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Abstract: Biofabrication using well-matched cell/materials systems provides unprecedented oppor-
tunities for dealing with human health issues where disease or injury overtake the body’s native
regenerative abilities. Such opportunities can be enhanced through the development of biomaterials
with cues that appropriately influence embedded cells into forming functional tissues and organs.
In this context, biomaterials’ reliance on rigid biofabrication techniques needs to support the incor-
poration of a hierarchical mimicry of local and bulk biological cues that mimic the key functional
components of native extracellular matrix. Advances in synthetic self-assembling peptide biomateri-
als promise to produce reproducible mimics of tissue-specific structures and may go some way in
overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has
demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication
technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling
peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal,
muscle, cancer and stem cell tissue engineering.

Keywords: biomaterials; biofabrication; bioinks; peptides

1. Introduction

Evolution has equipped the body with an incredible capacity to heal injured and
diseased tissues [1,2]. However, when the volume and complexity of damage overcomes
endogenous repair mechanisms, healthy tissue regeneration often fails [3,4]. There is
a clinical need for improved tissue replacement techniques, as severe tissue loss leads
to functional limitations and negatively impacts quality of life [5–7]. Biofabrication is
recognised as an emerging pathway for the effective regeneration of diseased or injured
human tissues [8,9], relying on both technological and material scientific advances to
develop appropriate scaffolds and bioinks. The development of bioinks and biofabrication
strategies aims to support the repair of tissues or, more ambitiously, provide life-saving
lab-made functional organs or tissues for implantation.

Organs in the body are organised in a three-dimensional (3D) hierarchical man-
ner [10–12]. Biofabricated constructs should aim to mimic these 3D cellular interactions
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that ultimately affect functional activity [13–21]. The field of biofabrication aims to replicate
the native hierarchical tissue and organ structure by placing biomaterials and cells precisely
into a 3D space, creating living constructs [22–30]. These 3D models of native organ struc-
tures can be captured from magnetic resonance imaging (MRI), computed tomography
(CT) or designed in computer-aided design (CAD) programs and translated to control bio-
fabrication patterning [9]. The accuracy of the fabricated design depends on the resolution
of biofabrication technologies and amenable bioinks. Current biofabrication technolo-
gies include inkjet printing [31], laser-assisted printing [32,33], extrusion printing [34,35],
molding [36] and freeform fabrication [37]. As well as advances in biofabrication [9], devel-
opment of more sophisticated bioreactors [38], vascularisation [39] and innervation [40]
strategies, and further progress into enhanced bioinks is required [41]. Biofabrication poses
significant challenges for translating existing biomaterials into bioinks [42]. For example,
bioinks for extrusion bioprinting require material properties, such as a high viscosity, shear
recovery and rapid stabilisation [43,44]. In tandem, bioinks should present extracellular
matrix (ECM) mimetic cues to promote the desired cellular behaviours [13,45–47]. There is
a paucity of bioinks that meet all of these criteria. The lack of bioinks that are amenable
to biofabrication, preserve cellular integrity during the bioprinting process and present
controlled ECM-mimetic cues—combined with the need to address issues surrounding
vascularisation and innervation—is limiting the research field.

The native ECM is a highly hydrated self-assembling hierarchical scaffold, comprised
of tissue-specific molecules, including structural and functional proteins and polysac-
charides (e.g., collagen, elastin, fibronectin, laminin and glycosaminoglycans) of differ-
ent sizes and shapes as well as soluble signalling molecules [48,49]. The ECM scaffold
provides tissue-specific structural and functional properties [50], established to provide
primary points of interaction that drive cellular migration, differentiation and proliferation—
essential behaviours for tissue engineering [13,45–47]. These cell-scaffold interactions are
thought to be a combination of signals from the scaffold’s mechanical properties [51–54],
structure [55,56], and bioactivity [57,58]. Together, these tissue-specific mechanical, struc-
tural and bioactive signals make up an ‘extracellular niche’ that can influence cell be-
haviour [50]. Significant progress has been made to translate the knowledge of native
tissues’ structural and functional properties to lab-made scaffolds [59–61]. Controlled
scaffold cues have been shown to influence and drive cell behaviour towards functioning
engineered tissues [25–30]. This demonstrates the importance of controllable and engi-
neered extracellular cues; without access to reproducible materials, it is challenging to fully
control cell–scaffold interactions and manufacture quality-controlled matrices for tissue
and organ engineering.

Historically, lab-made scaffolds have been synthesised from modified proteins or
long-chain polysaccharides [62–64]. However, protein materials sourced from animals
suffer from batch-to-batch inconsistency and xenogeneic protein transfer issues, limiting
translation to clinical settings [65–67]. Inconsistencies in cell-scaffold interactions and
biofabrication outcomes undermine the use of natural protein and polysaccharide materials
for tissue engineering. While methods are being developed to screen material batches for
variation outside tolerances [68,69], advances in synthetic material design have created
consistent but somewhat underutilised materials in the biofabrication field [70].

The regulatory approval of biofabricated organs remains of utmost importance for
clinical translation. Appropriate guidelines for approval remains an ongoing discussion,
however is likely to include the reporting of manufacturing tolerances [71]. Approval is
a lengthy and resource-heavy task that can be alleviated by using innately reproducible
materials, reducing variability in the product. To design tissue-specific ECM-niches, the
ideal biomaterial for biofabrication is engineered for cellular outcomes, with mechanical,
structural and bioactive properties presented in a controlled manner [45,72,73]. Advances
in synthetic biomaterial design have allowed researchers to design bespoke synthetic ma-
terials, such as bicyclic-RGD-modified polyethylene glycol, (PEG) with the presentation
of ECM-niche cues that are integrin selective [74]. Although significant progress has been
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made using highly reproducible materials such as PEG [75], another synthetic material
class, synthetic self-assembling peptide hydrogels, have already demonstrated several im-
proved beneficial properties: bioresorbable, biodegradable, and biocompatible [76–78]. The
following reviews on synthetic biomaterials provide a broader overview of the field [70,79].

Progress into biomaterial molecular modelling and design principles may improve the
clinical translation of materials by predicting outcomes without significant labour-intensive
bench time. Molecular modelling [80–84], design principles [85–91] and predictive gelation
models [90] of synthetic peptide materials are being increasingly reported, indicating a fu-
ture ramp-up of high-throughput peptide biomaterial discovery. Synthetic self-assembling
peptide (SAP) hydrogels are peptide sequences that self-assemble via supramolecular inter-
actions to spontaneously immobilise fluid, creating a highly hydrated scaffold [92]. These
SAP materials have been designed to mimic the native ECM structure, function and self-
assembly mechanisms [93–95]. Synthetic peptide materials give rise to complex biomimetic
structures with bioactivity, resulting in controlled cell-scaffold interactions [96,97]. Fur-
thermore, recent reports have demonstrated the translation of synthetic SAP biomaterials
into bioinks [80–82,98–105]. This demonstrates the potential of synthetic SAP design for
biofabrication of organs and tissues, and ultimately clinical translation (Figure 1).
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Figure 1. The road to biofabrication with peptide-based materials involves the discovery of self-assembling peptides that
form hydrogels with ECM-mimetic properties. The materials undertake assessment to determine biocompatibility with a
range of cell types as seen here with cortical neurons. Furthermore, the adaptation of hydrogel mechanical properties and
the development of unique biofabrication strategies for peptide–biomaterials are developed, enabling high shape fidelity
and the precise deposition of biocompatible peptide–biomaterials. The emergence of cell laden peptide-biomaterials which
can be biofabricated demonstrates the successful translation of peptide materials to the biofabrication of tissues. Images
adapted with permission from Rauf et al. 2021 CC BY-NC 3.0 published by RCS [80], Susapto et al. 2021 Copyright ACS [81]
and Sather et al. 2021 Copyright Wiley-VCH [82].

In this review, we provide a commentary on the recent progress of adapting synthetic
peptide materials as effective biomaterials and the mechanistic approaches that have been
taken to ensure their development in the biofabrication landscape. This review highlights
synthetic peptide materials that recapitulate key features of the ECM, paving the way to
the biofabrication of tissue-engineered organs and future clinical translation.

2. A Brief History of Peptide Hydrogels as Biomaterials

Proteins and peptides in the body serve as the foundation for structures such as the
cellular cytoskeleton, ECM components such as collagen, and the cell-membrane integrins
that mediate molecular recognition between cells and the ECM [106,107]. The serendipitous
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discovery in 1995 that the synthetic peptide Fmoc-LD (containing amino acids leucine
and aspartic acid and capped with a Fmoc-group) self-assembled into nanofibres and
further immobilised surrounding fluid to form a hydrogel network [108], has spurred the
development of a range of synthetic peptide hydrogel systems. Several of these peptide
systems, including Fmoc-FF [109], have been found to be cytocompatible and able to
support the culture of a range of cell types. Cytocompatibility, and also biocompatibility,
of peptide hydrogels was to be expected as peptides and the bonds between them are
known to cells and to the body. As seen in the ECM, collagen assembles into fibres
(Figure 2) and contains bioactive sites (such as RGD). Adapting to the designable nature of
peptide sequences, researchers have varied peptide sequences towards the presentation
of biomimetic structures and bioactive sites (e.g., RGD), resulting in the formulation of
designed biomaterials. [96,110]

2.1. Structural Protein Mimics

The native ECM contains proteins such as collagen and elastin, which provide struc-
tural and functional cues to resident cells. However, many sources of natural protein
biomaterials are animal-derived [65–67]. Synthetic peptide biomaterials have made signifi-
cant progress in mimicking the structural and functional cues of native proteins and may
provide an alternative to many naturally derived proteins [111,112].

Collagen is a major component of ECM architecture and plays an integral role in cell
attachment. Collagen-mimetic synthetic peptide hydrogels have demonstrated features
of native collagen such as α-helical structure [87,113–121] (Figure 2) and degradation by
collagenase enzymes [114]. Further, collagen-mimetic hydrogels have been designed to
represent more specified ECM-niches by the inclusion of specific binding motifs. Bioac-
tive modification (RGDS motif) [122] and the ability to support several niche cell types,
including neural PC12 [122], 3T3 fibroblasts [122], and murine embryonic neural stem
cells [123], have been reported. Collagen-mimetic hydrogels have been shown to work as a
hemostat [115] for drug-release [124], and have demonstrated a pro-healing macrophage
profile after 28 days post-implantation [125]. These findings reveal the potential of collagen-
mimetic synthetic SAP biomaterials for diverse tissue applications.

Native elastin-mimetic peptides also have the potential to contribute to the mechanical
properties of synthetic hydrogels. Native elastin lends elasticity to the ECM via insoluble
elastin fibres, comprised of β-turns. To synthetically mimic elastin, elastin-like polypep-
tides (ELPs) have been developed [126]. ELP materials have proven to be biocompatible,
biodegradable, non-immunogenic and can be produced with a high yield [127]. Moreover,
these materials maintain the growth of several cell types and tissue explants, including
chondrocytes [128], dorsal root ganglia [129], cochlea corti [130], and embryonic stem-cell-
derived cardiomyocytes [131]. Of particular interest is a study reported by Chang et al.
in 2015, where alternating peptide sequences of elastin-like and bioactive fibronectin-like
(RGD) motifs formed both a bioactive and elastic hydrogel [130]. This demonstrated the
potential of ELPs to maintain diverse cell-types in culture, to modify biomaterials to present
ECM-niche properties and the versatility of synthetic SAPs to mimic natural proteins.
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Figure 2. (A) Type I collagen assembly in which the peptide chains (shown in red, blue and green),
consisting of ~1000 amino acids, form triple helices ~100 nm in length and the blunt-ended nanofibres
(shown in grey) assemble via the staggered lateral packing of the triple helices. The hydrogel pictured
represents rat-tail collagen. (B) Self-assembly of collagen mimetic peptides, in which the peptides
consist of 36 amino acids (shown in red, blue and green), form a triple helix staggered with a
length of 10 nm and the nanofibres (shown in grey), and result from triple helical elongation, as
well as from lateral packing. The hydrogel depicted is the synthetic peptide (Pro-Lys-Gly)4(Pro-
Hyp-Gly)4(Asp-Hyp-Gly)4. (C–E) Transmission electron microscopy (TEM) images of collagen-like
nanofibres taken at ×40,000. (F,G) Scanning electron microscopy (SEM) images of critical-point
dried hydrogel with a peptide concentration of 1.0% by weight that shows the interconnected fibrous
structure responsible for the gel forming properties at ×3100 (F) and ×30,000 (G). Adapted with
permission from O’Leary et al. 2011 Copyright Nature publishing [114].

2.2. Modified Peptide Materials

Synthetic peptide materials are compatible with existing material modification tech-
niques aimed at improving the tissue-specificity of the final material [96,132–134]. Syn-
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thetic peptide materials have demonstrated the ability to be mechanically, structurally,
and bioactively modified to mimic tissue-specific scaffold features [111,135,136]. The
ability to manipulate the physical and mechanical properties of synthetic SAP hydro-
gels by altering peptide sequences or assembly conditions is important for versatility
in bioengineering applications. Approaches to vary the mechanical properties of syn-
thetic protein networks relies on the formation of covalent crosslinks, and increases in
polymer concentration or control of assembly [110,134,137–140]. Hydrogelation of SAPs
is crucial to create a mimic of the highly hydrated and bioactive ECM scaffold. Sig-
nificant progress has been achieved in developing a range of gelating synthetic SAPs
including MAX-peptide [141–145], F-peptide [146–149], Y9-peptide [150,151], RAD16-
peptide [78,152–157], EAK-peptide [158,159], Fmoc-peptide [96,97,110,160–165] and pep-
tide amphiphiles (PA) [166–169].

MAX1 and MAX8 are examples of β-hairpin SAPs that are biocompatible and have
demonstrated support of osteoblasts [170]. In comparison, F-peptide, RAD16 and EAK16
form β-sheet containing hydrogels, which have also demonstrated biocompatibility. F-peptide
has been modified for the presentation of ECM-niche bioactive RGD motifs [148,149]. This
method allows for the independent control of stiffness and density of RGD motifs, and
enables the growth of human umbilical-vein endothelial cells (HUVECS) and human mes-
enchymal stem cells (hMSCs) [148,149]. RAD16, also known commercially as Puramatrix,
has also demonstrated ECM-niche design ability [157]. By introducing fibroin peptide
sequences, the mechanical stiffness of the resulting hydrogels could be increased [157].
Further, RAD16 has shown the ability to deliver osteogenic bioactives, significantly pro-
moting proliferation and the cellular expression of osteogenic differentiation markers [156].
EAK16-peptide, similar to F- and RAD16- peptides, was able to be modified for an ECM-
niche design. Conjugation with bioactive motifs (representing fibronectin, laminin and
vitronectin) allowed the attachment of neural cells and neurite development [158]. This
demonstrates the broad range of peptide biomaterials that have been developed. The
biomaterials are shown to be highly hydrated, bioactive scaffolds with the ability to be
designed for ECM-niches to support a wide range of cell types.

The Y9-peptide, Fmoc-peptides and peptide amphiphiles demonstrate a range of
β-sheet, random coil and α-helical structures in their nanofibrous materials along with
amenability to tune bioactive motifs. In particular, Y9 has been modified with the RGDS
motif conferring greater bioactivity to the hydrogels [150,151]. Fmoc-peptides have also
been developed to include a range of bioactive sequences for the improved mimicry of the
bioactive ECM-niche. Motifs including RGD and RGDS [96,110,161–163,165], IKVAV and
YIGSR [97,163–165,171], and GFFGER [165] have been incorporated into Fmoc-peptides to
mimic the key motifs in fibronectin, laminin and collagen, respectively, and promote cell
attachment (Figure 3). Peptide amphiphiles have also been modified with the laminin or
fibronectin motifs, IKVAV [167] or RGD [169], respectively. Furthermore, these SAPs have
demonstrated ability to support a range of cell-types in culture. The modified Y9-peptide
supported PC12 and fibroblast cell growth [150,151]. Fmoc-peptides have demonstrated
the support of human adult dermal fibroblasts [110], human mammary fibroblasts [96],
L929 fibroblasts [165], neural cells [163,171], and C2C12 mouse myoblasts [162], (Figure 3).
Peptide amphiphiles have shown support and induction of neuroectodermal lineage from
MSCs [167].
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Figure 3. Biocompatibility of self-assembling peptide hydrogels. The Fmoc-FF/RGD hydrogel promotes cell adhesion
with subsequent cell spreading and proliferation. (A) The structures of the two chemical analogs: Fmoc-RGD and Fmoc-RGE.
(B) Cell adhesion and morphology in the Fmoc-FF/RGD and Fmoc-FF/RGE hydrogels: (B1) human adult dermal fibroblasts
(HDFa) are well-spread in the Fmoc-FF/RGD hydrogels and form a three-dimensional cell network 48 h post culture;
(B2) HDFa in the Fmoc-FF/RGE hydrogels maintains a round morphology after 48 h. (C) The Fmoc-RGD concentration also
influenced cell spreading; in the hydrogels with 30–50% Fmoc-RGD incorporated, adequate cell spreading occurs with over
90% spread cells. (D) Integrin blocking experiments proved direct interaction of the cells with RGD after 20 h: (D1) Cells
with unblocked α5β1 integrins were able to spread and directly attach to the RGD sites on the nanofibres. (D2) Cells with
blocked α5β1 integrins were unable to attach to the RGD sites and remained rounded. (E) Fmoc-DDIKVAV nanofibres
interact with one another, forming a nanofibrous network, into which proteins such as the brain-derived neurotrophic factor
(BDNF) (orange) can be shear-encapsulated to sustain delivery, thereby providing structural and chemical support for cells
(green). (F1) Representative cortical primary cultures illustrating total DAPI labelled cells and proportionate TUJ+ neurons
under control conditions and following (F2) soluble brain-derived neurotrophic factor (sBDNF) treatment. Note the increase
in pyknotic nuclei (yellow arrows), as well as DAPI+ cells failing to adopt a TUJ+ neuronal fate (red arrows) in the absence
of BDNF. Scale bar 100 µm. (A–D) Adapted with permission from Zhou et al. 2009 Copyright Elsevier [110]. (E,F) Adapted
with permission from Nisbet et al. 2018 Copyright Wiley-VCH [171].

To demonstrate the range of mechanical properties achievable with the bioactive Fmoc-
FRGDF system, Li et al. used phosphate-buffered saline (PBS) at varied ionic strengths
(0.25–0.75 M) and controlled the time to pH equilibrium to create materials with mechan-
ical properties in the range of 10 Pa to 11 kPa and with the ECM-motif, RGD [134]. Li
et al. discussed that the mechanical control was facilitated by the assembled network’s
underlying organisation. An increase in disordered and entangled structures was observed
with increasing PBS concentrations. A correlation between increased PBS concentrations
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and mechanical properties of created networks was also observed. This indicated that
the hydrogel’s mechanical increase was a result of underlying disordered and entangled
structures in the fibrous networks [134].

SAPs can also be blended to form co-assembled hydrogels [110,139,140,162]. To
achieve this, peptides are combined before assembly, allowing for the formation of complex
networks consisting of fibrils of mixed sequence. Co-assembled networks of Fmoc-YIGSR
and Fmoc-IKVAV, two laminin-mimetic peptides, enhanced the network mechanics of
hydrogels from 674 Pa (Fmoc-YIGSR) and 267 Pa (Fmoc-IKVAV) to 937 Pa [140]. The
increase in mechanical properties was attributed to the interactions of hydrophobic and
hydrophilic peptides and increased hydrogen bonding. This method also demonstrated
that by varying the peptide ratios, the mechanics could be varied further. In elastin-like
and resilin-like polypeptides, lysine residues (K amino acid) could be added to create
crosslinking potential for mechanical control [172,173]. Materials prepared by this method,
depending on the percentage of crosslinks formed and the number of K-edited domains,
facilitated a mechanical modification between 1 kPa and 1 MPa. These reports demonstrate
that the variation of SAP hydrogel properties, by altering assembly conditions, allows for a
wide range of mechanical properties, inclusive of the range of mechanical properties seen in
many tissues of the body. This is achieved by altering covalent crosslinking, concentration
changes, ionic or pH changes, and coassembly with other SAPs.

The native ECM includes various structural and functional proteins and polysaccha-
rides that self-assemble into a supramolecular network, the complexity of which is yet to
be fully recapitulated in lab-made scaffolds. Reports describing the combination of SAPs
with other macromolecules have demonstrated that hybrid networks present beneficial
properties and facilitate the mechanical tuning of the hydrogels for improved tissue-
mimicry. Fmoc-peptides combined with macromolecules agarose [133], versican [111]
and/or fucoidan [111,135,136], have demonstrated the ability to vary the scaffolds’ me-
chanical properties [111,133,135,136], as well as demonstrating anti-cancer [135] and anti-
inflammatory [95,111,136] properties.

2.3. In Vivo Applications of Peptide Materials

SAPs have also been used for in vivo cell and drug delivery. Fmoc-FRGDF, Fmoc-
DIKVAV and Fmoc-DYIGSRF were used to deliver cortical progenitors into the brain of
C57BL/6 mice, demonstrating the improved delivery and viability of cortical neural pro-
genitor cells and a limited foreign body response to the material [163]. In vivo assessment
of Fmoc-DDIKVAV in a mouse stroke model demonstrated that the hydrogel’s structural
and bioactive functional support promoted stem cell integration (human progenitor stem-
cell-derived cortical neurons) and differentiation, reduced tissue atrophy and improved
the recovery of motor function over nine months [164]. Furthermore, Fmoc-peptides and
peptide-hybrid hydrogels showed biocompatibility and supported tissue regeneration
when implanted into the brains of mice subjected to acute traumatic brain injury [136].

Peptide amphiphiles have also demonstrated in vivo applications, such as a drug
carrier for an atherosclerotic plaque-reducing drug [168]. Additionally, when modified
with RGD, PA materials can promote wound healing after burns [169]. Further, in vivo
applications of the SAP RAD16 include efficacy as a haemostat [153], facilitating tissue
reconstruction after central nervous system (CNS) injury [78] or bone defects [154], and
providing anti-cancer microenvironmental cues [155]. This demonstrates that SAP and hy-
brid materials can support tissue regeneration and influence tissue response by mimicking
elements of the native ECM. In future, clinical applications of Fmoc-peptides, peptide am-
phiphiles and RAD16 may include cell delivery for stroke recovery, drug delivery, wound
regeneration, haemostat, CNS repair, bone repair and anti-cancer treatments.

3. Adapting Peptide Materials as Bioinks

Biofabrication requires materials with properties that can both support cellular sur-
vival and growth and retain a designed 3D structure to result in a functioning living scaffold.
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Several studies have investigated the role of material properties that predict suitability for
bioprinting, such as viscosity [174–178], shear-thinning [177–183], loss tangent [184], and,
more recently, yield stress [184,185]. However, in the translation of synthetic peptide mate-
rials to bioinks, these key predictors are often under-reported and seemingly inconsistent.
In reported studies of SAP bioinks, measures of printability such as viscosity [80–82,104],
loss tangent [80,81,102], shear-thinning [81,82,103], achievable height [81,82,99,103] and
filament assessments [81,82,103], were briefly discussed. This demonstrates the adoption
of printability measures into the SAP bioink field; however, the lack of standard printability
outcomes and the inconsistency in relationships of printability and predictors such as
viscosity [81,82] limit the understanding of key material properties for future development.

There is a significant lack of knowledge in the mechanisms and design principles that
create a bioprintable peptide material. In attempts to address this, Sather et al. investigated
the relationship between peptide assembly and viscosity [82]. The authors reported that the
bundling of fibres increased the bulk viscosity of the bioink, which improved printability
as seen by the maintenance of deposited shape. Specifically, this bundling was accounted
to hydrophobic residues on the nanofibre surface. Furthermore, post-printing, the authors
reported that the variation of salt valency (for ionic crosslinking) affected both filament
width and stiffness of the bioink. The authors also reported that transition of the SAP
assembly from fibre to spherical micelle reduced printability. This contradicts the findings
of Nolan et al., who reported that spherical domains improved printability [103]. How-
ever, differences in data reporting between the studies (i.e., Sather et al. directly related
printability to increased viscosity, compared to Nolan et al., who did not report viscosity),
clouded the relationship of assembly and printability. These studies indicated the need
for minimum data reporting of bioink predictors across studies of SAP materials to make
future comparisons. These reports all used custom-made biofabrication setups, indicating
the difficulty of translating SAP biomaterials to current biofabrication technologies.

Traditional biofabrication techniques have incompatibilities with SAPs, currently lim-
iting the use of this material class. Many techniques for biofabrication exist, including inkjet
printing [31], laser-assisted printing [32,33], extrusion printing [34,35], molding [36] and
freeform fabrication [37]. Compared to traditional bioinks, SAP materials have different
gelation conditions, often involving salt solutions (Table 1). This has required the devel-
opment of novel fabrication setups to enhance gelation. Bioprinting techniques amenable
to SAP bioinks include droplet printing [98–101], or the generation of droplets which
are then extruded [100,101], extrusion printing [80,81,102–104], and the customisation of
extrusion printing setups, such as coaxial nozzles to mix salt solutions [80,81], printing onto
salt-covered substrates [82], or removing excess fluid with a vacuum print-bed [105]. This
demonstrates that the unique properties of SAP materials can be exploited for bioprinting.
However, it is evident that further development in both SAP bioinks and bioprinting
methods will be needed to facilitate the shape fidelities of printed constructs.

Hybrid materials can beneficially combine properties to promote printability. An
alternative design principle for bioprintable peptide materials is the combination of other
molecules with peptides [34,186–190] (Table 1). These bioinks support printability by
complementary interactions, promoting viscosity [34], robustness [186], or mechanical
recovery [187,188,190].
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Table 1. Summary of SAP bioink materials, bioprinting techniques, printability outcomes, assembly, mechanics and cell
types that were assessed.

Hybrid Material Bioprinting
Technique

Printability
Outcome/s Assembly Mechanics Cell Type/s Ref

No
LIVAGK
ILVAGK

and derivatives

Microfluidic flow
focusing system
(nanoparticles,

custom two-inlet
nozzle)

Not reported Beta turn 40 kPa

Human H1
ESCs, hMSCs

HUVECs,
Fibroblasts

Keratinocytes
& Caco2

[98]

No IVFK
IVZK

Coaxial
microfluidic nozzle
(converted Dobot
Magician printer)

V, LT Beta turn 6–100 kPa

Human
dermal

fibroblasts
hMSCs

[80]

No
IIFK
IIZK
IZZK

Extrusion Printing
(Dual-Coaxial

nozzle)

V, LT, ST, AH,
FA

Beta-turns
and

beta-sheet

1–108 kPa
6–271 kPa
4–315 kPa

Human
dermal

fibroblasts
hMSCs

[81]

No E3
K3

Direct ink writing
(extrusion based)
onto salt-coated

substrates

V, ST, AH, FA Beta-sheet 0.03–12 kPa
0.01–1.5 kPa C2C12 [82]

No
PeptiGelDesign.Ltd

(Manchester
BioGel)

Extrusion Printing
(3D discovery,

regenHU)
LT Not reported

10 kPa
(Alpha1)

1 kPa
(AlphaProB)

Mammary
epithelial

cells
[102]

No Fmoc-FF Extrusion Printing
(RepRap) ST, AH, FA Not reported 1 kPa None

reported [103]

No Fmoc-YD +
Fmoc-YK

Droplet Printing
(CellJet) AH Anti-parallel

beta sheet 4 to 62 kPa
Human

hepatoma
spheroids

[99]

Yes Nap-FFK-acrylic
acid + PEGMA

Extrusion Printing
(Nano-Plotter NP

2.1, GeSiM)
ST, FA, SR Not reported 1 kPa NIH-3T3

cells [187]

Yes
Thiolated-
gelatin +

PA

Extrusion Printing
(EnvisionTEC,
3D-Bioplotter)

ST, FA Not reported 1 kPa

SV40
immortalised

mouse
cholangio-

cytes

[188]

Yes

PA + fibronectin,
collagen, keratin,

elastin-like
proteins or

hyaluronic acid

Inkjet Printing
(custom, into

supporting bath of
one component)

V Beta-sheet 0.5–0.9 kPa

NIH-3T3
adipose

derived stem
cells

[189]

Yes
poly(benzyl-L-
glutamate)-b-

oligo(L-valine)

Extrusion Printing
(custom) SR Not reported 1.5 kPa BaIb/3T3

fibroblasts [190]

Yes RAD16-I +
methylcellulose

Extrusion Printing
(3D Discovery

Printer)
V, FA Beta-sheet 10 kPa

Human MSC
derived from

adipose
tissue & Rat

MSC

[34]

V: Viscosity, LT: Loss Tangent, ST: Shear-Thinning, AH: Achievable Height, FA: Filament Assessments, SR: Shear Recovery.
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4. Bioprinting of Tissues and Tissue Models with Self-Assembling Peptide Bioinks
4.1. In vitro Tissue Engineering with SAPs

SAP bioinks are currently in development, and already in use, for a wide range of
in vitro tissue reconstruction and modelling applications. Progress has been made in
the biofabrication of skin, organ structures, muscle tissue, and the modelling of cancer.
However, many of these systems remain in the very early stages, and a number of further
advances are required before SAP bioinks can be adopted more broadly.

The development of SAP bioinks for dermal bioprinting requires the capability to sup-
port resident cell types in the epidermal, dermal, and subcutaneous skin layers. Progress
into the development of skin models using SAP bioinks has demonstrated cytocompati-
bility with fibroblasts [80,81,98]. The droplet printing of SAP gels (Table 1) demonstrated
efficacy as a model of skin [98]. In a study by Loo et al., HUVECS and fibroblasts peptide
droplets were deposited side by side, and keratinocytes were then seeded onto the apical
surface to make a two-layered skin model [98].

A SAP bioink has also been used to develop an intestinal epithelial model, where Caco2
cells formed fully confluent sheets with the anatomical features of intestinal tight junctions
and developing microvilli [98]. Furthermore, a study of bile duct cells (cholangiocytes)
in a SAP hybrid bioink indicated the formation and growth of cysts that budded and
formed branching tubular structures after one week [188] (Figure 4A–C). These engineered
intestinal structures could potentially be used for disease modelling as well as drug testing.

Biofabrication is also a promising technique for the development of structurally and
functionally appropriate muscle for implantation or in vitro testing. Only a small number
of articles have reported on self-assembling bioinks for the culture of muscle cells [82,104].
A recent study by Sather et al. presented a SAP bioink with an aligned nanofibrous
topography that supported the alignment of C2C12 muscle cells [82] (Figure 4D,E).

The development of cancer models is an important step in testing for anti-cancer
compounds. A recent review indicated that SAPs were promising for the local delivery of
anti-cancer compounds [94]. A study of a SAP bioink demonstrated that Fmoc-YD/Fmoc-
YK was compatible with the formation of human hepatoma cells HepaRG spheroids [99].
The formation of spheroids is a key step in cancer research due to the three-dimensional
cues that impact cellular behaviour in native cancer structures. This demonstrated the
potential of SAP bioinks to develop cancer models for the testing of anti-cancer compounds
in the future.

4.2. SAP Support of Stem Cell Proliferation and Differentiation

A valuable avenue of research is the development of bioinks that can support stem cells.
Stem cells are extensively used in tissue engineering applications to facilitate the remod-
elling of tissues. Stem cells have been used clinically in macular degeneration [191,192] and
myocardial infarction [193], where data show they are safe and well-tolerated [191,193,194].
In the field of SAP and hybrid bioinks, stem cells have not been widely reported. However,
reports have described the support of stem cells [80,81,98,189] and the ability to induce
multipotent cells to specific lineages [81,98]. Peptide droplets were used to culture human
H1 embryonic stem cells, which demonstrated the expression of pluripotent nuclear tran-
scription factors and surface markers [98]. The same material was used to culture human
mesenchymal stem cells (hMSCs), which demonstrated cell elongation and alignment [98].
Cells were induced to adipogenic lineage and demonstrated features of adipogenesis [98].
Similarly, an SAP hybrid ink supported the viability of hMSCs and the differentiation of
rat MSCs into adipogenic linage [34]. Another study demonstrated that within an SAP
bioink, printed human bone marrow mesenchymal stem cells could be sustained in culture
for up to 30 days [81] (Figure 4F–H). Compared to Matrigel, cells in the peptide bioink
demonstrated improved viability and the sustained potential for osteogenic, adipogenic
and chondrogenic differentiation [81]. These reports demonstrated that SAP bioinks could
support the growth and differentiation of various stem cells. However, significant work
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remains to reflect the complexity of the ECM-niche in SAPs which can be biofabricated,
particularly for the control of stem cell behaviour.
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Figure 4. SAP bioinks have been used for the biofabrication of several cell/tissue types including
(A–C) Cholangiocytes. (A) 3D bioprinting IKVAV-ink via extrusion through a 250 µm tip into a
15 mm × 15 mm grid, treated by secondary crosslinking solution. Scale bar is 10 mm. (B) Live/Dead
stain of cholangiocytes in IKVAV-ink for 7, and (C) 14 days. Scale bars are 100 µm. Adapted with
permission from Yan et al. 2018 Copyright IOPScience [188] (D,E) Muscle. (D) 3D bioprinting of
PA-bioink on a CaCl2-coated glass coverslip using a 200 µm nozzle. Scale bar is 1 mm. (E) Confocal
image of myoblast cells encapsulated in a filament after seven days in culture, stained with Calcein-
AM (green) showing live cells aligned along the fibre axis. Scale bar is 100 µm. Adapted with
permission from Sather et al. 2021 Copyright Wiley-VCH [82]. (F–H) MSCs (F) Long-term (30 days)
cell viability of hBM-MSCs post-printing of a 1 cm cylindrical construct using IZZK peptide. Scale
bar 600 µm. (G) Printed construct after 30 days (H) SEM of printed hBM-MSCs after ten days of
culture showing an interaction between the cell’s filopodia and the matrix. Scale bar 5 µm. Adapted
with permission from Susapto et al. 2021 Copyright ACS [81].

5. Conclusions and Future Outlook

The field of biofabrication is compelling because of its potential to provide solutions to
many human ailments and significantly improve quality of life. Biofabrication techniques
have responded to the knowledge of 3D cell-scaffold interactions, generating novel solu-
tions to fabricate hierarchical biomimetic structures. The future of biofabrication lies in the
development of effective bioinks that not only provide niche cell-scaffold interactions, but



Polymers 2021, 13, 2590 13 of 20

create a hierarchical, truly mimetic lab-made tissue or organ. However, progress still needs
to be made in the development and refinement of synthetic bioinks. SAP-based hydrogels
offer a unique opportunity to tailor bioinks for biofabrication from the molecular level.
SAP bioinks facilitate the building of multiscale cues ranging from bioactive motif–cell
interactions to the structural nanofibrous topographies and the bulk mechanical properties
of ECM-niches.

The innovation of synthetic SAP biomaterials is important not only in terms of creating
native protein-mimetic biomaterials, but also in terms of the major impact on the precon-
ceived ideas of biomaterial design. In the years following the innovation of synthetic SAP
biomaterials, the lack of SAP use in biomedical applications gave way to an increasing body
of work which studied in vivo regenerative medicine, 3D cell culture and biofabrication,
seen most recently. Progress has been made to adapt synthetic SAPs to bioinks for dermal,
muscle, and cancer modelling, as well as stem cell cultures. Future works should consider
how synthetic peptide biomaterials can be tuned to match the ECM-niche of various tissues,
how they can be translated to the biofabrication of different tissue types and the rheological
properties that predict printability. In future, detailed accounts of underlying mechanisms
and methods will make it easier for researchers to achieve the progressive pathway of SAPs
to SAP-bioinks.
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