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Abstract: The photo-oxidative studies of ethylene vinyl acetate copolymer (EVA) matrix, filled with 

Layered Double Hydroxide (LDH) modified with methacrylic anion (MA), were herein reported, 

together with gas permeation tests. The formulation of nano-hybrid LDHs was characterized using 

X-ray diffractometry (XRD) and thermogravimetric analysis (TGA), demonstrating the partial 

intercalation of the 30% of MA anion between the LDH’s galleries. The as-modified filler was 

introduced into an EVA matrix by mechanical milling, producing free-standing films subjected to 

accelerated aging. Fourier transform infrared spectroscopy (FT-IR) results suggested that the 

nanohybrid presence determined a stabilizing effect up to 45 days of UV irradiation, especially if 

compared to the EVA/LDH references for all formulated EVA hybrid nanocomposites. Conversely, 

the presence of nanohybrid in the matrix did not significantly change the thermal stability of EVA 

samples. The dispersion of modified MA-LDH in the EVA matrix produces defect-free samples in 

the whole range of investigated loadings. The samples show a slight decrease in gas permeability, 

coupled with a substantial stabilization of the original CO2/O2 selectivity, which also proves the 

integrity of the films after 30 days of UV irradiation. 

Keywords: ethylene vinyl acetate copolymer; EVA nanocomposite; Layered Double Hydroxide 

(LDH); photo-oxidation; degradation; gas permeation; ball milling. 

 

1. Introduction 

The primary worldwide source of energy mainly derives from fossil fuels, whose 

reservations are constantly decreasing. In addition, the large consumption of fossil fuels 

is harmful for the environment, and a great effort is needed to move from non-renewable 

to sustainable energy sources. Among the reliable approaches to satisfy criteria for a new 

green deal, the use of solar energy, being the most abundant renewable energy resource, 

is considered the winning strategy in different fields of application. Specifically, 

photovoltaics (PV) is currently the fastest growing technology, reaching the most 

competitive prices compared to other technologies [1]. To be a cost-effective technology, 

photovoltaic modules are expected to operate reliably for about 25–30 years under the 

interactive conditions in which they are installed [2]. It is known that photovoltaic 

modules work in non-controlled field conditions, that greatly influence their efficiency 
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during the aforementioned working period. In light of this, the understanding of aging 

processes involved during outdoor exposure for each component of the photovoltaic 

module becomes of outstanding importance [2–5]. One of these elements comprises the 

ethylene vinyl acetate copolymer (EVA) as an encapsulation agent. The latter possesses 

several peculiar features, such as high transmittance, good adhesion to glass and relative 

weather and UV resistance, although degradation phenomena can occur for prolonged 

light exposure times [6–9]. Degradation of EVA involves complex chemical and physical 

phenomena that mainly depend on temperature, UV radiation and moisture. In this 

regard, since the identification of structural and physico-chemical changes involved 

during EVA aging can provide useful information to slow down the process, several 

studies have been devoted to the comprehension of polymer degradation and its 

stabilization. Among them, the addition of fillers by using different formulation 

technologies was reported as a valuable solution to extend the material lifetime in terms 

of light resistance and mechanical and gas barrier properties [8,10–15]. However, the 

selection of nanoparticles to improve the performance of polymer nanocomposites can be 

a difficult task. Indeed, by adding a specific filler to a specific matrix, great benefits in 

terms of mechanical properties can be obtained, and vice versa, the same filler can 

determine a depletion of UV durability. This phenomenon can be tuned, depending on 

the chemical composition of the nanofiller, its UV and thermal stability, its morphology 

and the possible interactions and/or reactions that may occur between the matrix and 

nanofiller [16]. In this context, Layered Double Hydroxides (LDHs) are receiving 

increasing interest as fillers for polymeric matrices, owing to their unique versatility. 

Particularly, their anion exchange capability allows to design a great variety of nano-

fillers, simply by varying the intercalated species. Despite that several papers have 

reported the photo-oxidative behavior of polymer nanocomposites filled with LDHs [17–

21], related studies on EVA filled with LDHs are missing in the literature. This work 

reports as a novelty the preparation and characterization of LDHs modified with 

methacrylic acid and their formulation with the EVA matrix by using a mechanical milling 

procedure. As stated, LDHs are able to boost the mechanical and thermal properties of 

several polymer matrices, although their introduction can cause serious concerns about 

the polymer durability. In this regard, the unusual choice to use MA as an intercalating 

species was made assuming that its polymerization, triggered by UV exposure, might 

assist in “repairing” the macromolecular structure that is subjected to unrelenting chains’ 

scission. Herein, the influence of the filler on degrading or stabilizing the nanocomposite 

materials was reported and discussed, also comparing results obtained by loading 

different filler concentrations and related references. Finally, transport properties versus 

O2 and CO2 were also evaluated, tracking the response to photo-oxidation. 

2. Materials and Methods 

2.1. Materials 

MgCl2  6H2O, AlCl3  6H2O, NaOH and methacrylic acid (MA) were purchased from 

Sigma-Aldrich (Italy). Ethylene vinyl acetate (EVA) Green Flex® ML 40 (14% of vinyl 

acetate content, Melt Flow Rate (190 °C/2.16 kg) 2.5 g/10 min) was kindly supplied by 

Versalis. Carbon dioxide (CO2) and oxygen (O2), used in the permeation tests, had a purity 

of 99.99% and were purchased from SAPIO (Italy). LDH in carbonate form (cas number: 

11097-59-9) was purchased from Sigma-Aldrich (Saint Louis, MO, USA). 

2.2. MgAl-Methacrylate (LDH-MA) Preparation by Coprecipitation Method 

Fifty mL of an aqueous solution of MgCl2 * 6H2O (16.8 g, 82.8 mmol) and AlCl3 * 6H2O 

(10 g, 41.4 mmol) was added to fifty mL of a methacrylic sodium salt solution (5.8 g, 66.7 

mmol) under stirring and nitrogen flow. The pH slowly reached the value of 9 by adding 

1M NaOH. At the end, the precipitate was washed with distilled water and left in an oven 

at 50 °C for 24 h, under vacuum [22]. The chemical formula obtained from the elemental 
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analysis was the following: [Mg0.65Al0.35(OH)2] (C4O2H5)0.35 * 0.7 H2O, with the value 

of the molar fraction x = MIII/(MIII + MII) of 0.35 and molecular weight of 101.59 g/mol. 

The amount of methacrylic anion intercalated in MgAl-MA (LDH-MA) is 30 wt% of the 

total weight. 

2.3. Preparation of EVA/LDH-MA Composites 

Composites based on EVA and 3, 5 and 10 wt% of LDH-MA nano-hybrid were 

prepared by milling LDH-methacrylate and EVA powders at room temperature in a 

Retsch (Germany) planetarium ball mill (model PM 100), using a cylindrical steel jar of 50 

cm3 with 5 steel balls of 10 mm in diameter. The rotation speed used was 580 rpm and the 

milling time was 3 h. Films of EVA and composites, having the same thickness  100 µm, 

were obtained by compression molding at 150 °C, using a Carver Laboratory press, and 

cooled at room temperature. Films of EVA and unmodified LDH were produced using 

the same experimental conditions. 

2.4. Methods 

X-ray diffraction (XRD) patterns were obtained in reflection with an automatic 

Bruker diffractometer D8 (Karlsruhe, Germany), using nickel-filtered Cu Kα radiation (K 

= 1.54050 Å) and operating at 40 kV and 40 mA, with a step scan of 0.05° of 2 and 3 s of 

counting time. 

The photo-oxidative degradation of neat EVA and composite films was carried out 

on a QUV PANEL apparatus at 60 °C, with continued exposure to UV radiation up to 60 

days, in the absence of water. At least two separate films were analyzed at each exposure 

time. The irradiance (0.68 W/m2) of the UV lamps has a broad band with a maximum at 

340 nm (UVA 340 lamps) [23].  

The thermogravimetric analyses (TGA) of LDHs were carried out from 30 to 800 °C 

at a heating rate of 10 °C/min under air flow using a TA Instrument Q500 (TA Instruments, 

New Castle, DE, US). The same measurements on the films submitted to 

photodegradation were performed under a nitrogen atmosphere at 10 °C/min, from 50 to 

600 °C. Sample weights were approximately 3–6 mg. The weight loss percent and its 

derivate (DTG) were recorded as a function of temperature. 

Fourier transform infrared (FT-IR) characterization in ATR mode was performed by 

a JASCO FT/IR-4700 spectrometer (average of 10 scans, at a resolution of 4 cm–1).  

The permeation rates of O2 and CO2 were measured at a feed pressure of 1 bar and 

25 °C in a fixed volume/pressure increase apparatus (Elektro & Elektronik Service Reuter, 

Germany) [24]. The instrument has a high vacuum system (turbo molecular pump after a 

backing pump) in order to evacuate the membrane samples. A pressure transducer 

monitors the pressure increase due to the gas permeation in the permeate side, where the 

volume is calibrated. The gas permeability (P) is obtained from the slope of the pressure 

curve at steady-state conditions. In addition, the diffusion coefficient [D, Equation (1)] of 

each gas is evaluated from the gas time-lag (θ) [25] that is obtained by extrapolating the 

linear portion of the curve on the abscissa. The solubility coefficient [S, Equation (2)] was 

indirectly obtained according to the “solution-diffusion” transport model that describes 

the permeation of permanent gases at low pressure in dense polymeric films [26]. 

D = l2/6θ (1)

S = P/D (2)

The ideal selectivity was calculated as the ratio of the permeability values for two 

gases. The film thickness was calculated as the average of multiple point measurements 

taken with a digital micrometer (Mitutoyo). 

Quantitative determination of metal ions in solution after the sequestration 

procedure was performed by an Inductively Coupled PlasmapMass Spectrometry 

(ICP/MS) Nexion 300X (Perkin Elmer Inc. Waltham, MA, USA), using the kinetic energy 
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discrimination mode (KED) for interference suppression. Each determination was per-

formed three times. The accuracy of the analytical procedure was confirmed by measuring 

a standard reference material, Nist 1640a trace element in natural water, without observ-

ing an appreciable difference. Results obtained for LDH and LDH-MA were 18.80 and 

20.21 ppm, respectively. 

Film transparency was determined through an ultraviolet-visible (UV-Vis) spectro-

photometer UV-2401 PC Shimadzu (Kyoto, Japan). Light transmission in UV-Vis ranges 

(200–800 nm) was determined. A film sample (4 × 1 cm2) was placed into the cell of the 

spectrophotometer, and the transmission value at a wavelength of 600 nm was recorded. 

The transparency of the films was then evaluated according to Equation (3): 

Transparency (%Tr) =
log(T���)

x
 (3)

where T600 is the % transmittance taken at 600 nm and x is the film thickness (mm). Ac-

cording to this equation, the lower the transparency index value is, the higher the film 

transparency [27–29]. 

3. Results 

3.1. Materials 

The as-prepared LDH-MA nanohybrid was characterized by XRD and TGA meas-

urements. Figure 1 reports the XRD of the pristine LDH with chloride anion (A) and the 

LDH modified with MA (B). The pristine LDH shows the peak at 2  11.8° corresponding 

to the basal reflection (003) and to an interlayer distance of 0.376 nm. The XRD of LDH-

MA shows that part of MA is intercalated into the pristine LDH, as evidenced by the peak 

at lower 2  5.8°, while part of LDH resulted as not intercalated, because of the co-pres-

ence of the peak at 2  11.8°. 

 

Figure 1. XRD of the pristine LDH with chloride anion (A) and the LDH modified with MA (B). 

Figure 2 reports the TGA thermograms of the pristine LDH with chloride anion (A), 

the LDH modified with MA (B) and the MA (C). The first weight loss, between 100 and 

140 °C, is due in both cases to the loss of intercalated water. The second weight loss, as 

temperature increases from 300 to 500 °C, is due to the dehydroxylation of the octahedral 

layers as well as the decomposition of the interlayer anion [30]. In the case of LDH-MA, 

the second degradation step resulted as anticipated for the presence of the intercalated 

MA. The methacrylic acid (MA) has a degradation temperature at about 75 °C. It is evident 
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that the intercalation into the LDH results in a significant improvement in MA’s thermal 

stability, with the main thermal decomposition of the hybrid at around 350 °C. The hy-

droxide framework is transformed into the corresponding oxide by dehydroxylation 

above 400 °C. Such behavior, already found for several organic molecules intercalated into 

LDH layers [31], confirms that the LDH hosts constitute an interesting protection of the 

organic molecule, providing the possibility to incorporate thermolabile molecules even in 

polymers with high melting points. 

 

Figure 2. TGA of the pristine LDH with chloride anion (A), LDH modified with MA (B) and MA 

(C). 

3.2. Photodegradation of EVA and Composites  

Samples of neat EVA, EVA + LDH and EVA + LDHMA were subjected to acceler-

ated aging by using a UV lamp at 340 nm for up to 60 days. To appreciate variations in 

chemical structure during the aging, samples were collected at different irradiation times 

and analyzed by TGA and FT-IR spectroscopy. Degradation of the EVA sample became 

detectable after 15 days; indeed, at lower exposure times, the characteristic signals remain 

almost unmodified (see Supplementary Figure S1). Specifically, at 30 days of photo-expo-

sure, the EVA sample registered an increase of carbonyl signals at 1775 cm–1 (Figure 3a) 

due to the formation of lactone groups derived from UV exposure at 60 °C (Scheme 1). At 

longer exposure times, this peak continued to increase, confirming data reported in the 

literature [32–35]. By increasing the exposure time, oxidation of aliphatic groups bearing 

to alcohol, acid and ketone groups occurred alongside, as confirmed by the appearance of 

the peaks at 3484 cm–1 assigned to alcoholic species (Supplementary Figure S2).  

The latter species were formed by hydrogen abstraction as well as Norrish reactions 

occurring in polyethylene (PE) parts (Scheme 2), and reasonably contributed to the for-

mation of lactone, acid and ester bands. Due to the change of chemical surrounding as a 

function of irradiation time, the peak at 1735 cm–1 was shifted at lower wavelengths, 

whereas a shoulder at 1710 cm–1 assigned to the formation of acetic groups concomitantly 

appeared, becoming the predominant species (Schemes 1,2 and 3). The carbonyl band re-

lated to C=O stretching is sensitive to the environment and its blueshift can be related to 

a strong H-bonding [36]. 
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Scheme 1. Photo-oxidative degradation with formation of acidic acid and lactone via back-biting 

process. 

 

Scheme 2. Mechanisms of photo-oxidation of PE moieties in the EVA copolymer [36]. 

 

Scheme 3. Mechanisms of photo-oxidation of VA moieties in the EVA copolymer [36]. 
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Figure 3. FT-IR spectra in the carbonyl region for EVA (a), EVA-LDH 3% (b) and EVA-LDH 5% (c) 

samples at different exposure times. 

It is worth noticing that at higher stages of degradation, photoproducts that origi-

nated from different mechanisms were observable [36]. Particularly, photo-processes 

(Scheme 1) occurred in the polymer bulk where the permeation of air is restricted, whereas 

the exposed material surface is involved in photo-oxidative reaction pathways (Schemes 

2 and 3). 
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As stated in the literature, polymeric matrices filled with nano-clays suffer light ex-

posure [16,37,38]. Hence, it is not surprising that EVA filled with 5% of LDH showed an 

acceleration of photodegradation reactions as a function of exposure time, leading to the 

formation of carboxylic groups already evident for low irradiation periods (Figure 3c). As 

reported by Bocchini et al., LDH nanofillers can adsorb the antioxidant molecules, pre-

venting their migration at the polymer surface and thus reducing the oxidative induction 

time [18]. 

From the inspection of samples filled with the LDH-MA at 3%, 5% and 10%, it ap-

pears evident that the presence of LDH-MA nanohybrids changes the fate of the materials 

during the exposure (Figure 4). A comparison of these spectra with those recorded for the 

samples loaded with the not modified LDH shows a reduced incidence of the photoprod-

ucts in the films loaded with the LDH-MA nanohybrids. 

 

Figure 4. FT-IR spectra in the carbonyl region for EVA + LDH-MA 3% (a), EVA + LDH-MA 5% (b) 

and EVA + LDH-MA 10% (c) samples at different exposure times. 
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Figure 5 reports the absorbance values registered for acetic acid (Figure 5a) and lac-

tone (Figure 5b) signals as a function of the irradiation time, collected for all LDH-MA-

filled samples. As observed, a stabilizing effect induced by the presence of LDH-MA over 

this time was shown. 

Specifically, formation of lactone and acetic acid groups derived principally from the 

photodegradation process (Scheme 1) were drastically reduced by the presence of 5% and 

10% of LDH-MA in the EVA matrix up to 45 days of exposure.  

 

Figure 5. Absorbance values in FT-IR registered at different exposure times for (a) acetic acid and (b) lactone groups with 

the EVA samples and the samples of EVA + LDH-MA at different percentages. 

If compared with both LDH-filled and EVA original samples, the results suggested 

an improved UV stabilizing effect due to the presence of nanohybrids in the matrix. It is 

reasonable to suppose at least two possible explanations for this experimental evidence: 

A different content of impurities, such as transition metal, responsible for the increase of 

photo-oxidation rate [18], and alternately, the embedded MA can act as sacrificial mole-

cules by blocking radicals responsible for UV degradation and employing them in MA 

polymerization. To discern between the two scenarios, ICP-MS analysis of LDHs and 

LDH-MA were performed. As expected, a similar content of Fe ions for both samples (see 

2.4. Methods) was obtained. In light of this, the MA polymerization seems to play a key 

role in preventing the photo-oxidative reactions in the EVA matrix. 

As a consequence, an increment of stabilization activity by adding more LDH-MA 

nanohybrid to the EVA is also expected. Samples containing 10% of nanohybrid exhibited 

a controversy in terms of mechanical properties. Specifically, after 45 days of photo-irra-

diation, the sample was extremely fragile, indicating that chain scission processes were 

prevalent and mostly extended for these irradiation times. Since the addition of such hy-

brid nano-clays can notably accomplish the photostability of the EVA matrix, suggesting 

its application for PV or agriculture purposes, transparency measurements were also per-

formed. In Figure 6, the film transparency calculated by UV-Vis spectroscopy (see Section 

2) revealed that such a peculiar feature, strictly required for application as an encapsula-

tion agent or greenhouse film, was not significantly affected by the introduction of the 

modified LDH filler. In particular, the optical transparency was decreased by only 0.4%, 

1.2% and 1.7%, with an LDH-MA content of 3%, 5% and 10% respectively, if compared to 

a neat EVA sample. 
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Figure 6. Transparency index (%) of neat EVA and EVA + LDH/MA films. 

TGA measurements of EVA, EVA + LDH and EVA + LDHMA films were performed 

to appreciate the variation of their thermal stability as a function of UV exposure time. 

Tables 1, 2 and 3 report onset temperature of degradation (a), temperatures at maximum 

rate of decomposition (TMD) (b) and residual masses (c) for films based on EVA or on 

EVA loaded with 5% of filler. As expected, the addition of LDH fillers (Table 2, Supple-

mentary Figure S5) increased the thermal stability of the EVA polymer for all formulations 

if compared to a neat EVA sample, although values underwent to a slight decrement as a 

function of exposure times (Supplementary Figures S4–S6, Tables S3 and S4). It is worth 

noting that higher LHD content triggered the formation of insoluble residue for prolonged 

photo-oxidation times, indicating the occurrence of crosslinking phenomena (Table 2, 

Supplementary Figures S4–S6, Tables S3 and S4). A different trend in thermal stability 

was registered for the samples containing nanohybrid at 5% (Table 3). Although LHD is 

added, the presence of the 30% of MA into the clay determines an inferior effect in terms 

of final thermal stability, resulting quite similar to that exhibited by the EVA film (Table 

1). Light irradiation also induced gel formation, even if the amounts measured along the 

exposure time are reasonably inferior if compared with the EVA samples filled with only 

LHD. Similar results were obtained by analyzing EVA filled with 3% of nanohybrid. 

Table 1. Onset temperatures of degradation, temperatures at maximum rate of decomposition and 

residual masses of EVA at 0, 45 and 60 days of exposure. 

EVA T95 (°C) a Tpeak (°C) b Residue c 

t = 0 336 471 - 

t = 45 326 471 - 

t = 60 323 472 - 
a Temperature at 5 wt% of weight loss; b Temperature at the maximum derivate of weight loss;  
c % of residue at 600 °C. 
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Table 2. Onset temperatures of degradation, temperatures at maximum rate of decomposition and 

residual masses of EVA + LDH 5% at 0, 45 and 60 days of exposure. 

EVA T95 (°C) a Tpeak (°C) b Residue c 

t = 0 337 476 0.5 

t = 45 332 473 1.6 

t = 60 328 479 5.3 
a Temperature at 5 wt% of weight loss; b Temperature at the maximum derivate of weight loss;  
c % of residue at 600 °C. 

Table 3. Onset temperatures of degradation, temperatures at maximum rate of decomposition and 

residual masses of EVA + LDH-MA 5% at 0, 45 and 60 days of exposure. 

EVA T95 (°C) a Tpeak (°C) b Residue c 

t = 0 336 470 1.5 

t = 45 327 438 3.4 

t = 60 327 465 3.3 
a Temperature at 5 wt% of weight loss; b Temperature at the maximum derivate of weight loss;  
c % of residue at 600 °C. 

3.3. Gas Permeation Tests 

The prepared films were tested as-prepared and after the prolonged photo-oxidation 

treatment. The neat EVA membranes presented a CO2 permeability higher than O2. In-

deed, the polar acetate group (O=C-O-) in the EVA copolymers has a preferential affinity 

for the polar CO2. The measured data on the neat EVA films are in agreement with those 

reported by Mousavi et al. for EVA membranes prepared by a thermal-wet-phase separa-

tion method using THF as a solvent (referred to as “EVA-28”) [39]. Interestingly, the pre-

sent values are higher than those reported for membranes prepared using the thermal-

phase inversion method [38]. The UV exposure reduces the gas permeability in neat EVA 

samples (Figure 7) and an accelerated physical aging of the films is evident at treatment 

times larger than 15 days. 

  
(a) (b) 

Figure 7. CO2 permeability (a) and CO2/O2 selectivity (b) for the films based on EVA with increas-

ing loadings of LDH-MA. Film conditions: “as-prepared” (0 days) and photo-exposed (15 and 30 

days). 1 Barrer = 10–10 cm3 (STP) cm cm–2 cmHg–1 s–1. 

A substantially constant permeability was observed for both gases as LDH content 

increased (Supplementary Figure S10). The permeability decay observed in the neat pol-

ymer was also evident in the LDH-filled films upon photo-oxidation (Supplementary Fig-

ure S10). It is coupled to a progressive decrease of CO2/N2 selectivity (Supplementary Fig-

ure S10) when the treatment time is prolonged. At higher filler content, the selectivity is 
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further depressed, probably due to the formation of nano-defects at the polymer-filler in-

terface resulting from the densification of the membrane matrix upon photo-oxidation. 

The gas permeation data measured in LDH-MA-loaded films evidenced the stabiliz-

ing role exerted by the modified fillers. The increase in the LDH-MA loading produced a 

systematically larger permeability (Figure 7) for both gases that can be attributed to the 

channels in the LDHs or to structural changes caused by the exfoliated lamellae within 

the polymer matrix. This phenomenon is coupled to a negligible change in CO2/N2 selec-

tivity, proving the integrity of the tested films (Figure 7). The evaluation of diffusion and 

solubility coefficients provided more information on the nanocomposites (Figure 8). In 

particular, the incorporation of the modified lamellar LDHs within the EVA matrix re-

sulted in a reduction in the diffusion coefficient owing to an increased tortuosity for the 

diffusion pathways. On the other hand, the calculated solubility coefficient of CO2 in-

creased in the presence of the fillers, indicating a preferential affinity of the additives. 

However, the solubility contribution was predominant. 

 

Figure 8. CO2 diffusion (a) and solubility (b) coefficients for the films based on EVA with increasing 

loadings of LDH-MA. Film conditions: “as-prepared” (0 days) and photo-exposed (15 and 30 days). 

As already observed on the neat polymer, the photo-oxidative stress reduced the gas 

permeability of the films with respect to the “as-prepared” samples. Small differences 

were detected after a photo-exposition of 15 days, while a more pronounced permeability 

reduction was registered after the prolonged photo-oxidative treatment (30 days). The 

films remained defect-free after their photo-oxidation for irradiation times up to 30 days, 

and reached a similar permeability, independent of the filler amount. Indeed, the CO2/O2 

selectivity remained nearly constant (ca. 5.5). A deeper analysis of the CO2 transport terms 

on the photo-oxidized films revealed, in analogy to what was observed in the as-prepared 

samples, a reduced gas diffusion coefficient coupled with a larger solubility upon the in-

crease in the photo-oxidation exposure time (Figure 8). This behavior could be ascribed to 

crosslinking phenomena occurring on the films during the oxidation, as suggested by 

TGA data (Tables 2 and 3). Song et al. demonstrated the creation of surface-densified lay-

ers for highly permeable PIM-1 membranes upon photo-oxidation treatment [40]. 

4. Conclusions 

In order to take advantage of the great potential of Layered Double Hydroxides 

(LDHs) in formulating EVA nanocomposites without sacrificing their light durability, in 

this study, they were intercalated with methacrylic anion (MA) and mixed with the poly-

mer matrix using the sustainable ball-milling process. It was demonstrated that up to 10% 

of loading, EVA nanohybrids maintained transparency, while their characteristic photo-

oxidative processes triggered by UV irradiation were postponed at longer exposure times, 

allowing an increase of polymer durability. The presence of MA, that reasonably under-

went to polymerization upon UV exposure, seems to play a key role in mitigating the 
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photodegradation also triggered by the loading of nano-clays into the EVA matrix. Fur-

thermore, the addition of LDH-MA is more effective in providing enhanced resistance to 

UV radiation, also noticeable in terms of gas transport properties. Indeed, their selectivity 

remained almost unchanged up to 30 days of exposure, whereas a slight permeability de-

cay was observed in both neat EVA and LDH-filled samples. In general, the EVA/ LDH-

MA nanocomposite films demonstrated a good structural stability, since the post-treat-

ment had no detrimental impact on their gas selectivity. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/polym13152525/s1, Figure S1: ATR infrared spectrum of EVA at different exposure time, 

Figure S2: ATR infrared spectra of EVA (a), EVA-LDH 3% (b) and EVA-LDH-MMA 3% (c) as pre-

pared, and after 45 days of exposure time, Figure S3: TGA profiles of EVA TQ as prepared, and after 

45 and 60 days of exposure time, Figure S4: TGA profiles of EVA + LDH 3% as prepared, and after 

45 and 60 days of exposure time, Figure S5: TGA profiles of EVA + LDH 5% as prepared, and after 

45 and 60 days of exposure time, Figure S6: TGA profiles of EVA + LDH 10% as prepared, and after 

45 and 60 days of exposure time, Figure S7: TGA profiles of EVA + LDH +MMA 3% as prepared, 

and after 45 and 60 days of exposure time, Figure S8:TGA profiles of EVA + LDH +MMA 5% as 

prepared, and after 45 and 60 days of exposure time, Figure S9:TGA profiles of EVA + LDH +MMA 

3, 5 and 10%, Figure S10: CO2 Permeability and CO2/O2 selectivity for the films based on EVA with 

increasing loadings of LDH and photo-exposed (15 d, 30 d and 45 d).Table S1: Onset temperature of deg-

radation, temperature at maximum rate of decomposition and residual masses of EVA+LDH+MMA 

3% at 0, 45 and 60 days of exposure, Table S2: Onset temperature of degradation, temperature at 

maximum rate of decomposition and residual masses of EVA+LDH+MMA 10% at 0, 45 and 60 days 

of exposure, Table S3: Onset temperature of degradation, temperature at maximum rate of decom-

position and residual masses of EVA+LDH 3% at 0, 45 and 60 days of exposure, Table S4: Onset tem-

perature of degradation, temperature at maximum rate of decomposition and residual masses of 
EVA+LDH 10% at 0, 45 and 60 days of exposure, Table S5: CO2 Diffusion coefficient extracted from values 
in Figure S8. 
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