatment [17]. In an experimental study,
Hussain et al. proposed a novel machine learning algorithm depends on transfer learning
and data augmentation in order to recognize and classify the complex patterns of woven
textiles. The texture and pattern of textiles are considered as essential factors to design
and produce high-quality fabrics. The proposed algorithm worked with residual network
through which textures of woven fabric were extracted and auto classified as an end-to-end
manner. They suggested that the reported results would be effective even all of the fabric
properties are altered [42].
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Fabric Pilling, Drapability and Wrinkle Recovery

Fabric pilling, drapability and wrinkle recovery are the aesthetic properties of tex-
tiles and considered as performance indicator of textile fabrics for quality evaluation.
Eldessouki et al. applied adaptive neuro-fuzzy models (ANFIS) for the evaluation of
pilling resistance of woven fabrics. In this proposed approach, they classified the selected
samples on the basis of texture patterns and compared their results with standard method
of pilling resistance for correlation [43]. Xiao et al. predicted cotton-polyester fabric pilling
with ANN (Back-propagation approach) and then used GA for optimization of their results.
The optimized results revealed that GA algorithms were better in terms of root mean square
error (RMSE), MAPE and mean absolute error (MAE) compared to ANN [44]. Drapability is
one of the most important aesthetic properties that plays crucial role in providing graceful
effects to textile fabrics. Drapability depends on experience and skills of humans and is
judged subjectively. It renders the complexities during drape comparisons particularly
when judged by different persons. Taieb et al. used ANN for the prediction of fabric drape
ability under low stress. They reported that the application of ANN for the prediction of
aesthetic properties including drapability is a promising one and is physical factors played
crucial role during the prediction of fabric drape ability [45]. Hussain et al. compared
ANN with adaptive neuro-fuzzy inference system (ANFIS) during the evaluation of fabrics
wrinkle recovery [46]. They found that for both types of algorithms, the input conditions
suitable for better wrinkle recovery were linear densities of both warp and weft sides.
However, the suitable output variables were crease recovery angles of warp and weft yarns.
The results demonstrated that simulation performed by ANN produced slightly better
results than ANFIS with significant accuracy percentage. However, ANFIS process was
more useful while drawing surface plots among variables. ANN algorithms do not have
this feature.

Fabric Comfort Properties

Comfort evaluation is a noteworthy parameter in terms of fabric overall perfor-
mance [47–51]. Majority of machine learning algorithms were applied on fabric’s ther-
mophysiological and sensorial comfort. Malik et al. used ANN algorithm to predict
woven fabrics thermophysiological property i.e., air permeability with respect to fabric
construction, raw materials involved during production and process variables [52]. ANN
algorithm was trained with feedforward neural function under a hybrid back propagation
method composed of Bayesian regularization and Levenberg-Marquardt function. Sim-
ulation results showed that the proposed model provided promising results on test data
with lower MAE. In addition, Malik et al. employed another ANN algorithm to show a
relationship between loom parameters, used material and construction of fabric in terms
of porosity, mean pore flow, mean pore size with air permeability [53]. The experimental
result showed that ANN algorithms were excellent for the prediction of comfort properties
with minimal error. Wong et al. applied a hybrid approach that combined ANN and
fuzzy-logic for overall prediction of clothing comfort by considering physical properties as
input variables [54]. Simulation results provided maximum correlation coefficient.

Optimization

Optimization of process variables in order to reduce cost and improve production
efficiency is another important factor in textiles. Therefore, many studies were carried
out to investigate the process of optimization. Xu et al. combined differential evolution
and Kriging surrogate algorithms to study the optimization of enzyme washing and
production cost incurred on indigo dyed cotton [55]. They selected Taguchi L16 orthogonal
array algorithm for optimization and applied it in their study. temperature of bath and
concentration of enzymes were chosen as input variables and enzymatic washing as output
response. Kriging model was used to analyse the relationship between variables and results
revealed that the applied method was significantly efficient for the optimization of overall
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cost and can be further utilized in the analysis of mean square error, absolute error and
relative error.

2.2.2. Knitting

Knitting is another important production method in which prediction and mod-
elling of knitting parameters are significantly complex tasks due to diversified variables
i.e., knitted structures, knitting machine variables and selected yarn attributes etc. Several
researchers have used different soft computing and machine learning algorithms to predict
knitted fabric’s comfort properties, spirality, pilling, bursting strength as well as other
aesthetic and physical properties.

Fabric Type and Pilling Behaviour

Pilling is a serious fault in textile production especially in knit wear. Therefore,
machine learning is a useful tool to forecast pilling behaviour of knitted fabric. Unal et al.
selected single jersey knitted fabrics for the evaluation of air permeability and combined
ANN algorithm with regression methods for the prediction of bursting strength of knit
structures [56]. Implementation of results showed that both methods were able to predict
the properties of knitted fabrics. However, ANN had a slightly positive edge when
used for prediction. Yang et al. identified knitted fabric pilling behaviour by modifying
ANN into deep principle components analysis-based neural networks (DPCANNs) [57].
In DPCANNs, principle components automatically tracked down the fabric initial and
after pilling test properties and then neural network was applied to evaluate pilling grades.
The obtained results revealed that DPCANNs had above average classification efficiency
for pilling behaviour of knitted fabric. Another important work using ANN was performed
by Kayseri et al. where pilling tendency was predicted by selecting fabric cover factor
as an input parameter [58]. They observed that by changing cover factor, fabric pilling
was controlled to a greater extent. In this study, they concluded that pilling behaviour
was the outcome of pilling grade, mean pilling height as well as covered pilling area.
They reported that used algorithms had very good prediction power in determining fabric
pilling behaviour.

Prediction of Comfort Properties

Fayla et al. applied ANN algorithm on knitted fabrics to predict thermal conductiv-
ity [59]. They selected yarn conductivity, porosity, fabric weight and air permeability as
input conditions. The results revealed that ANN algorithm predicted the thermal con-
ductivity with significantly high correlation coefficient. Majumdar used ANN to predict
the thermal conductivity of cotton, bamboo and their blended yarns. The input variables
were bamboo fiber proportion, linear density of yarn, thickness of fabric and areal density.
The correlation coefficient of this study very high [60]. Knanat et al. used ANN for the
prediction of thermal resistance of wet knitted fabrics [61]. Here, they used two different
ANN networks for the prediction of thermal resistance. In the first network, the input
variables were moisture content, yarn, fiber and fabric parameters. However, in the second
network, input variables were yarn, fiber and fabric parameters, and the output response
was thermal resistance under varying moisture level. The results from both networks
showed efficient prediction of thermal resistance. Mitra et al. used ANN for the prediction
of thermal resistance of handloomed cotton fabric [62]. The input fabric parameters were
picks per inch (PPI), ends per inch (EPI), weft and warp count. The results revealed that
used ANN algorithm achieved good prediction efficiency for thermal resistance under low
MAE values. In addition, EPI, warp count and weft count were major contributors for the
evaluation of thermal resistance.

2.2.3. Nonwoven

Machine learning algorithms have gained tremendous importance during the last few
years to enhance productivity of nonwoven textiles by predicting various important param-
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eters i.e., dimensional change, pilling behaviour and optimization of variables. Wang et al.
measured the pilling of nonwoven fabrics using wavelet analysis [63]. The results demon-
strated that wavelet analysis was quite similar to traditional method for pilling evaluation.
Kalkanci et al. estimated fabric shrinkage by applying ANN algorithm inside relaxation
methods [64]. Thermofixing, sanforizing, drying and washing were important processes
applied on fabrics during finishing . Dimensional changes were predicted at the end of fin-
ishing processes by ANN. Two-layer feedforward perceptron function was used for ANN
algorithm to evaluate the width of dimensional change. The experimental results showed
that ANN gave better prediction results for dimensional change. Abhijit et al. applied a
combination of GA and ANN as a hybrid algorithm to predict the comfort performance
and the range of ultraviolet protection factor (UPF) [65]. ANN was applied as a prediction
tool and GA was utilised as an optimization tool. For experimental purpose, a set of four
samples were selected for the evaluation of functional properties. The proposed ANN–GA
method was carried out until the required results were achieved. The results achieved by
this method were in good agreement with the standard methods.

2.3. Classification Based on Finishing Processes
2.3.1. Handle Modifications (Softness and Stiffness)

Modification of textile end product by applying softeners and stiffeners is necessary to
improve the aesthetic properties. The selection of these materials attracts the scientists and
researchers to build and train special machine learning algorithms, special mathematical
models and soft computing tools. Farooq et al. used ANN to predict the shade change of
dyed knitted fabrics after finishing application [66]. The inputs were the shade percentage,
dye color and finishing concentrations. The output was delta values with respect to
standard samples. Simulations results showed that ANN provided high prediction accuracy
for shade change that occurred during finishing with minimal value of error between actual
and predicted values.

2.3.2. Functional Coatings

Malik et al. used ANN for the prediction of antimicrobial performance of chitosan/AgCl-
TiO2 coated fabrics. The input variables were curing time and concentration of colloids [67].
Samples were developed with different blends of selected colloid under different curing
time. Feedforward ANN was trained under a hybrid combination of Bayesian regularization
and Levenberg Marqaurdt algorithms. The testing results had an acceptable MAE during
network training. Furferi et al. introduced a novel ANN algorithm for the prediction of
coating process on textile fabrics [68]. Testing results demonstrated the significance of ANN
model for coating mechanism. Ni et al. proposed a novel online algorithm that detected
and predicted the coating thickness of textiles by hyperspectral images [69]. The proposed
algorithm was based on two different optimization modules i.e., the first module was called
extreme learning machine (ELM) classifier whereas the second one was called a group of
stacked autoencoders. The lateral module was designed to take data from hyperspectral
images. However, ELM module optimized by a new optimizer known as grey wolf optimizer
(GWO). GWO was used to determine the number of neurons and weights to get more accuracy
during classification. The results explained that online detection performance significantly
improved with a combination of VW-SAET with GWO-ELM that provided 95.58% efficiency.

2.3.3. Fabric Defects and Detection

Fabrics are occasionally the end product of any textile manufacturing process and
fabric defects inspection is very important in terms of post manufacturing processes
i.e., marketing, merchandising and branding. In a simple term, Fabric defects detection
is a crucial process applied to control the quality of textile production. Machine learning
algorithms have also played their role in this detection/inspection process. The most
famous machine learning tools used in defects detection are ANN and image processing
algorithms that have been applied for defects detection and grading of woven, knitted and
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nonwoven textiles. Hanbay et al. presented a literature review about the methods used
for the detection of fabric defects and explained that detection methods had several types
including structural, hybrid, spectral, model-based and statistical [70]. Czimmermann et al.
presented a detail review based on automatically detection of fabric faults and fabric
defect [71]. Rasheed et al. reported a comprehensive study on faults detection methods
of textiles [72]. The widely used detection methods are based on image segmentation,
color coordinates, frequency domain, texture-based, image morphology operations and
deep learning. Eldessouki et al. applied a defects detection method composed of a hybrid
combination of sepctral (Fourier transform) and (spatial) statistical functions that detected
the fabric defects from images [73]. They applied component analysis to overcome input
characteristics of selected datasets. The use of PCA in this application increased the
classification rate. Liu et al. proposed an algorithm composed of low-rank decomposition
and multi-scale convolution neural networks for defects detection [74]. Convolution
neural networks were applied to extract multiple characteristics of defects from images
for the improvement of image characterization ability to deal with complex textures.
However, low-rank decomposition tool was established to analyze matrix characteristics
for background (low-rank part) and for (salient defects). Furthermore, the salient defects
map produced by sparse matrix was further diversified under threshold to localize the
defected area of fabric. The test results showed that extracted features by neural network
were accurate enough to analyse fabric texture than traditional standard methods i.e., local
binary pattern and histogram of the oriented gradient.

Many other researchers utilised machine learning algorithms for defects detection.
Sezer et al. applied independent component analysis (ICA) for defects detection at block
level using a sample image [75]. They reported that this method provided satisfactory
results for plain weave fabrics. However, for twill and texture weave patterns, this method
is not generalized yet. Yapi et al. proposed redundant contourlet transform (RCT) method
for defects detection [76]. A finite mixture of generalized Gaussians (MoGG) was used
for modeling RCT coefficients that constituted statistical signatures to differentiate the
defected fabric from defect-free fabric. The proposed approach was based on three steps:
(1) detection of basic pattern for image decomposition and signature calculation, (2) dis-
crimination between defected and defect-free fabric through Bayes classifier (BC) based
on labeled fabric samples, and (3) detection of defects during image inspection by testing
local patches. Experimental results revealed that the used approach achieved good results
compared to ICA, local binary patterns (LBPs) and slope difference distribution (SDD).
Li et al. proposed Fisher criterion-based deep learning algorithm for defects detection of
patterned fabrics [77]. A Fisher criterion-based stacked denoising method was used for
fabric images to classify into defective and defect free categories. The experimental results
showed that the accuracy of proposed method was excellent for patterned fabrics and
more complex jacquard warp-knitted fabric. Han et al. proposed the stacked convolutional
autoencoders for defect detection [78]. The autoencoders were trained through synthetic
defected data and non-defected data by using expert-based knowledge of defect character-
istics, where, input was used as a defected image produced artificially and output was the
corresponding clean image. Jeffrey Kuo et al. detected the following four defects in embroi-
dery textile patterns i.e., stitch missing, joint defect, yarn floating knit and unregistered
defect recognition [79]. The results demonstrated that the applied procedure was more
effective than back propagation for detects detection as it took less time to train the net-
work. Huang et al. used machine learning tools and image analysis for pilling assessment
of fleece [80]. The applied methods were discrete Fourier transform, Gaussian filtering
and Daubechies wavelet, for the extraction of important features of image information
i.e., pilling area, pilling density and number of pilling points. ANN and SVM were used to
classify the textile grade. Experimental results showed that the use of Fourier-Gaussian
method improved the efficiency of classification for ANN and SVM. Table 1 elucidates a
comparison of related work for defects detection in textile processes.
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Table 1. A comparison of previously performed work for defects detection in textile processes.

Proposed Models Purposes Methods Major Findings Authors

Gabor filters and
pulse coupled
neural network
(PCNN)

Fabric defect detec-
tion for of warp
knitting fabrics

Enhanced the image contrast
using Gabor filters and they
applied PCNN for segmenta-
tion purpose

Results of the experiments have
demonstrated that the proposed
PCNN with Gabor has higher de-
tection accuracy (98.6%)

Li et al. [81]

Convolutional
neural networks
(CNN)

Automatic quality
control for fiber
placement manu-
facturing

A pixel-by-pixel classification
has been created for the de-
fects of the whole part scan

Simulation results showed that
the proposed strategy failed to
achieve satisfactory results due to
their small training dataset (con-
front with over-fit problem)

Sacco et al. [82]

Fuzzy ARTMAP
neural network

Evaluation of yarn
surface qualities
based on the
extracted features

Wavelet texture analy-
sis, attention-driven fault
detection, and statistical mea-
surement are used to extract
the characteristic features
of yarn surface appearance
from images. and a fuzzy
ARTMAP neural network
is employed to classify and
grade yarn surface quali-
ties based on the extracted
features.

The experimental results showed
that the fuzzy ARTMAP achieved
superior results to classify yarn
surfaces compared to ANN and
SVM

Liang et al. [83]

CNN Fabric defect detec-
tion

Mobile-Unet is used to im-
prove the performance of
CNN

Experimental results showed that
the detection speed and the seg-
mentation accuracy in the pro-
posed method achieve powerful
performance compared to SegNet
and U-net

Jing et al. [84]

CNN Fabric defect detec-
tion and classifica-
tion system

(1) Prototyped an advanced
image acquiring model using
National Instruments NI Vi-
sion; (2) Train the CNN us-
ing standard textile fabrics. (3)
Testing fabrics are examined
by the trained CNN.

The experiment work produced
good accuracy in defect detection
compared to the Bayesian classi-
fier and SVM methods. In addi-
tion, it provided better processing
and classification on defective pat-
tern variation in patterned fabric

Jeyaraj et al. [85]

CNN Fabric texture de-
fects classification

Compressive sampling theo-
rem is used to compress and
augment the data in small
sample sizes

The classification results of the
proposed model achieved higher
accuracy 97.9%compared to KNN,
ANN and SVM

Wei et al. [86]

Deep convolu-
tional generative
adversarial net-
work

Localize the sur-
face defects for wo-
ven fabrics

A new encoder block was
used to reconstruct query im-
age with normal texture and
no defect

The experiments results showed
that the proposed approach is not
sensitive to image blurring or illu-
mination changes. In addition, it
has high flexibility and high detec-
tion accuracy for different types of
texture structures and defects.

Hu et al. [87]

2.4. Classification Based on Textile Polymer Composites

Composites are the most promising class of versatile and durable materials of modern
age. Machine learning algorithms reduce time, cost and effort to search optimal conditions
for selected variables of composite structures. Therefore, machine learning is an essential
and effective tool for a comprehensive evaluation of composites. Machine learning is used
to solve complex numerical and applied problems in composites. In general, the fabrication
of fiber reinforced composites is considered more challenging than other anisotropic struc-
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tures. Sapuan et al. presented a book on ANN applications for composite materials [88].
They reported the use of ANN for numerous tasks such as defects detection in compos-
ites and polymeric structures, localization of carbon fiber–reinforced plastics and perspex
plates, prediction of mechanical behavior, aging cycles evaluation, fatigue life prediction
and prediction of composites life under loading. Muzel et al. presented a comprehensive
review on the applications of finite element method for composite materials, failure criteria,
material properties and types of elements in aeronautics, aerospace, naval, automotive,
energy, sports, civil, manufacturing and electronics [89]. Dixit et al. introduced a review on
modelling approaches for the prediction of mechanical properties of textile based compos-
ites using finite element method [90]. However, there are many important parameters need
to investigate for the development of new algorithms for composite materials. Therefore,
In this study, we will discuss these variables in detail and propose new methods to develop
machine learning algorithms for textiles and composite structures. Schimmack et al. used
Extended Kalman Filter (EKF) algorithm as a virtual sensor for temperature detection,
composed of metal-polymer fibre based heater structure [91]. The main purpose of this
algorithm was to control temperature in case of overheating or in any other emergency
condition. The results revealed the accuracy of proposed approach. In another study,
Gonzalez et al. used CNN for the identification of flow disturbances of dissimilar materials
in composites production [92]. Specifically, CNN was applied to detect the position, size
and permeability of any embedded material on the surface of mould. In CNN, the region of
dissimilar material was selected as an input variable in order to recognise disturbance flow.
Altarazi et al. applied multiple algorithms at a time to predict and classify tensile strength
of polymeric films of different compositions. The used algorithms were stochastic gradient
descent (SGD), ANN, k-nearest neighbors (kNN), decision tree (DT), regression analysis,
SVM, random forest (RF), logistic regression (LoR) and AdaBoost (AB) [93]. Experimental
results demonstrated that SVM algorithm showed better prediction results. In addition,
the results revealed that the classification ability of used algorithms was excellent for
sorting films into conforming and non-conforming parts. Balcioglu et al. compared finite
element analysis with machine learning algorithms (DT, KNN, RF, SVR) for fracture analy-
sis of polymer composites [94]. Fracture behavior of laminated composites reinforced with
pure carbon, glass and carbon/glass composition were tested and compared with standard
samples. The RF algorithm showed the best result with lower MSE values compared to
other algorithms.

2.4.1. Fiber Reinforced Polymer Composites

The use of natural fibers as a reinforcement in polymer composites has gained com-
mercial success in terms of durable, economical and environmentally friendly materials.
Khan et al. investigated the mechanical properties of cross-ply laminated fibre-reinforced
polymer composites. They developed model for the prediction of mechanical properties
using ANN [95]. The composite samples were developed by altering glass fibre layers with
carbon fibre layers and polyphenylene sulphide with high-density polyethylene. The fibers
were used as reinforcement and polyphenylene sulphide was used as a polymer matrix.
Mechanical properties i.e., hardness, flexural modulus, impact and rupture strength were
investigated for both directions. The input variables for ANN model were material type,
matrix layers, composition and number of reinforcement. Simulation results showed that
ANN predicted the mechanical properties with low MAE. In a study, Boon et al. provided a
literature review on recent advances in optimization and design of fiber-reinforced polymer
composites [96]. They stated that the best approach to provide accurate results was deep
learning (DL). He et al. proposed a delamination detection approach for the detection of lo-
cation, size and interfacial bonding of delamination in fiber-reinforced polymer composites.
This method was based on frequency changes in multiple modes [97]. They employed a
combination of different algorithms i.e., support vector machine, extreme learning machine
and back propagation neural network for the detection of delamination parameters. Experi-
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mental results showed that SVM algorithms provided excellent prediction and classification
performance as compared to other two algorithms.

Carbon fiber reinforced polymer composites (CFRP) are the most durable and promis-
ing modern age composite materials. By applying machine learning algorithms, researchers
significantly reduced cost, efforts and time to determine optimal design points and process
variables to develop CFRP structures. Mathematical modeling together with machine
learning algorithms provide comprehensive analysis of CFRP structures. Matsuzaki et al.
proposed an approach for state estimation and material properties of thermoset CFRP by
using data assimilation [98]. Thermosetting simulation based on a non-linear state-space
model that utilise ensemble Kalman filter (EnKF) for the estimation of state using data as-
similation. This method estimated the degree of curing and the distribution of temperature
model with thermal conductivity distribution. Simulation results showed that EnKF was
successful in the estimation of the state of thermal conductivity distribution and model
parameters. However, the estimation of thermal conductivity in complex distributions is
still a challenging task. After the effectiveness of EnKF to estimate various CFRP thermoset
molding attributes, they applied EnKF for the estimation of internal temperature during
curing [99]. In this application, they selected three samples with altered thermal conductiv-
ity. The experimental results validated the efficiency of this approach using these types
of specimens. Figure 3 shows a typical problem-solving method under machine learning
algorithms validated for numerous types of fiber reinforced polymer composites including
CFRP, glass fiber reinforced polymer composites (GFRP), basalt fiber reinforced polymer
composites (BFRP) and aramid fiber reinforced polymer composites (AFRP).

Nanomechanical PropertiesSurface Chemistry
Establish 
Structure
-Property
Relations

Machine Learning

New dataDatabase

Classification

Oxidative 
functionalization

Polymer sizing 
functionalization

Carbon nanomaterials 
functionalization

Descriptor 
matrix

Reinforcement 
learning

Model 
deployment

Figure 3. Summary of machine learning procedure validated for fiber reinforced polymer composites
including CFRP, GFRP, BFRP and AFRP etc. [100].

Gonzalez introduced different mathematical models to detect nonlinear flexural de-
formation of CFRP based on stiffness level in compression and polymer matrices under
different strength [101]. The study further presented modeling of different properties of
fiber reinforced composite beams [102]. The proposed mathematical model described
nonlinear elastic three-point bending of isotropic and reinforced beams under stiffness
and strength levels. The obtained results revealed that nonlinear properties of reinforced
materials and polymer matrices carefully investigated when designing real structures.
Zhang et al. predicted the delaminations through Gaussian process regression (GPR) algo-
rithm for CFRP composites during drilling [103]. Taguchi and GPR approaches explained
that more data set were required for the extraction of optimal variables from fewer experi-
mental trials. Konstantopoulos et al. used nanoindentation mapping data with machine
learning algorithms to identify interfacial reinforcement [100]. Normalization and k-means
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clustering were applied to process data by filtering out from epoxy matrix. The used
processs was trained by ANN, support vector machines and classification trees. The in-
trinsic modifications at the interface of CFRP proved that machine learning algorithms
effectively patterned data and best fit can be obtained through SVM. Qi et al. employed
the decision tree (regression tree) model to establish a relationship between variables
properties and macroscopic variables of composite materials [104]. Here, representative
volume element (RVE) algorithms for single-layer and multi-layer CFRP were established
by a cross-scale FEM and periodic boundary conditions were loaded in order to verified
the obtained results. Table 2 illustrates a comparison of related work in fiber reinforced
polymer composites.

Table 2. Comparative study of related work in fiber reinforced polymer composites.

Proposed Models Purposes Methods Major Findings Authors

Deep neural net-
work (DNN) with
finite-element
method

Estimation of the
stress distributions
of the aorta

DNN model was constructed
and trained, where the input is
the results obtained by finite-
element analysis method and the
output was the aortic wall stress
distributions

Simulations results showed that the
proposed model was able to predict
the stress distributions with lower er-
ror and accurate surrogate of finite-
element analysis for stress analysis

Liang et al. [105]

Logical analysis of
data (LAD)

Process control tech-
nique applied to the
routing process for
CFRP

Monitoring and evaluating the
quality of the machined parts in
CFRP by controlling some ma-
chining features and parameters

Experimental work showed that the
proposed LAD outperformed ANN
in both accuracy of controlling and
monitoring variables

Shaban et al. [106]

Neural network re-
gression

Damage location de-
tection of the CFRP
composite plate

Process the signals obtained by
acoustic emission sensors in
CFRP composite

Experiments are applied on the com-
posite structure showed that the pro-
posed approach provided a good re-
sult in the estimation of localization
of damage signals comparing to the
actual sources

Zhao et al. [107]

ANN Prediction of damage
progression and fa-
tigue life in laser in-
duced graphene in-
terlayered fiberglass
composites

Investigation of the potential
of exploiting the piezoresis-
tive properties of laser induced
graphene interlayered fiberglass
composites

Simulation results showed that
piezoresistive laser induced
graphene interlayers provided
high prediction accuracy of fatigue
life in multifunctional composite
structures

Nasser et al. [108]

ANN, SVM and ex-
treme learning ma-
chine

Assessment of de-
lamination damage
in fiber-reinforced
polymer composite
beams

Machine learning algorithms
have been adopted as inverse al-
gorithms to evaluate the delami-
nation parameters

Experimental results demonstrated
that the SVM provided the best pre-
diction accuracy compared to ANN
and extreme learning machine algo-
rithms for delamination damage in
fiber-reinforced polymer composites

He et al. [97]

Generative kernel
principal component
thermography and
spectral normal-
ized generative
adversarial network

Defect detection
in carbon fiber re-
inforced polymer
composites

Extraction of nonlinear features
from thermographic data and
producing a number of informa-
tive thermographic data to im-
prove the defect detection

Testing results showed that the pro-
posed approach improved the detec-
tion accuracy of subsurface defects in
CFRP

Liu et al. [109]

Bayesian regularized
neural network

Weld quality classifi-
cation for ultrasonic
welding of CFRP

Proposing a feature selection
methodology that combines new
clustering overlap analysis with
Fisher’s ratio to improve the clas-
sification results

Simulations results in this applica-
tion showed that the Bayesian reg-
ularized neural network have higher
robustness and classification accu-
racy compared to SVM and kNN

Sun et al. [110]

2.4.2. Prediction and Estimation of Reinforced Fibrous Material

Schimmack et al. applied a prediction approach based on wavelet for defects detection
of any variable in a fiber reinforced polymer composite [111]. The applied algorithm
was based on variance estimation for the local Lipschitz constant of any received signal
over time. In addition, a modified recursive least squares (RLS) approach was applied to
evaluated the various attributes of conductive multifilament fibers used as reinforcement
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during production process. The results proposed that RLS algorithms were useful for the
estimation of time-varying sinusoidal disturbances as well as for inductance. Lui et al.
developed a new strategy to predict the initial failure strength criterion of woven fabric
reinforced composites based on micromechanical model by modifying deep learning neural
network (DNN) and mechanics of structure genome (MSG) [112]. MGS is used to perform
initial failure analysis of a square pack microscale model that trained the samples to detect
yarn failure criterion. The effectiveness of this strategy was confirmed by testing yarns
of mesoscale plain weave fabrics and fiber reinforced composite materials to compute
the initial failure strength constants. Soman et al. used a novel algorithm based on
Kalman Filter (KF) for load estimation in beam-like structures under complex loading [113].
Simulation results using experimental data showed that the used algorithm is efficient for
classification and monitoring strains in continuous welded rails. In addition, Soman et al.
used Kalman filter based neutral axis (NA) tracking algorithm for damage detection in
composites structures under varying axial loading [114]. The proposed scheme was applied
on a composite beam instrumented with fiber optic strain sensors. The change in neutral
axis location is utilized to detect delamination in beams. Simulations results showed
that the proposed formulation of KF for NA tracking provided more powerful use of NA
location in various applications. Hallal et al. introduced a review on analytical modeling
of elastic properties of textile composites [115]. Balokas et al. proposed FEM based
multiscale prediction algorithm combined with ANN for the prediction of elastic properties
of textile composites under different sources of aleatory uncertainty [116]. The results of
sensitivity analysis showed that the proposed algorithm provided good prediction results
for elastic yarn properties. Jiang et al. proposed an approach to predict elastic modulus
of fiber braided composites with uncertainties using vibration test data [117]. Reference
FEM was used for simulation of uncertain elastic parameters that reflected the dynamic
characteristics of a braided composites. Statistical analysis of uncertain parameters revealed
that uncertainties in elastic modulus can be identified by using modal data.

3. Limitations of the Proposed Techniques

The textile industry is benefited from machine learning tools by using them for
different applications like prediction, classification, performance simulation, structural
features modelling and image analysis etc. Table 3 summarizes mostly used machine
learning techniques by various researcher in textile based applications.

Table 3. Techniques used in textiles and fiber reinforced polymer composites.

Classes Techniques Applications

Yarn manufacturing ANN, FL, GA and SVM Prediction properties

Fabric manufacturing DL, ANN, FL, DE, GA,
SVM, DT, K-nearst, KNN,
RF and SVR

Prediction, classification
and recognition, optimiza-
tion, identification and
estimation

Finishing processes ANN and image processing
analysis

Prediction, defect detection

Textile based composites ANN, DL, KF, EKF, EnKF,
FEA, DT, KNN, RT and SVR

Prediction, defect detection,
control, classification, esti-
mation, tracking

In general, textile processes are mostly non-linear in nature. Therefore, it is difficult to
obtain analytic models for the technical design of fabrics due to the difficulties and com-
plex structure imposed by the raw materials. Therefore, most researchers applied ANN
in textiles during the confrontation nonlinear and multiparameter problems, without an
analytical solution. Furthermore, the use of ANN in textile data prediction, detection,
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identification and classification problems covers fabrics, fibers, yarns, color, wet processing
and garments. In addition, ANN has shown its potential as a successful tool for the pre-
diction of different textiles, fiber reinforced composites and in the evaluation of structural
properties of polymer composites. The most common ANN type used in textile industry is
multilayer perceptron that represents a class of feedforward ANN. A feedforward network
consists of single hidden layer and sigmoid activation function is used extensively to solve
textile processing problems. However, the limitations of ANN are: it is not applicable
outside the data range for which it is trained. In simple, the durability of ANN is limited
to the selected range of data. In addition, ANN cannot answer the relationship between
input and output variables i.e., ANN cannot predict why the selected input variables result
in a significant increase or decrease in output variables and vice versa. Textile processes
parameters prediction in a hybrid situation is a complex task for ANN because of highly
variable nature of natural fibers, spinning processes, functional materials and fabric end
use requirements. The shortcoming of ANN is the implicit nature of ANN models. Rather
than developing an explicit analytic expression i.e., linear or nonlinear, of input and output
variables, ANN processes the variables in order to gain iterative knowledge and store
it in the system. In such a case, ANN subsequently simulates the system and predicts
the results.

Fuzzy logic has been applied in various fields of textiles including the prediction of
melt-spun yarn count and tensile strength of fibers, classification of colored cotton into
different classes, automatic recognition of fabric weave pattern and intelligent diagnosis
system for fabric inspection. However, the use of fuzzy logic in a highly complex system
may become an obstacle to the verification of system reliability. In addition, validation
and verification of a fuzzy knowledge-based system need extensive testing with hardware.
Genetic algorithms are widely used to solve various problems in textile processing right
from fiber production to garment design and manufacturing. However, the major limita-
tions of GA are: it cannot guarantee to find an optimal solution and it is time consuming.
In addition, the solution quality deteriorates with the increase of the dimension of the
problem. The neuro-fuzzy hybrid model was applied in several cases for the prediction
of fiber, yarn and fabric properties. The prediction reliability of this hybrid model had
outperformed the conventional multiple regression model and the ANN model. Super-
vised learning techniques such as SVM, SVR, DT, k-nearst, KNN and RT were used for
classification, identification and prediction properties. However, the training for these
algorithms requires a lot of computation time. Recently, deep learning has been used in
some textile applications and has shown its performance in identification, defect detection
and prediction. Like every method, DL has some limitations. It requires large training data
to provide better performance than other methods. However, it has high computational
cost to train complex data models.

Kalman filter, ensemble Kalman filter, extended Kalman filter were used to estimate
and track the state of materials and their properties in fiber reinforced polymer composites.
Kalman filter provides optimal solution only when the state is linear with Gaussian model.
For nonlinear and non Gaussian state-space models, optimal estimation problems do not
typically admit analytic solutions. Therefore, a numerical method is needed to approximate
the state as EKF, EnKF and PFs. EKF relies on the linearization of nonlinear state and
observations, and this may result in an erroneous estimation of the state, and in a highly
nonlinear case, the filter may diverge. EnKF works better with the Gaussian model, and the
accuracy of its estimation depends on number of samples. These algorithms are not effective
when the model is highly non-Gaussian and/or nonlinear. The particle filters (PFs), also
called Sequential Monte Carlo (SMC), are able to proceed better in these situations. PFs is a
sequential Monte Carlo method to estimate the posterior density of the state in a sequential
manner, and does not make any assumptions about the linearity of the system model [118].
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4. Future Challenges

The main reason of machine learning algorithms shortcoming is to not fully utilization
of valuable and persistent information about the dynamics and physiology of system.
In majority of cases, the model structure of textile composites is related to physical informa-
tion that may not incorporated explicitly into machine learning algorithms. Physiologically
stable models, in contrast, for textiles and composites carry all available information re-
lated to system and underlying properties, can be developed using state-space framework.
In general, state-space hidden Markov models allow extremely flexible frameworks for
simulation and modeling of discrete time data. In a linear system with additive Gaussian
noise, an optimal estimation is provided using the Kalman filter [119]. However, the textile
application state-space models are highly nonlinear and may be non-Gaussian.

Sequential Monte Carlo (SMC) is a famous and reliable class of numerical methods
to evaluate optimal designs related problems in nonlinear non-Gaussian systems [118].
SMC is a powerful sampling tool that works with a set of random weighted samples in
order to predict the optimal solution. These samples are technically known as particles
that are utilized during the approximation of state density and statistics of interest [118].
Given enough particles, the SMC will always perform better than the EKF or EnKF, albeit
at the expense of computational requirements [119,120]. In addition, it provides the SMC
converges almost to the optimal solution [121]. Figure 4 illustrates a general schematic
layout of state estimation with data assimilation using SMC.

Numerical 
simulation

Simulation values, 
i.e., state variables

Measurement
Sensor

Data assimilation
Particle filters

State 
estimation

Figure 4. A general schematic layout of the state estimation method with data assimilation.

4.1. Classical Sequential Monte Carlo

We consider the following constrained discrete state-space model, where model repre-
sentation consists of a dynamical process that captures temporal evolution of system state.
As a result, the measurement model explains the relationship between the system state and
the system output.

xk+1 = fk(xk) + uk, (1)

yk = hk(xk) + vk, (2)

where xk is the state transition vector and yk is the measurement vector. fk and hk are
possibly nonlinear state transition and measurement functions, respectively. uk and vk are
the process and measurement zero-mean white noise sequences with known probability
density functions (pdfs) Qk and Rk, respectively.

In the Bayesian framework, the optimal inference of the state xk using the measure-
ment history y1:k = [y1, . . . , yk] relies on the posterior density p(xk|y1:k). Using Bayes’
rule, the posterior density can be computed recursively from the following prediction and
update steps:

p(xk|y1:k−1) =
∫

p(xk−1|y1:k−1) p(xk|xk−1) dxk−1, (3)
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p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)∫

p(yk|xk) p(xk|y1:k−1) dxk
. (4)

In fact, the Equations (3) and (4) represent only a conceptual solution in the nonlinear
case, because the integrals defined are intractable.

Sequential Monte Carlo approximate the posterior density of the unknown state using
a set of N particles and their associated weights {x(i)k , w(i)

k }
N
i=1:

pN(xk|y1:k) =
N

∑
i=1

w(i)
k δ(xk − x(i)k ), (5)

where δ represents the dirac delta function. In the ideal case, the particles required to
be generated from the true posterior p(xk|y1:k), which is unknown. Thereby, another
distribution named proposal distribution q(xk|xk−1, yk) is used to generate the particles [118].

The importance weight of each particle x(i)k is computed using:

w̃(i)
k = w(i)

k−1

p(yk|x
(i)
k )p(x(i)k |x

(i)
k−1)

q(x(i)k |x
(i)
k−1, yk)

, (6)

where the normalized weights are given by w(i)
k = w̃(i)

k /
N
∑

j=1
w(j)

k .

The conditional mean estimate of the state is then given by:

x̂k = E[xk|y1:k] ≈
N

∑
i=1

w(i)
k x(i)k . (7)

The weights of the particles may perish and thus require resampling [118]. The par-
ticles are resampled according to their weights, i.e., removing particles with very small
weights and duplicating particles with large weights. Thus, equal weights ( 1

N ) are assigned
to all selected N particles. The detailed steps of sequential Monte Carlo are presented in
Algorithm 1.

Algorithm 1 Classical sequential Monte Carlo

Initialization
for i = 1, 2, · · · , N do

Generate x(i)0 ∼ N (x(j)
0 , Rk).

Compute the initial weights using Equation (6) and normalize.
end for
Estimation
for k = 1, 2, · · · , T do

for i = 1, 2, · · · , N do
Generate sample x(i)k from the system dynamics model (1).

Compute weight using: w̃(i)
k = w̃(i)

k−1 p(yk|x
(i)
k ).

end for

Normalize particle weights w(i)
k = w̃(i)

k /
N
∑

i=1
w̃(i)

k .

Resample {x(i)k , 1
N }N

i=1.

Compute the weighted mean x̂k =
N
∑

i=1

1
N x(i)k .

end for
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4.2. Constrained Sequential Monte Carlo

Due to physical laws, kinematic constraints, mathematical properties such as target
speed restrictions and road networks, technological limitations, geometric considerations,
material balance, bounds on actuators and plants and maximum transmission capacity,
various dynamical systems are limited within restricted regions [122–124]. Generally, these
constraints may not indulged in state-space model without a major increase to avoid
model complexities [119,124–126]. Nevertheless, it is not straightforward to take into
account the physiological and modeling constraints on the state with SMC, due to the
complex nature of computations in SMC. The current trend in constrained sequential
Monte Carlo simply imposes the constraints on all particles of the SMC. These approaches
are: (1) The acceptance/rejection approach, which enforces the constraints by simply
rejecting the particles violating them [127,128]; (2) Constrained importance distribution,
which imposes the constraints on all particles or equivalently sample from a constrained
importance distribution [129–133]. The issue of how to impose the constraints -onto prior
particles (particles before resampling), posterior particles (particles after resampling) or the
estimated unconstrained conditional mean estimate- remains still open [129,134]. But these
approach underlies the fundamental assumption that constraints on the conditional mean
estimate (given in Equation (9)) can be effectively substituted by the same constraints on
all particles. However, this is not true in general. It has been referred to these approaches
as Point-wise Density Truncation (PoDeT) methods [135]. It was recently shown that such
schemes result in incorrect estimate or irrelevant constraints altogether [135,136].

We consider a general constraint of the form [135,136]:

ak ≤ φk(x̂k) ≤ bk, (8)

φk indicates the constraint function at time k. It is important to affirm that the constraint
must only be satisfied by the state estimate provided by the conditional mean, defined
as follows:

ak ≤ φk(x̂k) = φk(E[xk|Yk]) ≈ φk

(
N

∑
i=1

w(i)
k x(i)k

)
≤ bk. (9)

Recently, Amor et al. derived the optimal bounds of PoDeT [135]. They revealed
that error estimation was bounded by the area of state posterior density that had not
included constraining interval. Specifically, if most of the density lies within the interval,
i.e., the density is well-localized in the constraining interval, then the PoDeT estimation
error will be small. However, if a high probability region lies outside of the interval,
i.e., the density is not well-localized in the constraining interval, then the PoDeT estimation
error will be large [135]. Therefore, Amor et al. proposed a new algorithm referred
as “Inductive Mean Density Truncation” (IMeDeT), which inductively samples particles
that are guaranteed to satisfy the constraint on the mean of the unknown state [137].
The details the steps of IMeDeT algorithm are presented in Algorithm 2. They evaluated
the robustness of the proposed algorithm on the dynamic brain source localization problem
using EEG data. In addition, Amor et al. introduced a novel constrained particle filter
algorithm called as “mean density truncation” (MiND) and established its convergence
properties [136,138]. MiND is based on the principle of minimal perturbation strategy
such that the constrained posterior density is “close”to the unconstrained posterior density.
Specifically, they imposed the constraint on the mean of the unknown state by perturbing
the unconstrained posterior density using only one particle. The details the steps of MiND
algorithm are introduced in Algorithm 3. To assess the performance of the proposed
algorithm, they applied MiND to solve the problem of movement identification for forearm
prosthetic control using the non-negative synergy activation coefficients. The proposed
algorithm provided an accurate result with error rates significantly lower than the state-of-
the-art in the literature.

Many real-world applications in textile engineering and polymer composites [139–141],
may take benefits from this research, i.e., constrained state estimation for nonlinear and
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non-Gaussian dynamical systems. The main objective of this paper is to emphasize the use of
sequential Monte Carlo methods as well as their constrained formulation (IMeDeT and MiND)
for the development and modelling of many applications in textile engineering based on,
prediction, estimation, controlling, defect detection (See examples in Figure 5), identification
and classification (See example in Figure 6) etc.

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3)

(c1) (c2)

Figure 5. Examples of: Defective fabric samples with different patterned textures (from a1–a5).
Different types of defects in cotton fabric (from b1–b3). Defect with polymer composite (c1,c2).

Algorithm 2 Inductive Mean Density Truncation (IMeDeT)

Initialization
Denote by Ck the constraint region::Ck = {xk : ak ≤ x̂k ≤ bk}.
for j = 1, 2, · · · , N do

Generate x(j)
0 ∼ N (x(j)

0 , Rk).
Compute the initial weights using Equation (6) and normalize.

end for
Unconstrained estimation
for k = 1, 2, . . . , T do

for j = 1, 2, . . . , N do
Generate sample x(i)k from the system dynamics model (1).

Calculate the weights w(j)
k of x(j)

k using Equation (6); then , normalize the weights.
Constrained estimation
for i=1,2,. . . ,j do

if
j

∑
i=1

w(i)
k x(i)k ∈ Ck then

Go to the next step.
else

Find a particle x(j)
k such that

N
∑

i=1
w(i)

k x(i)k ∈ Ck.

end if
end for

end for

Compute the constrained weighted mean x̂k =
N
∑

i=1
w(i)

k x(i)k .

end for
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Samples of plain weave

Samples of plain weave

Samples of satin weave

Figure 6. Example of identification and classification fabrics weave samples based on patterns.

Algorithm 3 Mean Density Truncation (MiND)

Initialization
The same as initializing IMeDeT.
for k = 1, 2, · · · , T do

Unconstrained estimation
for j = 1, 2, · · · , N do

Generate sample x(j)
k from the system dynamics model (1).

Compute weight using Equation (6).
end for

Normalize particle weights w(i)
k = w̃(i)

k /
N
∑

j=1
w̃(j)

k .

Resample {x(i)k , 1
N }N

i=1.

Compute the weighted mean x̂k =
N
∑

i=1

1
N x(i)k .

Constrained estimation
if x̂k 6∈ Ck then

Remove the furthest particle x(i)k .

Add a new particle xN
k using ak ≤ 1

N ∑N−1
i=1 x(i)k + 1

N x(N)
k ≤ bk and a′k ≤ x(N)

k ≤ b′k
where a′k = Nak −∑N−1

i=1 x(i)k and b′k = Nbk −∑N−1
i=1 x(i)k .

Compute the constrained weighted mean x̂k =
N
∑

i=1

1
N x(i)k .

end if
end for

5. Future Direction and Summary

This study focuses on machine learning classification methods specifically designed
for textiles and polymer composites. It elucidates how classification methods are applied in
fiber reinforced composites to deal with problems. Based on discussed literature, this study
clearly explains that machine learning classification receives significant consideration in
textiles and composites industries. SVM and ANN are widely used classification methods
as they provide better prediction accuracy. In addition, this study provides the classification
of carbon fiber reinforced composites and the inclusion of polymeric fibers in composites
formation. It elaborates recently used advanced machine learning algorithms for textile
processes and carbon fiber reinforced composites. It provides critical and in-depth infor-
mation regarding the algorithms applied during yarn production, fabric manufacturing
and textile finishing processes. Drawbacks and limitations of each method are discussed
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in detail. This study proposes gateway and opens new avenues not only for researcher
community but also for the readership of the journal. In addition, we suggest the use of
sequential Monte Carlo methods, i.e., particle filters for control, monitoring, prediction,
and identification, in textiles and composites.

For future work, some novel algorithms e.g., golden eagle optimiser are suggested to
study the performance of fiber reinforced polymer composites, besides the classification
method. Golden eagle optimiser is a recent method and only one or two studies have
applied it so far. This can be beneficial to discover complex relationships and useful
patterns between textiles and fiber reinforced polymer composites.

In textiles and composites industries, researchers mostly used single classifier. How-
ever, combining multiple algorithms may provide a more accurate and semantic vision
for the classification of textile processes. Therefore, researchers should start to use hybrid
models in order to achieve better results.
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16. Seçkin, M.; Çağdaş Seçkin, A.; Coşkun, A. Production fault simulation and forecasting from time series data with machine
learning in glove textile industry. J. Eng. Fibers Fabr. 2019, 14, 1558925019883462. [CrossRef]

17. Ribeiro, R.; Pilastri, A.; Moura, C.; Rodrigues, F.; Rocha, R.; Morgado, J.; Cortez, P. Predicting Physical Properties of Woven Fabrics
via Automated Machine Learning and Textile Design and Finishing Features. In Artificial Intelligence Applications and Innovations;
Maglogiannis, I., Iliadis, L., Pimenidis, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 244–255._21.
[CrossRef]

18. Noman, M.T.; Petru, M.; Louda, P.; Kejzlar, P. Woven Textiles Coated with Zinc Oxide Nanoparticles and Their Thermophysiolog-
ical Comfort Properties. J. Nat. Fibers 2021, 1–13. [CrossRef]

19. Noman, M.T.; Amor, N.; Petru, M.; Mahmood, A.; Kejzlar, P. Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface
Activation of Polymeric Fibres. Polymers 2021, 13, 1227. [CrossRef] [PubMed]

20. Majumdar, A. Soft Computing in Textile Engineering; Woodhead Publishing: Sawston, UK, 2011; pp. i–iii. [CrossRef]
21. Mohammad, A.T.; Mahboubeh, M. Artificial Neural Network Prosperities in Textile Applications. In Artificial Neural Networks

Industrial and Control Engineering Applications; Suzuki, K., Ed.; IntechOpen: Rijeka, Croatia, 2011; pp. 35–64. [CrossRef]
22. Vassiliadis, S.; Rangoussi, M.; Cay, A.; Provatidis, C. Artificial Neural Networks and Their Applications in the Engineering of

Fabrics. In Woven Fabric Engineering; Dubrovski, P.D., Ed.; Intechopen: London, UK, 2010; pp. 111–134. [CrossRef]
23. Farooq, A.; Sarwar, M.I.; Ashraf, M.A.; Iqbal, D.; Hussain, A.; Malik, S. Predicting Cotton Fibre Maturity by Using Artificial

Neural Network. Autex Res. J. 2018, 18, 429–433. [CrossRef]
24. Malik, S.A.; Gereke, T.; Farooq, A.; Aibibu, D.; Cherif, C. Prediction of yarn crimp in PES multifilament woven barrier fabrics

using artificial neural network. J. Text. Inst. 2018, 109, 942–951. [CrossRef]
25. Majumdar, P.K.; Majumdar, A. Predicting the Breaking Elongation of Ring Spun Cotton Yarns Using Mathematical, Statistical,

and Artificial Neural Network Models. Text. Res. J. 2004, 74, 652–655. [CrossRef]
26. Majumdar, A.; Majumdar, P.K.; Sarkar, B. Application of an adaptive neuro-fuzzy system for the prediction of cotton yarn

strength from HVI fibre properties. J. Text. Inst. 2005, 96, 55–60. [CrossRef]
27. Almetwally, A.A.; Idrees, H.M.; Hebeish, A.A. Predicting the tensile properties of cotton/spandex core-spun yarns using artificial

neural network and linear regression models. J. Text. Inst. 2014, 105, 1221–1229. [CrossRef]
28. Doran, E.C.; Sahin, C. The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and

support vector machines. Text. Res. J. 2020, 90, 1558–1580. [CrossRef]
29. Dashti, M.; Derhami, V.; Ekhtiyari, E. Yarn tenacity modeling using artificial neural networks and development of a decision

support system based on genetic algorithms. J. AI Data Min. 2014, 2, 73–78. [CrossRef]
30. Mishra, S. Prediction of Yarn Strength Utilization in Cotton Woven Fabrics using Artificial Neural Network. J. Inst. Eng. Ser. E

2015, 96, 151–157. [CrossRef]
31. Mozafary, V.; Payvandy, P. Application of data mining technique in predicting worsted spun yarn quality. J. Text. Inst. 2014,

105, 100–108. [CrossRef]
32. Malik, S.A.; Farooq, A.; Gereke, T.; Cherif, C. Prediction of Blended Yarn Evenness and Tensile Properties by Using Artificial

Neural Network and Multiple Linear Regression. Autex Res. J. 2016, 16, 43–50. [CrossRef]
33. El-Geiheini, A.; ElKateb, S.; Abd-Elhamied, M.R. Yarn Tensile Properties Modeling Using Artificial Intelligence. Alex. Eng. J.

2020, 59, 4435–4440. [CrossRef]
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